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Abstract: An analogy is found between the streamline function corresponding to Stokes flows in

rectangular cavities and the thermodynamics of phase transitions and critical points. In a rectangular

cavity flow, with no-slip boundary conditions at the walls, the corners are fixed points. The corners

defined by a stationary and a moving wall, are found to be analogous to a thermodynamic first-order

transition point. In contrast, the corners defined by two stationary walls correspond to thermodynamic

critical points. Here, flow structures, also known as Moffatt eddies, form and act as stagnation regions

where mixing is impeded. A third stationary point occurs in the middle region of the channel and it

is analogous to a high temperature thermodynamic fixed point. The numerical results of the fluid

flow modeling are correlated with analytical work in the proximity of the fixed points.

Keywords: cavity flow; streamline function singularities; stokes creeping flow

PACS: 47.15.G-; 64.60.Ak; 64.60.ae

1. Introduction

The characterization of fluid flows in rectangular domains is a fundamental problem in fluid

dynamics with applications to: cavity flow [1], polymer melt flow in extruders [2], and microfluidics [3,4].

Those physical systems are characterized by small Reynolds numbers. This is why we focus our

attention on creeping flows (zero Reynolds number). In this paper, we point to an analogy between the

fluid mechanics problem and the thermodynamic critical phenomena and phase transitions problem.

Close to the corners, the streamline function, the velocity field and the pressure exhibit power law

behavior [5–7] as a function of the distance to the corner, not unlike the power law dependence of

various thermodynamic quantities (free energy, energy, heat capacity) as a function of the reduced

temperature (distance to the critical point). Analogies between fluid mechanics problems and critical

thermodynamic phenomena, under the common roof of complex phenomena, were presented by

Goldenfeld and Kadanoff [8]. At the corner where the adjacent walls are stationary, we find self-similar

structures, also known as Moffatt [5,6] eddies. These structures are important in the design of polymer

extruders and microchannels systems, as their presence negatively impacts the ability to achieve

uniform mixing [9]. This phenomenon is analogous to the log-periodicity [10] of the critical amplitude

of the free energy close to critical points on hierarchical lattices [11–13]. The corner of the rectangular

cavity, with one adjacent moving wall and the other adjacent wall stationary, is analogous to a first-order

thermodynamic transition [14]. The velocity varies between the moving wall velocity and zero, at the

stationary wall. The thermodynamic analog is as follows: for Ising-like ferromagnetic transitions

at low temperatures, the magnetization changes from +1 to −1 as the magnetic field changes sign.

To complete the list of analogies, the stationary point in the central region of the cavity resembles a

high temperature paramagnetic point in the Ising model.
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The remainder of this paper contains: a qualitative description of the renormalization group

solution of critical thermodynamic phenomena and phase transitions in Section 2, a description of the

numerical techniques used to solve the Navier–Stokes equations in Section 3, the power law solutions

to the Navier–Stokes equations in Section 4, the critical point analog in Section 5, the discontinuity

point analog in Section 6, and the high temperature point analog in Section 7.

A summary of our findings is contained in Section 8.

2. Renormalization Group Theory of Critical Phenomena and Phase Transitions

The fundamental quantity of statistical mechanics [15] is the partition function. Its logarithm

provides the free energy f. In the renormalization method, one sums a fraction of the variables thus

obtaining a restricted partition function depending on the un-summed variables.

This process is repeated until all degrees of freedom are summed up. A sequence of effective

Hamiltonians is generated. The Hamiltonians flow to a fixed-point Hamiltonian. The stability of the

renormalization group flow at the fixed point determines the critical exponents. In simple Ising-like

problems, one gets three types of fixed points. At T = 0, there is the discontinuity fixed point [14] that

governs the coexisting phases. It describes the first order transition of the symmetry-breaking type

between ferromagnetic phases. At T = TC, one gets a critical fixed point. Close to the critical point [16],

one gets a power law dependence of the free energy: f~|t|2−α, where t measures the distance to the

critical temperature. Finally, at T =∞, there is a stable fixed point governing the paramagnetic phase.

From this type of analysis, the power laws for the thermodynamic quantities are derived. Criticality is

universal [8] as the exponents are found to depend only on a few characteristics of the system such as

symmetry, range of interactions and spatial dimension.

3. Numerical Modeling

The fluid flow in this work has been modeled using the software package COMSOL Multiphysics

and its Computational Fluid Dynamics/Chemical Engineering Module, under steady state flow conditions.

The accuracy of the numerical work has been previously validated against well described cavity flows [1].

The solutions to the Navier–Stokes equations presented here are for an incompressible Newtonian fluid

with density and viscosity corresponding to glycerine at room temperature, i.e., 1.261 × 103 kg/m3 and

1410× 10−3 kg/(m s), respectively. The height of the cavity is set to 2.5 cm and the width is adjusted from 2.5

to 12.5 cm to obtain aspect ratios (=width/height) from 1 to 5. These geometrical parameters correspond

to those typically employed in the experimental study of rectangular cavity flows [17]. The top wall of

the cavity is moving with speeds set in the range of 0.005–0.1 m/s, as described in the discussion section.

Across the entire range of velocities used, the Reynolds number is small, corresponding to the Stokes

flow regime. Non-slip boundary conditions are set for all the walls. The Navier–Stokes equations are

solved using an iterative solver based on the generalized minimal residual method (GMRES). The Vanka

algorithm setting is used for both the pre- and post-smoothing. Figure 1 shows typical numerical results

for the flow fields in this type of cavities. The resolution of the numerical simulations used allows the

observation of a hierarchical structure of up to three Moffatt eddies in the corner regions defined by two

stationary walls.
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Figure 1. (a) Flow fields for a cavity with aspect ratio 1; (b) corresponding streamline plot.

4. Cavity Fluid Mechanics

Berker’s discovery [11] that the Migdal–Kadanoff renormalization-group scheme provides exact

solutions of thermodynamic models on hierarchical lattices is important in view of the fact that it

preserves the free energy convexity [18]. In [1], we emulated this approach in fluid mechanics by

changing the boundary conditions to make the problem amenable to develop an analytical solution.

In this paper, we consider the flow problem with the correct (no-slip) boundary conditions by using

valid analytical methods close to the corners and numerical solutions.

We start with the steady state Navier–Stokes and continuity equations for the 2D case in which

the inertial terms are neglected (zero Reynolds number):

−
∂p

∂x
+ η∇2vx = 0 −

∂p

∂y
+ η∇2vy = 0 (1)

∂

∂x
vx +

∂

∂y
vy = 0 (2)

where p stands for pressure, vx and vy are the velocity components and η is the viscosity.

Following from Equation (2), there exists a streamline function Ψ(x,y), such that the fluid velocities

will be given by:

vx = −
∂

∂y
Ψ vy =

∂

∂x
Ψ (3)

Substituting Equation (3) into Equation (1) we get:

−
∂p

∂x
− η

∂

∂y
∇

2
Ψ = 0 −

∂p

∂y
+ η

∂

∂x
∇

2
Ψ = 0 (4)

Equation (4) implies:

∇
2(∇2

Ψ) = 0 (5)

Hence, the velocity is obtained from first-order derivatives while stresses, including pressure,

are second-order derivatives of the streamline function with respect to coordinates. We consider

non-slip boundary conditions. The top wall moves with constant velocity dragging the fluid. The other

three walls are at rest.

Moffatt and Barenblatt [5–7] have demonstrated the relevance of self-similar solutions and power

laws close to the corners.

ψ ∼ rλ, (6)
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V ∼ rλ−1 (7)

p, σ ∼ rλ−2 (8)

The thermodynamic analogs of the streamline function, the velocity and the stress are the

free energy which, close to the critical point, is f~|t|2−α, the energy U~|t|1−α, and the heat capacity

C~|t|−α, respectively.

5. Critical Point Analog

At the corner where both adjacent walls are stationary, the exponent λ is a complex number:

λ = 1 + p + iq (9)

This is an asymptotic relation valid in the limit of small r, the distance from the corner. The exponent

was determined by Moffatt [5] in the limit of zero Reynolds number (creeping flow),

p = 2.74, q = 1.13 (10)

The fact that the exponent has an imaginary part manifests in the occurrence of an infinite sequence

of eddies. Due to the real part of the exponent, the extent of the eddy quickly gets exponentially smaller

as it approaches the corner. At the center of such an eddy, the velocity is zero. At the borders between

adjacent eddies, the velocity has a local maximum. We solved numerically the Navier–Stokes equation

for a finite, though small Reynolds number. The size of the region occupied by the individual eddies

decreases exponentially as a function of the proximity to the corner. The resolution of the numerical

modeling used allowed for the visualization of three eddies in the sequence. To verify the power laws,

Equations (6) and (7), we looked at the maximum velocity in each period as a function of the distance

to the cavity corner, see Figure 2.

𝑉𝑚𝑎𝑥~𝑅𝑚𝑎𝑥𝑝 att’s ~𝑒−𝑛𝜔 ω is 
determined by q, the imaginary part of λ. Moffatt’s theoretical value is: ω = π/q = 2.79.
we estimate ω = 2.82 ~𝑒−𝑛𝜔with ω = 2.79.

ω estimates are in good agreement with Moffatt’s theoretical value.

Figure 2. Maximum velocity for each eddy as a function of the distance to the corner.
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The best fit Vmax ∼ Rmaxp yielded and exponent of p = 2.76 in good agreement with Moffatt’s

value of p = 2.74. The distances from the centers of the Moffatt vortexes (where the velocity is null)

to the corner form a sequence Rminn that scales a with a different exponent: Rminn∼ e−nω. ω is

determined by q, the imaginary part of λ. Moffatt’s theoretical value is: ω = π/q = 2.79. Numerically,

we estimate ω = 2.82. There is a similar sequence Rmaxn distance from the points of maximum speed

(border between adjacent eddies) to the corner. The numerical estimate is Rmaxn∼ e−nω with ω = 2.79.

In Figure 3, we show the Rmax and Rmin dependence on n for the three eddies that we have analyzed.

Both ω estimates are in good agreement with Moffatt’s theoretical value.

 

Figure 3. Rmin and Rmax sequence for the three Moffatt eddies.

We further analyzed the whole range of data from corner to center of cavity using a power law

dependence. Within the field of critical thermodynamic phenomena, this approach has been pioneered

by Riedel and Wegner [19] who developed the concept of the effective critical exponent. The data

follow a power law quite precisely for more than 10 decades in velocity and for more than 4 decades in

distance to corner, see Figure 4. We estimate an effective exponent peffective = 2.50. The quality of the fit

ln(v)~peffective ln(r) is measured by the R-squared = 0.98.

These data were collected along a straight line from corner at an angle of 45 degrees with the

horizontal. We have also looked at data along lines at angles of 22.5 degrees and 67.5 degrees. We notice

a phenomenon akin to universality where the effective exponent is practically independent of the angle.

Independence of the power law is observed also with respect to the varying velocity of the top wall

and the aspect ratio of the channel, see Figure 5. Universality, and power laws, are central features [8]

of critical phenomena and are also exhibited by the cavity flows.
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Figure 4. Power law dependence of the velocity as a function of the distance to the corner.

𝜓~𝑟
exponent λ

λ = 1

This value of λ 

Figure 5. Red Vwall = 0.5 m/s and aspect ratio = 5; black Vwall = 0.005 m/s and aspect ratio = 1.
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6. Discontinuity Point Analog

At the corner where one wall is moving while the adjacent wall is stationary, the streamline

function scales as: ψ ∼ r in the limit of small r, the distance from the corner. This was shown by

Moffatt [6] for zero Reynolds number (creeping flow). Hence the exponent λ, see Equation (6), is:

λ = 1 (11)

This is the analog to Fisher and Berker [14] thermodynamic discontinuity fixed point requirement

that the magnetic exponent equals the spatial dimension (yH/D = 1). This value of λ ensures that

the velocity (i.e., the first derivative of stream function) is constant, V~r0 = constant, as the corner is

approached, see Figure 6. The value of the constant depends on the angle of approach. The angle is

zero along the moving wall and it is 90◦ along the fixed wall. Hence at fixed small r, as the angle is

changed from zero to ninety degrees, the velocity varies from the moving wall velocity value to zero.

Interestingly enough, the dependence is not monotonic.

the exponent λ 

Figure 6. Velocity magnitude close to the corner defined by a stationary and a moving wall; (red) Vwall

= 0.5 m/s and aspect ratio = 5; (black) Vwall = 0.005 m/s and aspect ratio = 1.

7. High Temperature Point Analog

The stagnation point at the center of the cavity is an elliptical fixed point. It is similar to a high

temperature fixed point in critical phenomena, in view of the analytical variation of the velocity as the

point is approached. Since V~r1, see Figure 7, the exponent λ = 2.
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Figure 7. Velocity cut across the central stagnation point (vwall = 0.005 m/s, aspect ratio = 1).

The magnification close to the stagnation point shows the linear dependence of the velocity on the

distance to the stagnation point.

8. Summary

We have presented an analogy between flows in rectangular cavities and thermodynamic phase

transitions. For no-slip boundary conditions, the corners of the rectangular cavity are fixed points.

The renormalization group theory of critical phenomena and phase transitions is based on fixed points.

This is the base for the analogy. The corner with two adjacent stationary walls is analogous to a critical

point. The Moffatt eddies emerge as a result of the imaginary part of the critical exponent. Its analog is

the fact that critical amplitude on hierarchical lattice models is a log-periodic function. The corner

with one adjacent moving wall and one stationary wall is analogous to a discontinuity (first-order

transition) fixed point.

Beside the intrinsic interest in connecting apparently disparate fields of physics, this observation

may have practical applications. Cavity flows, polymer melt flowing in extruders and flows in

microchannels are approximated by flows in rectangular cavities. Our finding that scaling with an

effective exponent holds quite well far from the corners can be used to get fast numerical estimates.

This approach was suggested by the critical phenomena methodology usage of the effective exponent.

We plan to further study what happens to the Moffatt eddies and to the critical exponents as the

Reynolds number is increased. Do they vary continuously with the Reynolds number? Or do they stay

unchanged until some threshold?

A thermodynamic critical point, in the Ising universality class, has a co-dimension [20] equal to

two, as there are two relevant scaling fields: reduced temperature along the coexistence line and the

magnetic field that breaks the symmetry between the coexisting ferromagnetic phases. In our fluid

mechanics problem, we have identified only one such relevant scaling field: the distance to the corner.

Further work is required to determine whether there is a second relevant field for the creeping flow

problem studied here.
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