Notre Dame Journal of Formal Logic Volume XIV, Number 2, April 1973 NDJFAM

A NEW REPRESENTATION OF S5

STEVEN K. THOMASON

We consider first a modal language with propositional constants (and no variables) and show that there is a unique set H of formulas of this language meeting certain attractive syntactical conditions; moreover H is the set of theses of a very simple calculus. We then show that the theses of S5 are characterized by the fact that all their instances are in H.*

Let \mathcal{L}_c be the language having an infinite set of "propositional constants" and connectives \neg , \vee , and \square used in the usual way. As usual, other connectives are used as abbreviations. If S is a string of symbols, s_1, \ldots, s_n are distinct symbols, and S_1, \ldots, S_n are strings of symbols, then $S(S_1, \ldots, S_n/S_1, \ldots, s_n)$ is the result of replacing each symbol $s_i(i=1,\ldots,n)$ in S by the string S_i . A tautology is a string of the form $X(S_1,\ldots,S_n/x_1,\ldots,x_n)$ where X is a tautology of the classical propositional calculus and x_1,\ldots,x_n are propositional variables. A set H of formulas of \mathcal{L}_c is correct if for all formulas A and B of \mathcal{L}_c

- (1) If A is a tautology then $A \in H$.
- (2) If A has no occurrences of \square and $A \in H$, then A is a tautology.
- (3) If $A \in H$ and $A \Longrightarrow B \in H$, then $B \in H$.
- (4) $A \in H$ if and only if $\square A \in H$.
- (5) Either $A \in H$ or $\neg \Box A \in H$.

Let \mathcal{L}_v be the language which is like \mathcal{L}_c except that \mathcal{L}_v has a countably infinite set of "propositional variables" rather than propositional constants. A set J of formulas of \mathcal{L}_v is said to be correct if it consists of all formulas X of \mathcal{L}_v such that every formula of \mathcal{L}_c of the form $X(A_1, \ldots, A_n/x_1, \ldots, x_n)$ is a member of H, where H is a correct set of formulas of \mathcal{L}_c .

Let ${\bf C}$ be the formal system whose language is ${\bf L}_c$, whose axioms are an appropriate set of tautologies and all formulas of the form

$$\Diamond \& \{a_i^* | i = 1, \ldots, n\}$$

^{*}This work was supported in part by the National Research Council of Canada, grant No. A-4065.

where a_1, \ldots, a_n are distinct propositional constants and each a_i^* is either a_i or $\exists a_i$, and whose rules are detachment and the following

- (6) From $A \Rightarrow B$ infer $\Box A \Rightarrow \Box B$.
- (7) From A infer $\square A$.

If \mathfrak{S} is any formal system then Thm(\mathfrak{S}) is the set of thesis of \mathfrak{S} , and $\mathfrak{S} \vdash X$ if and only if $X \in \mathsf{Thm}(\mathfrak{S})$.

Theorem 1. There is exactly one correct set of formulas of \mathcal{L}_c , and it is $\mathsf{Thm}(\mathbf{G})$.

Proof. We first establish a semantics for G. Let Con be the set of propositional constants and Fla be the set of formulas of \mathcal{L}_c . A truth value assignment is a function $V: \mathsf{Con} \to \{\mathsf{T}, \mathsf{F}\}$. Such a V can be uniquely extended to a function $V^*: \mathsf{Fla} \to \{\mathsf{T}, \mathsf{F}\}$ in the obvious way—in particular $V^*(\Box A) = \mathsf{T}$ if and only if $W^*(A) = \mathsf{T}$ for all $W: \mathsf{Con} \to \{\mathsf{T}, \mathsf{F}\}$. We say A is valid if $V^*(A) = \mathsf{T}$ for all truth value assignments V. In terms of the partial truth tables originally used by Kripke [1] in defining validity in modal propositional logic, A is valid if and only if A is assigned the value T in every row of every partial truth table for A which is full, i.e., has all 2^n rows if A has n propositional constants.

A few brief computations suffice to show that the axioms of G are valid and that the rules of G preserve validity, and hence that every thesis of G is valid. The converse is proved by a slight modification of Kalmár's proof of the analogous result for classical propositional calculus. For any formula G and truth value assignment G, let G and G are G are distinct propositional constants including all those occurring in G then G are distinct propositional constants including all those occurring in G then G are appropriate truth value assignments then

$$\mathbf{C} \vdash \mathsf{v} \left\{ \& \left\{ a_i^{V_j} \mid i = 1, \ldots, n \right\} \mid j = 1, \ldots, 2^n \right\} \Rightarrow A$$

$$\mathbf{G} \vdash \vee \{\& \{a_i^{Vi} \mid i = 1, \ldots, n\} \mid j = 1, \ldots, 2^n\}.)$$

This proof proceeds by induction on the length of A. Leaving the easy cases to the reader, we suppose $A = \Box B$. If $V^*(A) = \mathbf{T}$ then $W^*(B) = \mathbf{T}$ for all truth value assignments W, so by the induction hypothesis $\mathbf{G} \vdash \& \{a_i^W | i = 1, \ldots, n\} \Rightarrow B$ for all W. As noted above, it follows that $\mathbf{G} \vdash B$; but then also $\mathbf{G} \vdash \Box B$ (by (7)) and $\mathbf{G} \vdash \& \{a_i^V | i = 1, \ldots, n\} \Rightarrow \Box B$, as required. If $V^*(A) = \mathbf{F}$ then $W^*(B) = \mathbf{F}$ for some W, so by the induction hypothesis $\mathbf{G} \vdash \& \{a_i^W | i = 1, \ldots, n\} \Rightarrow \neg B$. Using (6), $\mathbf{G} \vdash \Diamond \& \{a_i^W | i = 1, \ldots, n\} \Rightarrow \neg \Box B$. But $\Diamond \& \{a_i^W | i = 1, \ldots, n\} \Rightarrow \neg \Box B$ and $\mathbf{G} \vdash \& \{a_i^V | i = 1, \ldots, n\} \Rightarrow \neg \Box B$, as required.

From this semantics for G it follows immediately that for every formula A exactly one of $G \vdash A$ and $G \vdash \neg \Box A$ holds, and also that $\mathsf{Thm}(G)$ is a correct set of formulas. If H is any correct set of formulas, then by (1), (5), and (2) all the axioms of G are members of H; moreover H is closed

Theorem 2. There is exactly one correct set of formulas of \mathcal{L}_v , and it is Thm(S5).

Proof. Since $\mathsf{Thm}(\mathfrak{C})$ is the only correct set of formulas of \mathcal{L}_c , it suffices to prove that $X \in \mathsf{Thm}(\mathsf{S})$ if and only if every formula of \mathcal{L}_c of the form $X(A_1, \ldots, A_n/x_1, \ldots, x_n)$ is a member of $\mathsf{Thm}(\mathfrak{C})$. We shall have no need for an axiomatization of S5, but we shall review the original truth-table semantics for S5 due to Kripke [1, pp. 11ff]. A truth value assignment is a map V from the set of propositional variables to $\{\mathsf{T}, \mathsf{F}\}$. A complete assignment is a pair (V, K) where K is a set of truth value assignments and $V \in K$. One may visualize a complete assignment as a "partial truth table with designated row." Then (V, K)*(X) is defined by

```
(V, K)*(x) = V(x)

(V, K)*(\neg X) = T \text{ iff } (V, K)*(X) = F

(V, K)*(X \lor Y) = T \text{ iff } (V, K)*(X) = T \text{ or } (V, K)*(Y) = T

(V, K)*(\Box X) = T \text{ iff } (W, K)*(X) = T \text{ for all } W \in K.
```

X is *valid* in S5 if (V, K)*(X) = T for all complete assignments (V, K). Then S5 $\vdash X$ if and only if X is valid in S5.

Now if X is valid in S5 then $X(a_1, \ldots, a_n/x_1, \ldots, x_n)$ is plainly valid in G. Moreover, if X is valid in S5 then so is every formula $X(X_1, \ldots, X_n/x_1, \ldots, x_n)$. Hence if X is valid in S5 then every formula of \mathcal{L}_c of the form $X(A_1, \ldots, A_n/x_1, \ldots, x_n)$ is valid in G. The converse is rather more difficult.

Let x_1, \ldots, x_n be distinct propositional variables, and a_1, \ldots, a_n distinct propositional constants. If V is a truth value assignment to x_1, \ldots, x_n (i.e., $V \in \{\mathsf{T}, \mathsf{F}\}^{\{x_1, \ldots, x_n\}}$) then there corresponds naturally a truth value assignment to a_1, \ldots, a_n , which for the sake of notational convenience we shall also call V. We claim first that if K is a non-empty set of truth value assignments to x_1, \ldots, x_n , then there are formulas A_1, \ldots, A_n of \mathcal{L}_c such that

- (8) There are no symbols in A_i (i = 1, ..., n) other than $a_1, ..., a_n, \neg, \lor$.
- (9) For all $V \in K$ and $i = 1, ..., n, V*(A_i) = V(x_i)$.
- (10) For all $V \not\in K$, $\mathfrak{C} \vdash \neg \& \{A_i^{V(x_i)} | i = 1, \ldots, n\}$, where the meaning of $A_i^{V(x_i)}$ is given by $A^{\mathsf{T}} = A$ and $A^{\mathsf{F}} = \neg A$.

For by the functional completeness of classical propositional logic we know that for every $\alpha:\{T, F\}^{\{x_1,\dots,x_n\}} \to \{T, F\}$ there is a formula A (having

no symbols other than $a_1, \ldots, a_n, \neg, \lor$ such that $\alpha(V) = V*(A)$ for all $V \in \{\mathsf{T}, \mathsf{F}\}^{\{x_1, \ldots, x_n\}}$. Choose $V_0 \in K$, and for $i = 1, \ldots, n$ define α_i by

$$\alpha_i(V) = \begin{cases} V(x_i) \text{ if } V \in K \\ V_0(x_i) \text{ if } V \notin K. \end{cases}$$

Then there are formulas A_1, \ldots, A_n satisfying (8), such that $V*(A_i) = \alpha_i(V)$ for all i and V. So if $V \in K$ then $V*(A_i) = \alpha_i(V) = V(x_i)$, and (9) is satisfied. Moreover if $V \notin K$ and W is any truth value assignment, then $W*(A_i) \neq V(x_i)$ for some i. Now $W*(A_i^{V(x_i)}) = \mathbf{T}$ if and only if $V(x_i) = W*(A_i)$; thus if $V \notin K$ and W is any truth value assignment we have $W*(\& \{A_i^{V(x_i)} \mid i=1,\ldots,n\}) = \mathbf{F}$, so (10) is satisfied and our first claim is established.

Now let X be a formula of \mathcal{L}_v having no variables other than x_1, \ldots, x_n , and let $\emptyset \neq X \subseteq \{\mathsf{T}, \mathsf{F}\}^{\{x_1, \ldots, x_n\}}$. Let A_1, \ldots, A_n satisfy (8)-(10). Then we claim that for every $V \in K$

$$V*(X(A_1, \ldots, A_n/x_1, \ldots, x_n)) = (V, K)*(X).$$

Establishing this claim will complete the proof of the theorem. We proceed by induction on the length of X.

Case 1: $X = x_i$. Then $V*(X(A_1, \ldots, A_n/x_1, \ldots, x_n)) = V*(A_i) = V(x_i) = (V, K)*(X)$. Case 2: $X = \neg Y$ or $X = Y \lor Z$. This case is trivial. Case 3: $X = \neg Y$. If $V*(X(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{T}$ then for every truth value assignment W, $W*(Y(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{T}$. By the induction hypothesis, $(W, K)*(Y) = \mathbf{T}$ for all $W \in K$, i.e., $(V, K)*(X) = \mathbf{T}$. On the other hand, if $V*(X(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{F}$ then there is a truth value assignment W such that $W*(Y(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{F}$. Define V_1 by $V_1(x_i) = W*(A_i)$. Now $V_1 \in K$, for otherwise $\mathbf{G} = \neg \& \{A_i^{V_1(x_i)} \mid i = 1, \ldots, n\}$ by (10), but $W*(\& \{A_i^{V_1(x_i)} \mid i = 1, \ldots, n\} = \mathbf{T}$. Since $V_1 \in K$, $V_1^*(A_i) = V_1(x_i) = W*(A_i)$ ($i = 1, \ldots, n$) so $V_1^*(Y(A_1, \ldots, A_n/x_1, \ldots, x_n)) = W*(Y(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{F}$. By the induction hypothesis $(V_1, K)*(Y) = V_1^*(Y(A_1, \ldots, A_n/x_1, \ldots, x_n)) = \mathbf{F}$. Hence $(V, K)*(X) = \mathbf{F}$. Q.E.D.

We wonder whether it is possible to represent modal logics weaker than S5 in a similar fashion.

REFERENCE

[1] Kripke, Saul A., "A completeness theorem in modal logic," The Journal of Symbolic Logic, vol. 24 (1959), pp. 1-14.

Simon Fraser University Burnaby, British Columbia, Canada