
This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg)
Nanyang Technological University, Singapore.

A new RNS based DA approach for inner product
computation

Vun, Chan Hua; Zhang, Wei; Premkumar, Annamalai Benjamin

2013

Vun, C. H., Premkumar, A. B., & Zhang, W. (2013). A new RNS based DA approach for inner
product computation. IEEE transactions on circuits and systems I : Regular papers, 60(8),
2139‑2152.

https://hdl.handle.net/10356/98622

https://doi.org/10.1109/TCSI.2013.2239164

© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new
collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.Published version of this article is available at
http://dx.doi.org/10.1109/TCSI.2013.2239164.

Downloaded on 23 Aug 2022 05:03:21 SGT

 1

A New RNS based DA Approach
For Inner Product Computation

C. H. Vun, Senior Member, IEEE, A. B. Premkumar, Senior Member, IEEE, and
W. Zhang, Member, IEEE

Abstract—This paper presents a novel method to perform inner
product computation based on the distributed arithmetic
principles. The input data are represented in the residue domain
and are encoded using the thermometer code format while the
output data are encoded in the one-hot code format. Compared
to the conventional distributed arithmetic based system using
binary coded format to represent the residues, the proposed
system using the thermometer code encoded residues provides a
simple means to perform the modular inner products
computation due to the absence of the 2 modulo operation
encountered in the conventional binary code encoded system. In
addition, the modulo adder used in the proposed system can be
implemented using simple shifter based circuit utilizing one-hot
code format. As there is no carry propagation involved in the
addition using one-hot code, and since the modulo operation can
be performed automatically during the addition process, the
operating speed of the one-hot code based modulo adder is much
superior compared to the conventional binary code based
modulo adder. As inner product is used extensively in FIR filter
design, SPICE simulation results for an FIR filter implemented
using the proposed system is also presented to demonstrate the
validity of the proposed scheme.

Index Terms— Distributed arithmetic, inner product, one-hot
code, residue number systems, thermometer code.

I. INTRODUCTION

ANY digital signal processing applications make use of
functions such as convolution, correlation and filtering,

where the inner product computation forms the core of these
functions. Distributed Arithmetic (DA) is a well-known
technique for calculating inner products without the need for
performing multiplication [1]. In addition, compared to the
conventional Multiply-Accumulate (MAC) approach, the DA
technique allows the computation to be completed in number
of execution cycles proportional to the bit-length of the data
involved, instead of the number of coefficients in the equation.
As such, it provides performance gain when the number of
coefficients is more than the bit-length of the data. In DA

technique, a look up table (LUT) with bit-serial data
addressing is used to perform the product calculation that are
then added together to provide the final result.

Residue Number System (RNS) [2] is considered to be
suitable for the implementation of high speed digital signal
processing due to its parallelism and small data bit-length.
RNS allows representation of a big natural number A with a
set of smaller natural numbers a1,a2,…,aM known as the
residue digits of the number A. They are derived based on
modular arithmetic principles using a selected set of relatively
prime numbers [m1,m2,…,mM] called the moduli set. This RNS
relationship is expressed as A a1,a2,…,aM.

An important property of RNS is arithmetic operations like
addition, subtraction and multiplication of two numbers A and
B can be equivalently performed in RNS using their
corresponding pair of residue digits ai and bi relative to the
modulus mi in an independent and parallel manner, with no
carry-propagation occurring between residues of different
moduli.

These two properties of RNS, small residue digits size and
parallel arithmetic operations are hence ideal for inner product
calculation using the DA techniques. The small value residue
digits lead to fewer execution cycles due to their short bit-
length, while the parallelism enables simultaneous arithmetic
operations to be done in multiple independent channels, each
reserved for corresponding pair of residue digits belonging to
the same modulus.

However, there are a few subtle issues that need to be
addressed when implementing the RNS based DA (DA-RNS)
technique for inner product calculation in practice. While each
datum is now represented in RNS using small residue digits,
the residue digits themselves are still encoded in the binary
coded (BC) format. As such, there is still overhead due to the
localized carry propagation within each channel when
performing modular arithmetic operation, albeit to a much
smaller degree compared to non-RNS based approach. More
importantly, because of the 2 bit weight associated with the
bits in the BC digit, there is a 2 scaling process during the
DA accumulation operation. While this is generally not a
problem in non-RNS based system, the 2 scaling in DA-RNS
requires performing a modulo operation with respect to
channel modulus and is complicated [3]. Furthermore, the
implementation of the modulo adder is also rather convoluted
since there is no simple way to perform the modulo operation

M

Manuscript received June 22, 2012; revised October 30, 2012
C. H. Vun is with the School of Computer Engineering, Nanyang

Technological University, Singapore (phone: 65-67904873; fax: 65-
67926559; e-mail: aschvun@ntu.edu.sg).

A. B. Premkumar is with the School of Computer Engineering, Nanyang
Technological University, Singapore (e-mail: asannamalai@ntu.edu.sg).

W. Zhang is with the School of Computer Engineering, Nanyang
Technological University, Singapore (e-mail: ZhangWei@ntu.edu.sg).

 2

[2] for BC based residues digits corresponding to generic
value of moduli.

As these problems are associated with the BC format used
in encoding the residues, we propose to use alternative
encoding formats to represent the residues for our DA-RNS
implementation. In this work, we propose to use the
thermometer code (TC) format to represent the residues and
eliminate the complexity involved in performing the 2
modulo operation. The proposed system also uses modulo
adder based on the one-hot code (OHC) format that provides a
simple and fast method to perform the modulo-accumulation
encountered in DA. This combination provides an elegant
solution to practical problems faced in the implementation of
conventional BC based DA-RNS systems. As such, it enables
benefits in using RNS with the DA to be truly realized in very
efficient manner using simple circuit design.

One important practical consideration in using RNS based
modular arithmetic is the forward conversion required to first
convert a conventional number to its residues. This is likely to
be a costly operation and will hinder wide adoption of RNS in
real world applications. Our motivation for using the TC
encoded residue (TCR) is the availability of a novel RNS
based folding ADC [4] where the data generated during the
conversion are inherently in the TCR format. As such, there is
no extra overhead needed to first convert a datum to its RNS
representation. Further arithmetic operations required in signal
processing can hence be performed in TCR directly, before it
is eventually converted to the conventional binary
representation. Fig. 1 illustrates this concept where individual
RNS based FIR sub-filter is integrated within each modulus
channel of the RNS ADC to perform signal pre-processing
before eventually outputting the data in conventional binary
number representation. Nevertheless, the proposed scheme can
also be used with conventional systems where the binary
representation is first converted to the TC based RNS
representation during the forward conversion, instead of the
usual BC based RNS representation.

The remainder of the paper is organized as follows. Section
II provides the background of the DA technique for inner
product calculation, and properties of RNS that are
advantageous for DA implementation. Section III describes
principles used in DA-RNS system based on the conventional

BC format, identifying the problem encountered in
implementing the concept. Section IV introduces the TC
format and describes the TCR based DA-RNS system,
showing the simplification achieved by the use of the TCR.
Section V discusses modulo adder circuits needed to
implement the TCR based DA-RNS, presenting the OHC
based modulo adder. Section VI presents the design of an
inner product computation unit based on the TCR DA-RNS
approach, using the FIR filter application as an example and
analyzes its operation. Section VII presents the SPICE based
simulation results of the FIR filter implemented using the
proposed scheme, demonstrating the validity and practical
feasibility of the concept. Section VIII presents a performance
evaluation and comparison of the proposed system against the
conventional BC based system with Section IX providing the
concluding remarks on the new technique proposed in this
paper.

II. BACKGROUND

A. Distributed Arithmetic For InnerProduct Computation

Consider the computation of the inner product commonly
expressed as follows:

=	 A 																																																														(1)	
It is assumed that A are fixed values (e.g. filter coefficients
of FIR filter) and = [, , …]	is the corresponding
input vector with K entries, each binary encoded with bit-
length of N. Using the normal multiply and accumulate
approach, it is obvious that the calculation of this inner
product will take K MAC execution cycles, corresponding to
the number of coefficients used in (1).

Now consider each entry in to be expressed in terms of
its binary encoded bits as follows:

	 	= 2 																				 	 1,0 																	(2)	
where is the nth bit of and hence has binary value of
either 0 or 1, while the 2 represents the associated weight of
the binary bit. The inner product y in (1) can then be written in
the form associating it directly with the bit values of the
entries in the input vector:

		 = 	 A 			= 	 A 	 2 																			(3)
Interchanging the order of the summations and bringing A
together with the binary bits of :

=		 A 	 2 																																											(4)

 TCRs
digital
output

Analog
input
signal

RNS based
folding ADC

 FIR filter Mod-A	channel	
 Mod-B	channel	
 Mod-C	channel	

 FIR filter

 FIR filter

Revers
e	

Conver
sion	

Binary
digital
output

Figure 1. RNS-ADC with pre-processing FIR filter

 3

Let												 (A ,) 	= A 																																										(5)
Hence						 = 		 (A ,)	 2 																																												(6)
The function	 (A ,) contains values representing the sum
of products with individual binary bit value of the input
vector . Since the bit value can only have value of
either 0 or 1, while the value of each Ak is fixed, there are
altogether 2 possible combinations values based on (5).

In DA technique, these values are pre-computed and stored
in a LUT. The DA’s LUT (DALUT) is then successively
addressed by using the nth data bit of all entries in
parallel, starting with n=0 until n=N-1. The successive
outputs are then accumulated as indicated in (6), but with the
need to first scaling each output by its individual 2 factor
due to the different weights of the binary bits present in the
BC data. Eventually (N-1) accumulated sum corresponds to
the value of the inner product y is obtained.

Consider an illustrative example with K=4 inner product
computation. Then

		 = 	 A 																																																																			
	= A + A + A + A 																										(7)

For brevity, further assume that each of the entries in the
input vector = [, , ,]	is of bit-length of N=3 bit as
follows:

 = {b02 b01 b00}; = {b12 b11 b10};
 = {b22 b21 b20}; = {b32 b31 b30}.

The DA based system can then be implemented as shown
in Fig. 2, where there will be 2 =16 entries in the DALUT
with values derived based on (6). The relevant LUT entries
will then be successively clocked out over three execution
cycles using the collective bit pattern of the input vector in a
bit-serial manner with combination as follows:

tcycle = 0 : bk0 = {b00b10b20b30}
tcycle = 1 : bk1 = {b01b11b21b31}
tcycle = 2 : bk2 = {b02b12b22b32}

During each execution cycle, the DALUT output is
multiplied by its individual 2 scaling factor before it is added
to the accumulated value obtained in previous execution
cycles as indicated in (6). Each execution cycle hence consists
of two operations, scaling and accumulation (SAC), which
can be performed by the circuit arrangement as illustrated in
Fig. 2. In conventional binary number system, the 2
multiplication is simply done by a logical left shift of the
output by the appropriate amount corresponding to its nth
value. The adder can be of any binary adder with its output
stored in a register for further accumulation with incoming
values.

Hence a DA based inner product computation can be
completed in N SAC execution cycles, which is equal to 3 in
this example. Compared to using the normal MAC approach,
where the computation will take K = 4 MAC execution
cycles, the DA technique provides a performance gain for
inner product computation if N < K, assuming that the
execution cycle of one MAC operation consumes same
number of clock cycles to one SAC operation. Furthermore,
there is no multiplier needed in DA based system to perform
the computation which is typically more hardware costly.

B. Residue Number System

RNS is a number system in which an integer A within a
legitimate range [0, P) is uniquely defined by a set of positive
integers a1,a2,…,aM, which are the remainders (the residues)
obtained when A is divided by a set of pair wise relatively
prime positive integers [m1,m2,…,mM] (the moduli set), where

P = ∏ . The integer A represented in RNS can then be
expressed as A a1,a2,…,aM.

The main feature of the RNS is that an integer within a
large dynamic range can be uniquely represented by the set of
residues that are of much smaller values, corresponding to the
size of the moduli set used in the representation. For instance,
using the [7,8,9] moduli set which provides a legitimate range
of [0,504), the integer A = 179 can be represented by
4,3,87,8,9 residue set and the integer B = 254 by 2,6,27,8,9

residue set.
Furthermore, arithmetic operations between the two

integers A and B can also be equivalently performed in RNS
based modular arithmetic, using their corresponding residue
digits as follows:

179 ʘ 254 4,3,8 ʘ 2,6,2
 = 4ʘ2, 3ʘ6, 8ʘ2

where ʘ 	{+, −, ×}. For example:

254+179 4,3,87,8,9+2,6,27,8,9
= 4+2, 3+6, 8+27,8,9
= 6,9,107,8,9

= 6,1,17,8,9

Another advantageous feature of the RNS system is that the
operation between each pair of residue digits can be

Scaling	Accumulator	

16	entries	DALUT	 y
Register Adder x 2

n
n = 0 to N-1
 = 0 to 2

b0n	

b1n	
	

b2n	
	

b3n	
	

1	
1	1	1	

Figure 2: DA system for inner production computation

 4

performed in a parallel and in independent manner from the
other pairs of residues, as long as the resultant value does not
exceed the legitimate range provided by the moduli set used.

Shorter bit-lengths of residues and inherent parallelism
suggest that RNS combined with DA would be ideal for inner
products computation. The performance gain is dependent on
the data bit-length and this is examined next.

III. BINARY CODE BASED DA-RNS

BC encoded DA-RNS system has been reported in [3], [5]
and [6]. However, the number of publications is fewer than
what one would normally expect for such seemingly well
matched DA and-RNS techniques. The main reason most
likely lies in the difficulty of implementing the modulo
operation associated with the 2 scaling factor that originates
from the BC encoded residue (BCR). The following is the
derivation needed to implement the inner product
computation using the BCR based DA-RNS technique which
reveals the source of the complication.

Applying RNS principles using [m1,m2,…,mM] moduli for
the inner product in (4), it can be rewritten in terms of its
residues y y1,y2,..,yi,..yM where
 = A 	 2 																									

					= (A ,) 2 	 										
As before, the 2 factor needs to be decoupled from (A ,) that is to be stored in the DALUT. This is done by

applying the algebra of RNS as follows:

= | (A ,)| |2 | 																										(8)
Let										 (A ,) = 	 | (A ,)|

= A 																																		(9)
(8) then becomes

		 = 	 (A ,)			|2 | 		 																						(10)
Hence values of (A ,)	can be pre-computed and

stored in the DALUT, which can be subsequently clocked out
by using the bit-serial stream of the input vector for the
accumulation operation as described before. However each of
the value needs to be first scaled with the |2 | factor, which
is difficult to be implemented in hardware due to its modulo

operation with respect to mi. An example of a hardware that is
needed to perform this modulo accumulation is shown in Fig.
3 [3], illustrating the complications faced in implementation
that limits the minimum clock period (i.e. highest clock
frequency) achievable in its operation. The difficulty
explained in Fig 3 is overcome in TCR based DA-RNS
operation, as will be presented next.

IV. THERMOMETER CODE BASED DA-RNS

This section first introduces the thermometer code format.
An expression is then derived for implementing the DA-RNS
based on the TC encoded residue. It is then compared with the
implementation presented in section III.

A. Thermometer Code Format

Thermometer code refers to the encoding format where the
value of a datum is equal to the number of binary ‘1’ bits used
to represent the datum. For example, an integer of value of 5
can be encoded using the bit pattern {11111} in TC format. In
practice, binary ‘0’s are also added to explicitly indicate the
dynamic range (DR) associated with the integer. Hence the
value of 5 for an integer with dynamic range of 10 will be
encoded as {0000011111}. Evidently, such a format is
normally not efficient as the number of bits required to
represent typical data (e.g. 8-bit resolution with 0-255
dynamic range) will be excessive.

But using TC format in RNS context is feasible since the
DR of each residue is bounded by its modulus. For example,
with [7,8,9] moduli set, the bit-length of the corresponding
TC encoded residues will be 6, 7 and 8 respectively. These
are hence of similar bit-length compared to the binary number
that the moduli set can represent (i.e. P = 504). But its
advantage lies in a simpler and efficient modulo addition
when used in conjunction with its variant, the one-hot code
encoded format as shall be demonstrated. More importantly,

Figure 3: BCR based DA-RNS system for inner product computation
(for one of the mod-mi residue channel) (Adapt from [3] 1999©IEEE)

y

x

Decision
Logic

MUX
3:1

2K word

TLU

+++

y

2x

Accumulator Details

N-bit
adder

N-bit
adder

N+1-bit
adder

2N-m 2N-m

sum_1
sum_2

sum_3 su
m

1

su
m

_2

su
m

3

Accumulator

R
eg

is
te

r n
th

co
m

m
on

 b
it

… … … …

Shift-registers

(xk mod mi)[n]
xk mod mi

x1 mod mi

 see
insert

Lookup
Table

Channel of an RNS-DA FIR

 (ACC mod mi)

c1 C0 c2 c3

C0

c1
c2
c3

(x1 mod mi)[n]

 5

TCR provides a very simple means to overcome the
complication that arises due to the |2 | factor encountered
in DA-RNS based on the BC format. Nevertheless the key to
using TC format efficiently in RNS is to minimize the bit-
lengths by using a larger number of small moduli rather than
few big moduli. For example, it would be more
computationally efficient to use a [5,7,8,9] moduli set rather
than a [15,16,17] moduli set to cover the range for a 11-bit
BC system. As such, the TCR based representation would be
particularly suitable for small and medium size dynamic
range type of applications.

Mathematically, TC encoded number system is a unary
system which is equivalent to a base-1 binary bit system. It is
also common to describe it as a no place-value number
system, since the positions of its ‘1’ bits in the bit pattern are
not important. For our purpose, we will assign a bit weight of
20 to all the bits in a TCR, and denote it as an equal place-
value number system. The decimal equivalent of the residue
represented by TC is hence given by:

| | 	= 2 																				 	 1,0 																	(11)	
There are some very convenient features associated with

TCR based modular arithmetic [7]. Modular addition of two
TCRs can be done by concatenating the two TCRs using
shifter circuits while the modulo operation can be done by
checking a single bit. Additive inverse of a TCR is simply the
1’s complement of its value. There is also no ambiguity in
taking the additive inverse of value 0, as its 1’s complement is
equal to its modulus value which reverts to 0 after its modulo
operation.

B. TC based DA-RNS Inner Product

The derivation of TCR based DA-RNS system for inner
product computation follows in the same manner as in the BC
based system. The only difference lies in using the TCR’s bit
expression of (11) in place of the binary code version shown
in (2).

	= 2 								⇔						 | | 	= 2 						
Hence the residue expression for the TCR based DA-RNS

system can be obtained by simply replacing the symbols used
in (10) with the TCR equivalents, namely, number of TCR’s
bit is equal to -1, and all bits are of equal weight, 2 = 1.

= 	 (A ,)			|2 | 		 						
	= 	 (A ,)	 																																			(12)

since 	 2 = 1. The expression of 	 (A ,) based on (9)

is hence:

(A ,) 		= 	 A 																													(13)
(13) describes how entries can be stored in the DALUT. One
can also note the absence of the |2 | scaling which was the
cause for complicating earlier BC based implementation.

However, (13) indicates a potential problem in the
implementation. As the modulo operation is to be done after
the summation, the accumulator is likely to overflow during
the accumulation process. This is resolved by expanding (13)
using the algebra of residues as shown below where the
modulo operation is done after every addition:

	= 	 (A ,)		 						
= 	 (A ,) + 	 (A ,) + 	 (A ,) + ⋯+ 	 (A ,) = 	 (A ,) + 	 (A ,) + 	 (A ,) + ⋯+ 	 (A ,)

Hence a TCR based system can be implemented very
simply by using channels of modulo adders instead of the
equivalent system of Fig. 2 as illustrated in Fig. 4 that shows
one channel of the TCR based DA-RNS system.

Without the modulo scaling operation for the TCR based
DA-RNS system, each execution cycle only needs to perform
the accumulation function, and would require fewer clock
cycles compared to the SAC operations. Hence the trade-off
for the longer bit-length of TCR is in the simplicity required of
the modulo accumulator, the design of which would be much
simpler compared to the one shown in Fig. 3. Furthermore,
overall performance gain can be obtained if a very efficient
implementation of the modulo accumulator can be found such
that the system can operate at faster clock rate as well as at
higher bit-at-a-time (BAAT) rate [1]. This issue will be
discussed in the next section.

Modulo-mi	Accumulator	

t0n	

t1n	
	

t2n	
	

t3n	
	

16	entries	DALUT	 yi	
Register Modulo Adder

One channel of a TCR DA-RNS system

1
111

Figure 4: TCR based DA-RNS system (one residue channel)

 6

V. MODULAR ACCUMULATOR DESIGN

This section describes a few alternatives to implement the
modulo adders and then presents a design for the proposed
system.

A. BC Based Modulo Adder

For BC based modular arithmetic, the general approach to
implement modulo adder for generic modulus is to make use
of the architecture as shown in Fig. 5 [2] [8], although there
are other possible variations that are based on specific
hardware approach [3] and those using multiple adders [9]
[10] designs when specific moduli sets are considered. In Fig.
5, two binary adders are used to implement the following
modular addition: | + | = 	 			 + 																	 	 + <			 + − 								 ℎ 							

Circuit Fig. 5a uses one binary adder to perform the
addition of the two operands, A and B to first provide an
intermediate sum S’. The modulus m is then subtracted from
intermediate sum S’, which can be performed through
addition with the two’s complement of m, as shown. The
carry-out bit from the subtraction is then used to control the
output multiplexer, which determines whether the output
should be S’ = A+B or S’’ = A+B-m, in effect performing the
modulo operation. A variation of the circuit is shown in Fig.
5b where a three operands adder is used to calculate the S’’ in
parallel, to achieve faster operation at the expense of more
complicated binary adder design.

Hence, although there is no carry propagation between the
residue channels of different moduli, there is still localized
carry propagation occurring within the residue channel since
the residues themselves are encoded in BC and hence operate
based on the binary adders. Furthermore, the modulo adders of
Fig. 5 needs the carry bit of the second binary adder in order to
generate the final result. As such, the performance of these
modulo adder depends very much on the carry propagation
performance of the underlying binary adders used in the
implementation. For example, the binary adders of Fig. 5 can
be based on the ripple carry full adder which is slow but uses a

simple logic structure, or variation of the carry-look ahead full
adder which is fast but at much higher logic gates cost.

As the carry bit propagation originates from the BC format
used in encoding the residues, we propose an approach similar
to earlier TCR to tackle this inefficiency by using an
alternative encoding format, the one-hot code, to be used for
the modulo adder. The OHC based modulo adder can be
implemented using shifter based circuit to perform the
addition operation without the carry propagation property.
Furthermore, the modulo operation can be performed in a very
simple manner compared to the BC version. As such, it is used
in conjunction with the proposed TCR base DA-RNS
described earlier.

B. One-Hot Code Based Modulo Adder

A one-hot code consists of n bits, but can only have 1 bit
asserted at any one time. Hence it is also known as 1-out-of-n
encoding scheme. One-hot code is normally used for decoding
the address bits for LUT purpose. When it is used to represent
the residue in RNS, it is referred to as the one-hot residue
(OHR) [11].

In the one-hot code format, the value of the residue
corresponds directly to the asserted bit position. Compared to
the TCR, the OHR uses one extra bit in order to encode the
value corresponding to 0. For example, a residue digit with
value of 5 in a modulus-7 system would be encoded as
{0100000}, while a value of 0 would be encoded as
{0000001}.

While the value of an OHR is intuitively clear from its bit
pattern, it lacks formal mathematical properties (e.g. base-1,
base-2) and poses difficulty in using it for general
mathematical purposes. Nevertheless, its unique usefulness for
representing residues lies in the automatic execution of the

 a[6]

a[5]

a[4]

a[3]

a[2]

a[1]

a[0]

 	

OHR[6]

OHR[5]

OHR[4]

OHR[3]

 OHR[2]

OHR[1]

OHR[0]

b[0] b[1] b[2]

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Figure 6: OHR based modulo-7 adder

S’

Multiplexer

Adder

A									B	

S’’=S’-m

Adder

S’

cout	
Multiplexer

Adder

A 								B

S’’=S’-m

Adder

A				B	
cout	

~ m	 ~ m	

m S	=	|A+B		|			 m S	=	|A+B|
a b

Figure 5: Modulo-m adders for BC residues (BCR)

 7

modulo operation when performing addition and subtraction
based on circular shifting technique.

Consider two modulus-7 residues and which have
numerical value of 4 and 5 respectively expressed in OHR
format:

 = 0010000
 = 0100000

The modular sum of these two operands can be found by
executing a circular shift operation to one of the operands,
based on the value of the other operand. In this example,
will be circular shifted five positions (based on the value of

) to its left (assuming its highest value bit position is on the
left) which will make its ‘1’ bit wrap around to the lowest
value bit position such that eventually becomes {0000100}.
This implies a numerical value of 2, which is consistent with 	|4 + 5| = 2. This unique property exhibits a very efficient
way to perform automatic modulo operation during the
addition.

In our proposed system, a hybrid design is used for the
OHR based modulo adder. Fig. 6 shows the circuit schematic
of a modulo-7 adder used in the modular accumulator based
on this design. The adder consists of multiplexers arranged to
form a log based circular shifter. The input a[n] and the
output OHR[n] are both OHR encoded while the b[n] input is
BC encoded. The BC encoded b[n] controls the amount of
circular shift that is applied to a[n]. This effectively executes | + | ,	 with the modulo 7 operation automatically
performed as the OHR bits wrap around. The OHC format at
the output is also convenient if it is to be used to address a
LUT such as a residue-to-binary encoder to present the output
in the conventional binary representation.

Compared to the BCR modulo adder, this shifter based
OHR modulo adder implementation is much faster as there is
no logic gate delay involved in the operation, nor does it have
carry propagation issues. The operating speed is solely
determined by the delay of the signal passing through the
multiplexers. In addition, the number of transistors used to
implement the shifter based modulo adder is lower when
compared to that in BCR modulo adder based on the ripple
carry adders, which is the most area efficient (but slowest)
implementation for a binary adder. This will be discussed in
detail later in Section VIII.

C. TCR DA-RNS Implementation

Fig. 7 shows how the OHR modulo adder used in the
proposed TCR based DA-RNS system. The OHR datum value
in the output register, which supplies input A to the OHR
modulo adder, is initially set to 0 at the beginning of each
accumulation execution cycle. The other input B to the OHR
modulo adder is the value output from the DALUT which is
encoded in the BC format. Based on the value of the input B,
the OHR modulo adder will perform circular shift to the OHR
value applied at input A, hence performing the modulo
accumulation function as described earlier.

Due to the simplicity of the system (no carry bit propagation
or modulo 2n scaling), it is hence possible to execute the
system at higher clock rate compared to the BC DA and the
BCR DA-RNS. Because of the same unit bit weight assigned
to all bits in the TCR, the design can also be easily extended to
operate at 2-bit-at-a-time (2BAAT) [1] or higher to further
compensate for the longer bit-length of the TCR. Fig. 8 shows
a 2BAAT design, where two OHR modulo adders are simply
connected in cascade to sum two DALUT outputs, each driven
by one group of bit-serial stream allocated from the TCR
input. Since the order of addition is not important, the two
groups of bit-serial streams used can be allocated based on the
even bits and odd bits of the TCR datum, or the lower half and
upper half of the tn bits of the TCR datum if this is more
hardware amenable.

VI. FIR FILTER IMPLEMENATATION

Design and performance analysis of a DA-RNS based FIR
digital filter using proposed TCR is presented in this section
to demonstrate the practicality of the proposed concept. A
FIR low pass filter output y[n] is related to its input signal
x[n] through the filter coefficients 	as follows:

[] = [−]
Its operation consists of multiple inner product computations
as a series of input data are made available to the filter.

 OHR
Modulo
Adder Accumulated	OHR	output	A

(OHR)

t0ne	
	

	

	

	

	

	

	

	

t(K‐1)ne	
	

1
1 2K	entries	DALUT	

B (BC)

A

Register OHR
Modulo
Adder

Even/Lower
bit-stream

(TCR)

t0no	
	

	

	

	

	

	

	

	

t(K‐1)no	
	

	2K	entries	DALUT	
B (BC)

Odd/Upper
bit-stream

(TCR)

	2K	entries	DALUT	
1
1

...

.	.	.

Figure 8: 2BAAT TCR based DA-RNS system

Register
 OHR
Modulo
Adder

Accumulated
OHR output

(OHR)

(OHR)

t0n	
	

(TCR)
	

t(K‐1)n	

1
1 2K	

entries
DALUT

B (BC)

A

One residue channel of the TCR based
DA-RNS system

.	.	.	

Figure 7: TCR based DA-RNS with OHR modulo accumulator

 8

A. FIR Filter Characteristics

A 4th order FIR low pass filter, designed using the Parks-
McClellan algorithm with coefficients as shown below is used
for this illustrative, but elementary example.
 [] = 3 [] + 11 [− 1] + 15 [− 2] +11 [− 3] + 3 [− 4] (14)

The frequency response of this FIR filter generated using
the Scilab simulator is shown in Fig. 9. The corner frequency
is chosen to be about 0.1 of the filter operating frequency fS,
with maximum attenuation of -55dB below the pass band
occurring at 0.35fS.To clearly demonstrate the operating
principles of this filter using the proposed method, an input
data sequence is generated which contains a signal component
with frequency at about 0.06fS, i.e. within the pass band of the
filter, together with another component having frequency
located at about 0.35fS. In addition, to simplify the numerical
conversion between input data binary number and its RNS
representation, the data sequence is assumed to consist of
integer values. The signal amplitude is also intentionally kept
within bounds such that the resultant output DR can be
adequately covered using [5,7,8] moduli set for this numerical
example. Based on these approaches, an input data sequence
with 51 points is generated with values as follows:

x[n] = { 1, 1, 2, 3, 3, 5, 5, 5, 6, 5, 5, 5, 3, 4, 2, 1,2,
0, 0, 1, 0, 2, 2, 2, 5, 4, 5, 6, 5, 6, 5, 4, 4, 2,
2, 2, 0, 1, 0, 0, 2, 1, 2, 4, 3, 5, 6, 5, 6, 5 } (15)

Using the Scilab simulator, the input data sequence is then
applied to the 4th order FIR filter and the resultant output y[n]
is obtained as follows:

y[n] = { 3, 14, 32, 57, 86, 118, 154, 187, 212, 226,
230, 226, 212, 190, 165, 133, 100, 71, 47,
28, 17, 21, 39, 61, 89, 125, 162, 194, 215,
230, 237, 230, 212, 183, 147, 114, 86, 61,
39, 21, 17, 28, 47, 71, 100, 133, 168, 201,

 227, 237, 233 } (16)

The time domain response of the FIR filter is also

generated with these data using the Scilab simulator for visual
confirmation of its filtering effect and its operation as
intended. The simulated time domain input and output
waveforms are shown in Fig. 10.

The input x[n] shows significant amount of irregularity due
to the high frequency components as well as the quantization
effect of rounding the input to integers. The output response
shows that the FIR filter is performing an adequate job of
filtering the input as intended, sufficient for the illustrative
purpose here.

B. TCR Based DA-RNS FIR Filter Design

The FIR filter designed is next translated to the RNS
representation. A [5,7,8] moduli set that provides a DR of
[0,280) is chosen for the implementation, sufficient to
accommodate for the maximum output value observed in
(16). Fig. 11 shows the DA-RNS system block diagram based
on this design. Three residue channels, one for each modulus
with design based on Fig. 7 or Fig. 8, are required to
implement these DA-RNS based FIR filters.

The corresponding DALUT’ entries for the three different
moduli channels are next derived using the expression (13)
with the various filter coefficient values shown in (14) as
follows: (,) 		= 	 																								(17)

x[n]

y[n]

t[n]

t[n]

6	5		4		3		2		1		0	
250		200		150		100		50		0	

0 10 20 30 40 50

0 10 20 30 40 50

Figure 10: FIR filter input and output waveform

P
ha

se
 (

de
gr

ee
)

Frequency (Hz)

	 40		20		0			-20		
0					-100					-200				-300	

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

M
ag

ni
tu

de
 (

dB
)

Figure 9: FIR filter frequency response

Analog
input
signal

or

BC input
data

DA-RNS FIR Filters

Channel A: Modulus-5

RNS
output

Channel B: Modulus-7

Channel C: Modulus-8

RNS
Folding
ADC

or

Forward
Conversion

circuit TCR OHR

Figure 11: 3-channel DA-RNS FIR filter

 9

The calculated values for the DALUT table entries are
summarized and listed in Table 1. As the FIR filter contains 5
coefficients, there are 32 entries in each of the three DALUTs
corresponding to the three moduli [5,7,8].

C. Numerical Analysis of TCR DA-RNS FIR Filter
Response

Step-by-step calculation of the TCR based DA-RNS filter
response is now presented to demonstrate its operation. The
input data sequence x[n] of (15) is first translated to the
corresponding RNS representations for the [5,7,8] moduli set.
For brevity, only the first seven values are shown in Table 2,
and are used in the following numerical calculations to
validate the response of the filter designed using the TCR
based DA-RNS technique. Table 3 shows the corresponding
TCR bit patterns of these first seven input data, which are
then sent in bit-serial manner to their respective moduli
DALUT.

Starting with time instance n=0, the first group of data are

x[0], x[-1], x[-2], x[-3] and x[-4]. At n=1, the second group of
data sent are x[1], x[0], x[-1], x[-2], and x[-3]. The data will
then progressively advance to subsequent x[n] with its
previous four data. In causal system, data prior to x[0] will be
considered to be 0. Hence in this case, the response of the FIR
filter will reach steady state at time instance n=4. The
following shows details of the operation for the three
channels, A, B and C corresponding to the three moduli.
i) Channel A for Modulus-5

Table 4 shows the sequence of data involved in the
operation of the TCR based DA-RNS system. The x[n]
data are sent 1BAAT in bit-serial manner to access the
DALUT associated with modulus 5, whose entries are
shown in Table 1. The resultant DALUT outputs are
indicated under the DALUTm=5 column for each row of
bit-serial stream received. For each time instance n, four
summation values are provided and are modulo-5
accumulated over four execution cycles as shown under
the Mod-5 Acc column in Table 4.
The output appears at the 4th execution cycle (i.e. at
tcycle=3) of each time instance n and is hence the inner
product derived from residues of the input signal entries

Table 4: FIR filter output – Modulus-5 Channel A

n tcycle x[n] x[n-1] x[n-2] x[n-3] x[n-4] DALUTm=5 Mod-5 Acc

0 0 1 0 0 0 0 3 3
 1 0 0 0 0 0 0 3
 2 0 0 0 0 0 0 3
 3 0 0 0 0 0 0 3
1 0 1 1 0 0 0 4 4
 1 0 0 0 0 0 0 4
 2 0 0 0 0 0 0 4
 3 0 0 0 0 0 0 4
2 0 1 1 1 0 0 4 4
 1 1 0 0 0 0 3 | | =
 2 0 0 0 0 0 0 2
 3 0 0 0 0 0 0 2
3 0 1 1 1 1 0 0 0
 1 1 1 0 0 0 4 4
 2 1 0 0 0 0 3 | | =
 3 0 0 0 0 0 0 2
4 0 1 1 1 1 1 3 3
 1 1 1 1 0 0 4 | | =
 2 1 1 0 0 0 4 | | =
 3 0 0 0 0 0 0 1
5 0 0 1 1 1 1 0 0
 1 0 1 1 1 0 2 2
 2 0 1 1 0 0 1
 3 0 0 0 0 0 0 3
6 0 0 0 1 1 1 4 4
 1 0 0 1 1 1 4 | | =
 2 0 0 1 1 0 1 4
 3 0 0 0 0 0 0 4

Table 2: RNS representations of x[n]

n (for x[n]) Input value Modulo-5 Modulo-7 Modulo-8

0 1 1 1 1
1 1 1 1 1
2 2 2 2 2
3 3 3 3 3
4 3 3 3 3
5 5 0 5 5
6 5 0 5 5

Table 1: FIR filter DALUTs contents

Input Code
DALUT entries

(A0 = A4 = 3; A1 = A3 = 11; A2 = 15)

 t1n t2n t3n t4n t5n Entry value m=5 m=7 m=8

0 0 0 0 0 0 0 0 0

0 0 0 0 1 A4= 3 | | = 	 | | = | | =
0 0 0 1 0 A3 = 11 | | = | | = | | =
0 0 0 1 1 A3+A4 = 14 | | = 	 | | = | | =
0 0 1 0 0 A2 = 15 | | = | | = | | =
0 0 1 0 1 A2+A4 = 18 | | = | | = | | =
0 0 1 1 0 A2+A3 = 26 | | = 	 | | = | | =
0 0 1 1 1 A2+A3+A4 = 29 | | = 	 | | = | | =
0 1 0 0 0 A1 = 11 | | = 	 | | = | | =
0 1 0 0 1 A1+A4 = 14 | | = 	 | | = | | =
0 1 0 1 0 A1+A3 = 22 | | = 	 | | = | | =
0 1 0 1 1 A1+A3+A4 = 25 | | = 	 | | = | | =
0 1 1 0 0 A1+A2 = 26 | | = 	 | | = | | =
0 1 1 0 1 A1+A2+A4 = 29 | | = 	 | | = | | =
0 1 1 1 0 A1+A2+A3 = 37 | | = 	 | | = | | =
0 1 1 1 1 A1+A2+A3+A4 = 40 | | = 	 | | = | | =
1 0 0 0 0 A0 = 3 | | = | | = | | =
1 0 0 0 1 A0+A4 = 6 | | = 	 | | = | | =
1 0 0 1 0 A0+A3 = 14 | | = | | = | | =
1 0 0 1 1 A0+A3+A4 = 17 | | = 	 | | = | | =
1 0 1 0 0 A0+A2 = 18 | | = | | = | | =
1 0 1 0 1 A0+A2+A4 = 21 | | = | | = | | =
1 0 1 1 0 A0+A2+A3 = 29 | | = 	 | | = | | =
1 0 1 1 1 A0+A2+A3+A4 = 32 | | = 	 | | = | | =
1 1 0 0 0 A0+A1 = 14 | | = 	 | | = | | =
1 1 0 0 1 A0+A1+A4 = 17 | | = 	 | | = | | =
1 1 0 1 0 A0+A1+A3 = 25 | | = 	 | | = | | =
1 1 0 1 1 A0+A1+A3+A4 = 28 | | = 	 | | = | | =
1 1 1 0 0 A0+A1+A2 = 29 | | = 	 | | = | | =
1 1 1 0 1 A0+A1+A2+A4 = 32 | | = 	 | | = | | =
1 1 1 1 0 A0+A1+A2+A3 = 40 | | = 	 | | = | | =
1 1 1 1 1 A0+A1+A2+A3+A4 = 43 | | = 	 | | = | | =

Table 3: TCR representations of x[n]

 x[n] Modulo-5 Modulo-7 Modulo-8

x[0] 1 00011 1 0000011 1 00000011

x[1] 1 00011 1 0000011 1 00000011

x[2] 2 00111 2 0000111 2 00000111

x[3] 3 01111 3 0001111 3 00001111

x[4] 3 01111 3 0001111 3 00001111

x[5] 0 00001 5 0111111 5 00111111

x[6] 0 00001 5 0111111 5 00111111

 10

and the filter coefficients for time instance n. From Table
4, the filter output from modulus-5 channel output for n =
0 to 6 are as follows:

y5[n] = {3, 4, 2, 2, 1, 3, 4} (18)

ii) Channel B for Modulus-7
Similar steps can be used to derive the modulus-7
channel B response and its output for n = 0 to 6 can be
shown to be:

y7[n] = {3, 0, 4, 1, 2, 6, 0} (19)

iii) Channel C for Modulus 8
In this case the TCR bit-length is 7 bits, the resultant
DALUT outputs are obtained at interval of every 7th
execution cycle (indicated as tcycle=6) as shown under the
Mod-8 Acc column in Table 5. The corresponding output
for n = 0 to 6 are as follows:

y8[n] = {3, 6, 0, 1, 6, 6, 2} (20)

Consolidating the outputs of all three RNS channels’
output from (20), (21) and (22) for n=0 to 6:

y5[n] = {3, 4, 2, 2, 1, 3, 4}
y7[n] = {3, 0, 4, 1, 2, 6, 0}
y8[n] = {3, 6, 0, 1, 6, 6, 2}

The output data sequence of the FIR filter, in RNS
representation is hence as follows. For n=0 to 6:

y[n] = {<3,3,3>, <4,0,6>,<2,4,0>,<2,1,1>,
<1,2,6>,<3,6,6>,<4,0,2>}; (21)

The correctness of this RNS based output can be confirmed
by performing a reverse conversion using the Chinese
Remainder Theorem (CRT) [2], which can be shown to
produce the following binary representations:

y[0] = <3,3,3> 3
y[1] = <4,0,6> 14
y[2] = <2,4,0> 32
y[3] = <2,1,1> 57
y[4] = <1,2,6> 86
y[5] = <3,6,6> 118
y[6] = <4,0,2> 154

These calculated values are exactly the same as the first
seven values given in (16), hence confirming the correctness
of the proposed approach.

VII. CIRCUIT SIMULATIONS

To further demonstrate the practical feasibility of the
proposed approach, circuit level simulations using LTspice
SPICE simulator are next performed to ascertain the output of
the circuit.

A. 1BAAT Operation For Modulus-5 Channel A

The block diagram for the 1BAAT design is shown in Fig.
7. The DALUTs are constructed using CMOS circuit, and the
implementation of modulus-5 channel A’s DALUT is shown
in Fig. 12 corresponding to 32 entries shown in Table 1.

The 1BAAT operation of the FIR filter (modulus-5 channel
A) is then simulated and the timing diagram is shown in Fig.
13. In the simulation, a signal, Acc_Rst is used to reset the
content of the accumulator output register to 0 for each time

Table 5: FIR filter output – Modulus-8 Channel C

n tcycle x[n] x[n-1] x[n-2] x[n-3] x[n-4] DALUTm=8 Mod-8 Acc

0 0 1 0 0 0 0 3 3
 1 0 0 0 0 0 0 3
 2 0 0 0 0 0 0 3
 3 0 0 0 0 0 0 3
 4 0 0 0 0 0 0 3
 5 0 0 0 0 0 0 3
 6 0 0 0 0 0 0 3

1 0 1 1 0 0 0 6 6
 1 0 0 0 0 0 0 6
 2 0 0 0 0 0 0 6
 3 0 0 0 0 0 0 6
 4 0 0 0 0 0 0 6
 5 0 0 0 0 0 0 6
 6 0 0 0 0 0 0 6

2 0 1 1 1 0 0 5 5
 1 1 0 0 0 0 3 | | =
 2 0 0 0 0 0 0 0
 3 0 0 0 0 0 0 0
 4 0 0 0 0 0 0 0
 5 0 0 0 0 0 0 0
 6 0 0 0 0 0 0 0

3 0 1 1 1 1 0 0 0
 1 1 1 0 0 0 6 6
 2 1 0 0 0 0 3 | | =
 3 0 0 0 0 0 0 1
 4 0 0 0 0 0 0 1
 5 0 0 0 0 0 0 1
 6 0 0 0 0 0 0 1

4 0 1 1 1 1 1 3 3
 1 1 1 1 0 0 5 | | =
 2 1 1 0 0 0 6 6
 3 0 0 0 0 0 0 6
 4 0 0 0 0 0 0 6
 5 0 0 0 0 0 0 6
 6 0 0 0 0 0 0 6

5 0 1 1 1 1 1 3 3
 1 1 1 1 1 0 0 3
 2 1 1 1 0 0 5 | | =
 3 1 0 0 0 0 3 3
 4 1 0 0 0 0 3 6
 5 0 0 0 0 0 0 6
 6 0 0 0 0 0 0 6

6 0 1 1 1 1 1 3 3
 1 1 1 1 1 1 3 6
 2 1 1 1 1 0 0 6
 3 1 1 0 0 0 6 | | =
 4 1 1 0 0 0 6 | | =
 5 0 0 0 0 0 0 2
 6 0 0 0 0 0 0 2

Figure 12: DALUT of modulus-5 Channel A

OH0

OH16 OH31

OH15

b0

b1

b2

VDD

OH7

OH23

 11

instance n prior to computing each round of the FIR filter
output. Each computation takes 4 execution cycles, which
corresponds to 4 clock cycles as indicated by the CLK signals
in Fig. 13. By using the Acc_Rst reset signal as the reference,
the output value of the FIR filter computed by the DA-RNS
system are captured at its falling edge at various time
instances. As shown in Fig. 13, the output in one-hot residue
format appears as a sequence {3,4,2,2,1,3,4}, matching
exactly what was obtained in (18). Similar 1BAAT design
could be used in the modulus-7 Channel B, but would
consume 6 execution cycles per computation due to the
longer data bit length. An alternative approach is illustrated in
the next section.

B. 2BAAT Operation For Modulus-8 Channel C

As the bit-length of the modulus 7 and 8 channels are
longer, their 1BAAT operation would take 6 and 7 execution
cycles as indicated in Table 5 for modulus-8 channel. To
reduce the number of execution cycles due to their longer bit
lengths, a 2BAAT design can be used for these two channels
using the arrangement as shown previously in Fig. 8. The
following presents the design for the modulus-8 channel
which can be equally applied to the modulus-7 channel.

Two OHR based modular 8 adders are cascaded as shown
in Fig. 14 to enable the 2BAAT operation for modulus 8
channel C. These cascaded adders are then connected in the
DA-RNS system as illustrated in Fig. 8.

To further demonstrate the flexibility of the TCR based
DA-RNS system, two bit-serial streams are created, one from
the input TCR’s lower four bits, and the other from the upper
three bit padded with one extra ‘0’ bit to balance the two
groups. These two groups of data are then sent in parallel to
the DA system through two DALUTs. The BC encoded
outputs of the two DALUTs are then used to increment the
cascaded modulo adders of Fig. 14 that performs the inner
product calculation.

Fig. 15 shows the timing diagram captured for the channel
C 2BAAT based operation, where each time instance output
is completed in four execution (and clock) cycles, the same
duration taken by the modulus-5 channel. The output values

are captured on the falling edge of the Acc_Rst signal. As
expected, the output of the system in one-hot residue code
format appears as {3,6,0,1,6,6,2} sequence, matching exactly
that shown in (20).

These simulation results confirm the practical feasibility of
the proposed idea. Using a combination of TC, BC and OHC
formats for the residues, an efficient means to perform DA-
RNS based inner product calculation can be achieved. To
compensate for the longer word length of the TCR, higher
BAAT rate can be easily used due to the same unit weight of
all the TCR’s bits.

VIII. PERFORMANCE EVALUATION

It is clear that the key advantage of the TCR based DA
operation lies in its simple accumulation operation during the
computation of inner products. Compared to the scaling
accumulator (Fig. 2) for the binary DA system and the
modulo scaling accumulator (Fig. 3) for the BCR DA-RNS
system, the TCR based DA-RNS system only needs modulo
addition without scaling.

On the other hand, owing to its longer bit lengths, TCR
requires more number of execution cycles compared to the
BCR DA-RNS system. However, the 2 	and |2 | factor
related to scaling operations needed in binary DA and BCR

time(ms)

OHR4

OHR3

OHR2

OHR1

OHR0

Acc_Rst

CLK

t4n

t3n

t2n

t1n

t0n

3

4

2 2

1

3

4

0 30 60 90 120 150 180 210 240 270 300

Figure.13: FIR filter 1BAAT timing diagram – Modulus-5 channel A

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

X1
X0

OH0e

OH1e

OH2e

OH3e

OH4e

OH5e

OH6e

OH7e

O
H

R
 in

pu
t

O
H

R
 o

ut
pu

t

BC input BC input

Figure 14: Cascaded modulus-8 adders for 2BAAT operation

time(ms)

OHR7

OHR6

OHR5

OHR4

OHR3

OHR2

OHR1

OHR0

Acc_Rst

CLK

3

6

0

1

6 6

2

0 30 60 90 120 150 180 210 240 270 300

Figure 15: FIR filter 2BAAT timing diagram – Modulus-8 channel C

 12

DA-RNS would require extra clock cycle(s) for each
execution cycle which would then nullify their advantage of
shorter bit-lengths. As such, the performance of the TCR-DA
system hinges on the efficiency of its modulo adder used in
the modulo accumulator. This section compares the
performance and complexity of the proposed OHR based
modulo adder against the binary adders that are used in the
BC based DA-RNS system.

A. Approach

For the modulo adder, we consider popular moduli values
between 5 and 15, as these will be more practical in terms of
hardware realization and suitable for applications that require
small and medium DR (about 2^16 with a combination of
moduli within this set). The corresponding BCR based system
will then need two binary adders of either 3-bit or 4-bit
arranged as shown in Fig. 5a, although it is possible to reduce
the latency to one adder using the parallel version of Fig. 5b
but at higher hardware cost due to its three input operands.

For the binary adder, two standard representative binary
adders are used in the comparison. These are the ripple-carry
(RC) adder and the carry-look-ahead (CLA) adder [12], [13].
The RC adder is the most hardware efficient but is the
slowest, while the CLA adder is one of the fastest ways to
implement binary adder but with tradeoff in hardware circuit
complexity. It should be mentioned that there are also other
fast binary adders based on parallel prefix operations (e.g.
Brent–Kung adder and Kogge–Stone adder), but their speed
and logic complexity would be on the same order as the CLA
adder for smaller sized moduli used here, and hence are not
included. In addition special modulo adders that are
optimized for specific classes of moduli value (e.g. 2 and the
likes) are not considered in order to provide a balanced
comparison for system based on arbitrary moduli.

Fig. 16(a) shows the logic gate implementation for one bit
of the RC full adder [13]. A 3-bit or 4-bit RC adder will use 3
or 4 of this circuit. For a 3-bit CLA adder, the circuit consists
of the one shown in Fig. 16(a) for the 1st bit. For the 2nd and
the 3rd bits, the portion of the circuit shown within the dotted
box in Fig. 16(a) is replaced with those shown in Fig. 16(b)
and Fig. 16(c) respectively. For the corresponding OHR
modulo adder with modulus value of m, the number of

multiplexers in the log shifter needed is equal to m log m ,
with arrangement as shown in Fig. 6.

Gate count comparison between TC and BC based adders
is complicated by the fact that practical circuit realization of
the multiplexer is done by using transistor based circuits such
as the 4-transistor based CMOS Transmission Gate or the 2-
transistor based Pass-Transistor logic. Hence it is more
appropriate to compare hardware complexity in terms of
transistor count here, although this does not reflect the
complexity involved in the wiring of the underlying circuit. In
the comparison here, 6 transistors are used for each 2-input
XOR logic gate, 4 transistors for all other 2-input logic gates,
2 transistors for each extra input pin and 2 transistors for one
NOT gate. For the multiplexer, the 4-transistor based CMOS
transmission gate is used as this is a fairly conservative
design, with one NOT gate shared among all multiplexers to
generate the internal complement shift control signal.

Critical path gate-delay comparison is based on the longest
path that a signal propagates through each circuit. For the BC
based modulo adder, this is equal to the delay through the two
binary adders in order to generate the S’’ data for the output
multiplexer as shown in Fig. 5a. Each RC adder has a
propagation delay equal to (2n+2) due to the carry bit
propagation [13]. For the CLA adder, the most optimum
implementation will have 6 gate-delays independent of the
number of bits [2]. The TCR based modulo adder does not
use any combinatorial logic gates in its implementation. Its
latency is thus depends solely on the signal propagation delay
through the multiplexers.

In order to obtain a more definitive comparison for the
signal propagation latency delay, HPSICE simulations based
on 45nm technology node are performed for the binary full
adders and the log shifter multiplexer based circuit for various
moduli considered here. In the simulations, the basic blocks
of the OHR modular adder and BCR modular adder, e.g.,
column of multiplexers and 1-bit adder are first manually
created. Based on the layout of their basic blocks, the area
and the length of routing wires are estimated, and the RC
values of their interconnects are then derived using the PTM
model [14]. Transistors used in both designs are also sized
(PMOS width = 270nm and NMOS width = 90nm) to give
symmetric rise and fall delays as well as sufficient drive. The
interconnect parameters together with transistor model cards
[14] are then fed to HSPICE for the delay simulation.

B. Results And Discussion

Table 6 summarizes the comparison among the three types
of modulo adders in terms of transistor counts (t-cnt) and
latency in ps for different moduli. Results in Table 6 show that
compared to the BCR RC adder, the OHR based modulo adder
has lower order of transistor count for lower moduli, and only
slightly higher at the high moduli 13 and 15, but with much
superior latency performance throughout. Compared to the
BCR CLA adder, the OHR multiplexer based modulo adder is
superior in both aspects.

 A0

S1

G0

P0

B0

C-1

C0

P1

C-1

P0

G1

G0

C1

P1

C2

C-1

P0 G1 G0

P2

G2

 (a) (b) (c)

Figure 16. Binary adders (a) Ripple-carry (b) & (c) Carry-look-ahead

 13

While these values are broadly indicative of performance,
the vast difference in the latency suggests that the TCR-OHR
based DA system could potentially operate at much higher
clock frequency and hence faster execution cycle, which
would largely compensate for its longer bit-length penalty.
Taking into consideration the latency due to the |2 | modulo
scaling factor faced in the BCR based system, the proposed
system implementation would be of even greater merit,
although more detailed analysis of the comparison would need
to be performed based on actual implementations. Further,
[11] has presented another version of OHR modulo adder
based on linear barrel shifter that potentially could further
minimize operating power and be implemented with even
lower transistor count. However, it would require a bigger size
(m2 versus m log m) DALUT when used with the TCR
based DA system, since its DALUT would need to output the
B augend as a full length m-bit one-hot code, compared to the
binary code used in our proposed system.

While the proposed OHR-MUX modulo adder is found to
be uniformly faster and more area efficient than the high speed
BCR-CLA modulo adder for the moduli shown in Table 6, the
validity of such an observation toward larger moduli could be
further evaluated as follows. First assume that the 20ps
propagation delay as observed in Table 6 is incurred for every
doubling of the modulus value (i.e. extra column of the
multiplexers is added). Direct extrapolation using Table 6
entries would indicate that the propagation delay of the OHR-
MUX system will remain superior up to modulus value of
m=27=127, before it reaches the 115ps of a corresponding
idealized BCR-CLA based system. Similarly, the transistors
count could be shown to be at similar level (about 450) when
m=22 for both systems. However, these estimations have
omitted the practical implementation complications, in
particular the interconnect complexity of the underlying
circuitry at large modulus values for both the OHR-MUX and
BCR-CLA approaches. As such, concrete answers on their
performance can only be obtained by performing detailed
circuit layout and measurements for large modulus value.

Nevertheless, to exploit the benefits of using RNS
principles that reduce the internal circuit complexity of the
RNS ADC [4], and to maintain reasonable TCR bit-serial
length for the DA operation, we would recommend the use of

multiple intermediate size moduli such as [11,13,14,15],
instead of a few large moduli to obtain the dynamic range
required by the signal processing functions concerned.

IX. CONCLUSION

This paper presents a novel approach to compute inner
products using RNS based DA techniques in which residues
are represented by thermometer codes instead of the
conventional binary code format. This eliminates the 2
modulo scaling factor encountered in the binary coded residue
version, and results in a very simple accumulator requirement.
In addition, use of the one-hot code format for the operation of
the modulo adder is proposed for the accumulator. This
approach overcomes the carry propagation inefficiencies as
well as the complication arising out of repetitive modulo
operations that need to be performed in retaining the results of
addition in the residue form. As such, it is easier to operate the
proposed systems at high clock rates and to scale to parallel
bit-serial operations to further enhance the throughput
performance.

Design of an DA-RNS based FIR filter is then described
and analyzed based on the proposed approach. Its operation is
also simulated using SPICE simulator that validates the
correctness and confirms the practical feasibility of the
proposed scheme. A broad performance comparison against
the conventional approach also suggests that there is no
penalty incurred in terms of transistor count and latency in the
proposed approach.

REFERENCES

[1] S. A. White, “Applications of distributed arithmetic to digital signal
processing: a tutorial review,” ASSP Magazine, IEEE, vol. 6, no. 3, pp.
4-19, Jul 1989.

[2] A. Omondi and B. Premkumar, Residue Number Systems, Theory and
Implementation, Imperial College Press, Singapore, 2007.

[3] A. Garcia, U. Meyer-Base, A. Lloris and F. J. Taylor, “RNS
implementation of FIR filters based on distributed arithmetic using
field-programmable logic,” in Circuits and Systems, 1999. ISCAS '99.
Proceedings of the 1999 IEEE International Symposium on, vol. 1, pp.
486-489, Jul 1999.

[4] C. H. Vun and A. B. Premkumar, “RNS encoding based folding
ADC,” in Circuits and Systems (ISCAS), 2012 IEEE International
Symposium on, pp. 814-817, 20-23 May 2012.

[5] K. P. Lim and A. B. Premkumar, “A modular approach to the
computation of convolution sum using distributed arithmetic
principles,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on, vol. 46, no. 1, pp. 92-96, Jan
1999.

[6] J. Ramirez, A. Garcia, U. Meyer-Base, F. Taylor, P. G. Fernandez
and A. Lloris, “Implementation of RNS-Based Distributed Arithmetic
Discrete Wavelet Transform Architectures Using Field-Programmable
Logic,” VLSI Signal Processing, vol. 33, no. 1-2, pp.171-190, 2003.

[7] C. H. Vun and B. Premkumar, “Thermometer Code Based Modular
Arithmetic” in Engineering and Technology (S-CET), 2012 Spring
Congress on, pp. 534-538, 27-30 May 2012.

[8] S. Pontarelli, G. C. Cardarilli, M. Re and A. Salsano, “Optimized
Implementation of RNS FIR Filters Based on FPGAs,” Journal of
Signal Processing Systems, Spinger, Online First™, 30 Sept 2010.

Table 6 . Performance parametric comparison

Mod
m

BCR-RC BCR-CLA OHR-MUX

t-cnt latency t-cnt latency t-cnt latency

m=5 158 157 ps 210 115 ps 66 31 ps

m=7 158 157 ps 210 115 ps 90 31 ps

m=8 158 157 ps 210 115 ps 102 31 ps

m=9 210 178 ps 322 115 ps 152 51 ps

m=11 210 178 ps 322 115 ps 184 51ps

m=13 210 178 ps 322 115 ps 216 51 ps

m=15 210 178 ps 322 115 ps 248 51 ps

 14

[9] P. Patronik, K. Berezowski, S. J. Piestrak, J. Biernat and A.
Shrivastava, “Fast and energy-efficient constant-coefficient FIR filters
using residue number system,” in Low Power Electronics and Design
(ISLPED) 2011 International Symposium on, pp. 385-390, 1-3 Aug.
2011.

[10] W. Wang, M. N. S. Swamy and M. O. Ahmad, “Novel Design and
FPGA Implementation of DA-RNS FIR Filters,” Journal of Circuits,
Systems and Computers, vol. 13, no. 06, pp. 1233-1249, Dec 2004.

[11] W. A. Chren, “One-hot residue coding for low delay-power product
CMOS design,” Circuits and Systems II: Analog and Digital Signal
Processing, IEEE Transactions on , vol. 45, no. 3, pp. 303-313, Mar
1998.

[12] A. Weinberger and J. L. Smith, “A Logic for High-Speed Addition,”
National Bureau Standards, circular 591, pp. 3-12, 1958.

[13] M.M. Mano and C. R. Kime, Logic and Computer Design
Fundamentals, Prentice Hall. USA, 1997, pp. 130-137.

[14] Predictive Technology Model [Online]. Available:
http://ptm.asu.edu/.

Chan Hua Vun (M’85-SM’03) received his
Bachelor of Engineering (1st class Honours) and
Master of Engineering Science degrees in
Electrical & Computer System Engineering from
Monash University, Australia, and Ph.D. in
Computer Engineering from Nanyang
Technological University, Singapore.

He is currently an Associate Professor at the
School of Computer Engineering, Nanyang

Technological University, Singapore. His current research works focus on
embedded signal converter and signal processing based on number theory
approach.

Dr. Vun co-founded the IEEE Consumer Electronics Society, Singapore
Chapter, and has been involved in numerous program and organizing
committees for various IEEE conferences. He is currently also an Associate
Editor of the IEEE Consumer Electronics magazine.

Benjamin Premkumar (M’92-SM’99) received
his Bachelor of Science and Bachelor of
Engineering in Electrical communication in India.
He briefly worked in large communication
industry in Bangalore (India) in their Research and
Development division before proceeding to the US
to earn his M.S. and Ph.D. both in Digital Signal
processing from the University of Idaho. He was a
group leader designing multiprocessor controlled
equipment, low speed data circuits and order wire

communication systems for the Indian Air Force and Posts and Telegraphs.
He worked on speech recognition algorithms during his Master’s program.
His Ph.D. thesis was in the area of Synthetic Aperture Radar Signal
Processing, a project sponsored by NASA.

He has held various teaching positions since 1991 both in the US and
Singapore. He was the recipient of Erskine Fellowship at the University of
Canterbury in 2004. Currently he is an Associate Professor in the school of
Computer Engineering, Nanyang Technological University, Singapore. His
research interests are in the areas of Digital filters and its applications in
Wireless Communication, Software Defined Radio, Ultra wide Band Radio
and Cognitive Radio. He also works in the area underwater tracking and
localization of sources in shallow waters. He has worked on several different
number systems for implementing digital filters efficiently in hardware and
has successfully applied these systems in communications systems for error
detection and correction.

Dr. Premkumar has over 150 publications in international journals and
conferences and has authored and co-authored three text books, two on
mobile communications and one on number theory.

Wei Zhang (M’xx) received the Bachelor’s and
Master’s degrees in electrical engineering from the
Harbin Institute of Technology, Harbin, China, in
1999 and 2001, respectively, and the Ph.D. degree
in computer engineering from Princeton
University, Princeton, NJ, in 2009.

She is currently an Assistant Professor at the
School of Computer Engineering, Nanyang
Technological University, Singapore. Her research

interests include embedded systems, reconfigurable computing,
nanotechnology, electronic design automation, and network-on-chip.

Dr Zhang is a member of the Association for Computing Machinery. She
received a Princeton Research Prize and a Best Paper Award in 2007 and
2009, respectively.

