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Abstract—This paper presents a novel method to perform inner 
product computation based on the distributed arithmetic 
principles. The input data are represented in the residue domain 
and are encoded using the thermometer code format while the 
output data are encoded in the one-hot code format. Compared 
to the conventional distributed arithmetic based system using 
binary coded format to represent the residues, the proposed 
system using the thermometer code encoded residues provides a 
simple means to perform the modular inner products 
computation due to the absence of the 2  modulo operation 
encountered in the conventional binary code encoded system. In 
addition, the modulo adder used in the proposed system can be 
implemented using simple shifter based circuit utilizing one-hot 
code format. As there is no carry propagation involved in the 
addition using one-hot code, and since the modulo operation can 
be performed automatically during the addition process, the 
operating speed of the one-hot code based modulo adder is much 
superior compared to the conventional binary code based 
modulo adder. As inner product is used extensively in FIR filter 
design, SPICE simulation results for an FIR filter implemented 
using the proposed system is also presented to demonstrate the 
validity of the proposed scheme. 
 

Index Terms— Distributed arithmetic, inner product, one-hot 
code, residue number systems, thermometer code. 
 

I. INTRODUCTION 

ANY digital signal processing applications make use of 
functions such as convolution, correlation and filtering, 

where the inner product computation forms the core of these 
functions. Distributed Arithmetic (DA) is a well-known 
technique for calculating inner products without the need for 
performing multiplication [1]. In addition, compared to the 
conventional Multiply-Accumulate (MAC) approach, the DA 
technique allows the computation to be completed in number 
of execution cycles proportional to the bit-length of the data 
involved, instead of the number of coefficients in the equation. 
As such, it provides performance gain when the number of 
coefficients is more than the bit-length of the data. In DA 

technique, a look up table (LUT) with bit-serial data 
addressing is used to perform the product calculation that are 
then added together to provide the final result.  

Residue Number System (RNS) [2] is considered to be 
suitable for the implementation of high speed digital signal 
processing due to its parallelism and small data bit-length. 
RNS allows representation of a big natural number A with a 
set of smaller natural numbers a1,a2,…,aM known as the 
residue digits of the number A. They are derived based on 
modular arithmetic principles using a selected set of relatively 
prime numbers [m1,m2,…,mM] called the moduli set. This RNS 
relationship is expressed as A  a1,a2,…,aM.  

An important property of RNS is arithmetic operations like 
addition, subtraction and multiplication of two numbers A and 
B can be equivalently performed in RNS using their 
corresponding pair of residue digits ai and bi relative to the 
modulus mi in an independent and parallel manner, with no 
carry-propagation occurring between residues of different 
moduli. 

These two properties of RNS, small residue digits size and 
parallel arithmetic operations are hence ideal for inner product 
calculation using the DA techniques. The small value residue 
digits lead to fewer execution cycles due to their short bit-
length, while the parallelism enables simultaneous arithmetic 
operations to be done in multiple independent channels, each 
reserved for corresponding pair of residue digits belonging to 
the same modulus. 

However, there are a few subtle issues that need to be 
addressed when implementing the RNS based DA (DA-RNS) 
technique for inner product calculation in practice. While each 
datum is now represented in RNS using small residue digits, 
the residue digits themselves are still encoded in the binary 
coded (BC) format. As such, there is still overhead due to the 
localized carry propagation within each channel when 
performing modular arithmetic operation, albeit to a much 
smaller degree compared to non-RNS based approach. More 
importantly, because of the 2  bit weight associated with the 
bits in the BC digit, there is a 2  scaling process during the 
DA accumulation operation. While this is generally not a 
problem in non-RNS based system, the 2  scaling in DA-RNS 
requires performing a modulo operation with respect to 
channel modulus and is complicated [3]. Furthermore, the 
implementation of the modulo adder is also rather convoluted 
since there is no simple way to perform the  modulo operation 
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[2] for BC based residues digits corresponding to generic 
value of moduli.  

As these problems are associated with the BC format used 
in encoding the residues, we propose to use alternative 
encoding formats to represent the residues for our DA-RNS 
implementation. In this work, we propose to use the 
thermometer code (TC) format to represent the residues and 
eliminate the complexity involved in performing the 2  
modulo operation. The proposed system also uses modulo 
adder based on the one-hot code (OHC) format that provides a 
simple and fast method to perform the modulo-accumulation 
encountered in DA. This combination provides an elegant 
solution to practical problems faced in the implementation of 
conventional BC based DA-RNS systems. As such, it enables 
benefits in using RNS with the DA to be truly realized in very 
efficient manner using simple circuit design. 

One important practical consideration in using RNS based 
modular arithmetic is the forward conversion required to first 
convert a conventional number to its residues. This is likely to 
be a costly operation and will hinder wide adoption of RNS in 
real world applications. Our motivation for using the TC 
encoded residue (TCR) is the availability of a novel RNS 
based folding ADC [4] where the data generated during the 
conversion are inherently in the TCR format. As such, there is 
no extra overhead needed to first convert a datum to its RNS 
representation. Further arithmetic operations required in signal 
processing can hence be performed in TCR directly, before it 
is eventually converted to the conventional binary 
representation. Fig. 1 illustrates this concept where individual 
RNS based FIR sub-filter is integrated within each modulus 
channel of the RNS ADC to perform signal pre-processing 
before eventually outputting the data in conventional binary 
number representation. Nevertheless, the proposed scheme can 
also be used with conventional systems where the binary 
representation is first converted to the TC based RNS 
representation during the forward conversion, instead of the 
usual BC based RNS representation.  

The remainder of the paper is organized as follows. Section 
II provides the background of the DA technique for inner 
product calculation, and properties of RNS that are 
advantageous for DA implementation. Section III describes 
principles used in DA-RNS system based on the conventional 

BC format, identifying the problem encountered in 
implementing the concept. Section IV introduces the TC 
format and describes the TCR based DA-RNS system, 
showing the simplification achieved by the use of the TCR. 
Section V discusses modulo adder circuits needed to 
implement the TCR based DA-RNS, presenting the OHC 
based modulo adder. Section VI presents the design of an 
inner product computation unit based on the TCR DA-RNS 
approach, using the FIR filter application as an example and 
analyzes its operation. Section VII presents the SPICE based 
simulation results of the FIR filter implemented using the 
proposed scheme, demonstrating the validity and practical 
feasibility of the concept. Section VIII presents a performance 
evaluation and comparison of the proposed system against the 
conventional BC based system with Section IX providing the 
concluding remarks on the new technique proposed in this 
paper. 

II. BACKGROUND 

A. Distributed Arithmetic For InnerProduct Computation  

Consider the computation of the inner product commonly 
expressed as follows:    

=	 A 																																																														(1)	 
It is assumed that A  are fixed values (e.g. filter coefficients 
of FIR filter) and = [ , , …	 	]	is the corresponding 
input vector with K entries, each binary encoded with bit-
length of N. Using the normal multiply and accumulate 
approach, it is obvious that the calculation of this inner 
product will take K MAC execution cycles, corresponding to 
the number of coefficients used in (1). 

Now consider each entry in  to be expressed in terms of 
its binary encoded bits as follows:  

	 	= 2 																				 	  1,0 																	(2)	 
where  is the nth bit of  and hence has binary value of 
either 0 or 1, while the 2  represents the associated weight of 
the binary bit. The inner product y in (1) can then be written in 
the form associating it directly with the bit values of the 
entries in the input vector: 

		 = 	 A 			= 	 A 	 2 																			(3) 
Interchanging the order of the summations and bringing A   
together with the binary bits of : 
 

=		 A 	 2 																																											(4) 
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Let												 (A , ) 	= A 																																										(5) 
Hence						 = 		 (A , )	 2 																																												(6) 
The function	 (A , ) contains values representing the sum 
of products with individual binary bit value  of the input 
vector . Since the  bit value can only have value of 
either 0 or 1, while the value of each Ak is fixed, there are 
altogether 2  possible combinations values based on (5).  

In DA technique, these values are pre-computed and stored 
in a LUT. The DA’s LUT (DALUT) is then successively 
addressed by using the nth data bit  of all  entries in 
parallel, starting with n=0 until n=N-1. The successive 
outputs are then accumulated as indicated in (6), but with the 
need to first scaling each output by its individual 2  factor 
due to the different weights of the binary bits present in the 
BC data. Eventually (N-1) accumulated sum corresponds to 
the value of the inner product y is obtained.  

Consider an illustrative example with K=4 inner product 
computation. Then  

		 = 	 A 																																																																			 
	= A + A + A + A 																										(7) 

For brevity, further assume that each of the entries in the 
input vector = [ , , , ]	is of bit-length of N=3 bit as 
follows: 

 = {b02 b01 b00};   = {b12 b11 b10}; 
 = {b22 b21 b20};   = {b32 b31 b30}. 

The DA based system can then be implemented as shown 
in Fig. 2, where there will be 2 =16 entries in the DALUT 
with values derived based on (6). The relevant LUT entries 
will then be successively clocked out over three execution 
cycles using the collective bit pattern of the input vector in a 
bit-serial manner with combination as follows:   

tcycle = 0 : bk0 = {b00b10b20b30} 
tcycle = 1 : bk1 = {b01b11b21b31}  
tcycle = 2 : bk2 = {b02b12b22b32}  

During each execution cycle, the DALUT output is 
multiplied by its individual 2  scaling factor before it is added 
to the accumulated value obtained in previous execution 
cycles as indicated in (6). Each execution cycle hence consists 
of two operations, scaling and accumulation (SAC), which 
can be performed by the circuit arrangement as illustrated in 
Fig. 2. In conventional binary number system, the 2  
multiplication is simply done by a logical left shift of the 
output by the appropriate amount corresponding to its nth 
value. The adder can be of any binary adder with its output 
stored in a register for further accumulation with incoming 
values.   

Hence a DA based inner product computation can be 
completed in N SAC execution cycles, which is equal to 3 in 
this example. Compared to using the normal MAC approach, 
where the computation will take K = 4 MAC execution 
cycles, the DA technique provides a performance gain for 
inner product computation if N < K, assuming that the 
execution cycle of one MAC operation consumes same 
number of clock cycles to one SAC operation. Furthermore, 
there is no multiplier needed in DA based system to perform 
the computation which is typically more hardware costly.  

B. Residue Number System  

RNS is a number system in which an integer A within a 
legitimate range [0, P) is uniquely defined by a set of positive 
integers a1,a2,…,aM, which are the remainders (the residues) 
obtained when A is divided by a set of pair wise relatively 
prime positive integers [m1,m2,…,mM] (the moduli set), where 

P = ∏ . The integer A represented in RNS can then be 
expressed as A  a1,a2,…,aM.  

The main feature of the RNS is that an integer within a 
large dynamic range can be uniquely represented by the set of 
residues that are of much smaller values, corresponding to the 
size of the moduli set used in the representation. For instance, 
using the [7,8,9] moduli set which provides a legitimate range 
of [0,504), the integer A = 179 can be represented by 
4,3,87,8,9 residue set and the integer B = 254 by 2,6,27,8,9 

residue set.  
Furthermore, arithmetic operations between the two 

integers A and B can also be equivalently performed in RNS 
based modular arithmetic, using their corresponding residue 
digits as follows: 

179 ʘ 254    4,3,8 ʘ 2,6,2 
    =  4ʘ2, 3ʘ6, 8ʘ2 

where ʘ 	{+,  −, ×}. For example: 

254+179    4,3,87,8,9+2,6,27,8,9 
=  4+2, 3+6, 8+27,8,9 
=  6,9,107,8,9 

=  6,1,17,8,9 

Another advantageous feature of the RNS system is that the 
operation between each pair of residue digits can be 
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Figure 2: DA system for inner production computation 
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performed in a parallel and in independent manner from the 
other pairs of residues, as long as the resultant value does not 
exceed the legitimate range provided by the moduli set used.  

Shorter bit-lengths of residues and inherent parallelism 
suggest that RNS combined with DA would be ideal for inner 
products computation. The performance gain is dependent on 
the data bit-length and this is examined next. 

III. BINARY CODE BASED DA-RNS  

BC encoded DA-RNS system has been reported in [3], [5] 
and [6]. However, the number of publications is fewer than 
what one would normally expect for such seemingly well 
matched DA and-RNS techniques. The main reason most 
likely lies in the difficulty of implementing the modulo 
operation associated with the 2  scaling factor that originates 
from the BC encoded residue (BCR). The following is the 
derivation needed to implement the inner product 
computation using the BCR based DA-RNS technique which 
reveals the source of the complication. 

Applying RNS principles using [m1,m2,…,mM] moduli for 
the inner product in (4), it can be rewritten in terms of its 
residues y  y1,y2,..,yi,..yM  where  
 = A 	 2 																									 

					= (A , ) 2 	 										 
As before, the 2  factor needs to be decoupled from (A , ) that is to be stored in the DALUT. This is done by 

applying the algebra of RNS as follows: 

= | (A , )| |2 | 																										(8) 
Let										 (A , ) = 	 | (A , )|  

= A 																																		(9) 
(8) then becomes 

		 = 	 (A , )			|2 | 		 																						(10) 
Hence values of (A , )	can be pre-computed and 

stored in the DALUT, which can be subsequently clocked out 
by using the bit-serial stream of the input vector for the 
accumulation operation as described before. However each of 
the value needs to be first scaled with the |2 |  factor, which 
is difficult to be implemented in hardware due to its modulo 

operation with respect to mi. An example of a hardware that is 
needed to perform this modulo accumulation is shown in Fig. 
3 [3], illustrating the complications faced in implementation 
that limits the minimum clock period (i.e. highest clock 
frequency) achievable in its operation. The difficulty 
explained in Fig 3 is overcome in TCR based DA-RNS 
operation, as will be presented next. 

IV. THERMOMETER CODE BASED DA-RNS 

This section first introduces the thermometer code format. 
An expression is then derived for implementing the DA-RNS 
based on the TC encoded residue. It is then compared with the 
implementation presented in section III.  

A. Thermometer Code Format  

Thermometer code refers to the encoding format where the 
value of a datum is equal to the number of binary ‘1’ bits used 
to represent the datum. For example, an integer of value of 5 
can be encoded using the bit pattern {11111} in TC format. In 
practice, binary ‘0’s are also added to explicitly indicate the 
dynamic range (DR) associated with the integer. Hence the 
value of 5 for an integer with dynamic range of 10 will be 
encoded as {0000011111}. Evidently, such a format is 
normally not efficient as the number of bits required to 
represent typical data (e.g. 8-bit resolution with 0-255 
dynamic range) will be excessive. 

But using TC format in RNS context is feasible since the 
DR of each residue is bounded by its modulus. For example, 
with [7,8,9] moduli set, the bit-length of the corresponding 
TC encoded residues will be 6, 7 and 8 respectively. These 
are hence of similar bit-length compared to the binary number 
that the moduli set can represent (i.e. P = 504). But its 
advantage lies in a simpler and efficient modulo addition 
when used in conjunction with its variant, the one-hot code 
encoded format as shall be demonstrated. More importantly, 
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TCR provides a very simple means to overcome the 
complication that arises due to the |2 |  factor encountered 
in DA-RNS based on the BC format. Nevertheless the key to 
using TC format efficiently in RNS is to minimize the bit-
lengths by using a larger number of small moduli rather than 
few big moduli. For example, it would be more 
computationally efficient to use a [5,7,8,9] moduli set rather 
than a [15,16,17] moduli set to cover the range for a 11-bit 
BC system. As such, the TCR based representation would be 
particularly suitable for small and medium size dynamic 
range type of applications. 

Mathematically, TC encoded number system is a unary 
system which is equivalent to a base-1 binary bit system. It is 
also common to describe it as a no place-value number 
system, since the positions of its ‘1’ bits in the bit pattern are 
not important. For our purpose, we will assign a bit weight of 
20 to all the bits in a TCR, and denote it as an equal place-
value number system. The decimal equivalent of the residue 
represented by TC is hence given by: 

| | 	= 2 																				 	  1,0 																	(11)	 
There are some very convenient features associated with 

TCR based modular arithmetic [7]. Modular addition of two 
TCRs can be done by concatenating the two TCRs using 
shifter circuits while the modulo operation can be done by 
checking a single bit. Additive inverse of a TCR is simply the 
1’s complement of its value. There is also no ambiguity in 
taking the additive inverse of value 0, as its 1’s complement is 
equal to its modulus value which reverts to 0 after its modulo 
operation.  

B. TC based DA-RNS Inner Product 

The derivation of TCR based DA-RNS system for inner 
product computation follows in the same manner as in the BC 
based system. The only difference lies in using the TCR’s bit 
expression of (11) in place of the binary code version shown 
in (2). 

	= 2 								⇔						 | | 	= 2 						 
Hence the residue expression for the TCR based DA-RNS 

system can be obtained by simply replacing the symbols used 
in (10) with the TCR equivalents, namely, number of TCR’s 
bit is equal to -1, and all bits are of equal weight, 2  = 1. 

= 	 (A , )			|2 | 		 						 
	= 	 (A , )	 																																			(12) 

since 	 2  = 1. The expression of 	 (A , ) based on (9) 

is hence: 

(A , ) 		= 	 A 																													(13) 
(13) describes how entries can be stored in the DALUT. One 
can also note the absence of the |2 |  scaling which was the 
cause for complicating earlier BC based implementation.  

However, (13) indicates a potential problem in the 
implementation. As the modulo operation is to be done after 
the summation, the accumulator is likely to overflow during 
the accumulation process. This is resolved by expanding (13) 
using the algebra of residues as shown below where the 
modulo operation is done after every addition:  

	= 	 (A , )		 						 
= 	 (A , ) + 	 (A , ) + 	 (A , ) + ⋯+ 	 (A , )  = 	 (A , ) + 	 (A , ) + 	 (A , ) + ⋯+ 	 (A , )  

Hence a TCR based system can be implemented very 
simply by using  channels of modulo adders instead of the 
equivalent system of Fig. 2 as illustrated in Fig. 4 that shows 
one channel of the TCR based DA-RNS system. 

Without the modulo scaling operation for the TCR based 
DA-RNS system, each execution cycle only needs to perform 
the accumulation function, and would require fewer clock 
cycles compared to the SAC operations. Hence the trade-off 
for the longer bit-length of TCR is in the simplicity required of 
the modulo accumulator, the design of which would be much 
simpler compared to the one shown in Fig. 3. Furthermore, 
overall performance gain can be obtained if a very efficient 
implementation of the modulo accumulator can be found such 
that the system can operate at faster clock rate as well as at 
higher bit-at-a-time (BAAT) rate [1]. This issue will be 
discussed in the next section. 
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V. MODULAR ACCUMULATOR DESIGN 

This section describes a few alternatives to implement the 
modulo adders and then presents a design for the proposed 
system.   

A. BC Based Modulo Adder 

For BC based modular arithmetic, the general approach to 
implement modulo adder for generic modulus is to make use 
of the architecture as shown in Fig. 5 [2] [8], although there 
are other possible variations that are based on specific 
hardware approach [3] and those using multiple adders [9] 
[10] designs when specific moduli sets are considered. In Fig. 
5, two binary adders are used to implement the following 
modular addition: | + | = 	 			 + 																	 	 + <			 + − 								 ℎ 							 

Circuit Fig. 5a uses one binary adder to perform the 
addition of the two operands, A and B to first provide an 
intermediate sum S’. The modulus m is then subtracted from 
intermediate sum S’, which can be performed through 
addition with the two’s complement of m,  as shown. The 
carry-out bit from the subtraction is then used to control the 
output multiplexer, which determines whether the output 
should be S’ = A+B or S’’ = A+B-m, in effect performing the 
modulo operation. A variation of the circuit is shown in Fig. 
5b where a three operands adder is used to calculate the S’’ in 
parallel, to achieve faster operation at the expense of more 
complicated binary adder design. 

Hence, although there is no carry propagation between the 
residue channels of different moduli, there is still localized 
carry propagation occurring within the residue channel since 
the residues themselves are encoded in BC and hence operate 
based on the binary adders. Furthermore, the modulo adders of 
Fig. 5 needs the carry bit of the second binary adder in order to 
generate the final result. As such, the performance of these 
modulo adder depends very much on the carry propagation 
performance of the underlying binary adders used in the 
implementation. For example, the binary adders of Fig. 5 can 
be based on the ripple carry full adder which is slow but uses a 

simple logic structure, or variation of the carry-look ahead full 
adder which is fast but at much higher logic gates cost.  

As the carry bit propagation originates from the BC format 
used in encoding the residues, we propose an approach  similar 
to earlier TCR to tackle this inefficiency by using an 
alternative encoding format, the one-hot code, to be used for 
the modulo adder. The OHC based modulo adder can be 
implemented using shifter based circuit to perform the 
addition operation without the carry propagation property. 
Furthermore, the modulo operation can be performed in a very 
simple manner compared to the BC version. As such, it is used 
in conjunction with the proposed TCR base DA-RNS 
described earlier.      

B. One-Hot Code Based Modulo Adder 

A one-hot code consists of n bits, but can only have 1 bit 
asserted at any one time. Hence it is also known as 1-out-of-n 
encoding scheme. One-hot code is normally used for decoding 
the address bits for LUT purpose. When it is used to represent 
the residue in RNS, it is referred to as the one-hot residue 
(OHR) [11]. 

In the one-hot code format, the value of the residue 
corresponds directly to the asserted bit position. Compared to 
the TCR, the OHR uses one extra bit in order to encode the 
value corresponding to 0.  For example, a residue digit with 
value of 5 in a modulus-7 system would be encoded as 
{0100000}, while a value of 0 would be encoded as 
{0000001}. 

While the value of an OHR is intuitively clear from its bit 
pattern, it lacks formal mathematical properties (e.g. base-1, 
base-2) and poses difficulty in using it for general 
mathematical purposes. Nevertheless, its unique usefulness for 
representing residues lies in the automatic execution of the 
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modulo operation when performing addition and subtraction 
based on circular shifting technique. 

Consider two modulus-7 residues  and  which have 
numerical value of 4 and 5 respectively expressed in OHR 
format: 

 = 0010000 
 = 0100000  

The modular sum of these two operands can be found by 
executing a circular shift operation to one of the operands, 
based on the value of the other operand. In this example,  
will be circular shifted five positions (based on the value of 

)  to its left (assuming its highest value bit position is on the 
left) which will make its ‘1’ bit wrap around to the lowest 
value bit position such that  eventually becomes {0000100}. 
This implies a numerical value of 2, which is consistent with 	|4 + 5| = 2. This unique property exhibits a very efficient 
way to perform automatic modulo operation during the 
addition. 

In our proposed system, a hybrid design is used for the 
OHR based modulo adder. Fig. 6 shows the circuit schematic 
of a modulo-7 adder used in the modular accumulator based 
on this design. The adder consists of multiplexers arranged to 
form a log based circular shifter. The input a[n] and the 
output OHR[n] are both OHR encoded while the b[n] input is 
BC encoded. The BC encoded b[n] controls the amount of 
circular shift that is applied to a[n]. This effectively executes | + | ,	 with the modulo 7 operation automatically 
performed as the OHR bits wrap around. The OHC format at 
the output is also convenient if it is to be used to address a 
LUT such as a residue-to-binary encoder to present the output 
in the conventional binary representation.  

Compared to the BCR modulo adder, this shifter based 
OHR modulo adder implementation is much faster as there is 
no logic gate delay involved in the operation, nor does it have 
carry propagation issues. The operating speed is solely 
determined by the delay of the signal passing through the 
multiplexers. In addition, the number of transistors used to 
implement the shifter based modulo adder is lower when 
compared to that in BCR modulo adder based on the ripple 
carry adders, which is the most area efficient (but slowest) 
implementation for a binary adder. This will be discussed in 
detail later in Section VIII. 

C. TCR DA-RNS Implementation 

Fig. 7 shows how the OHR modulo adder used in the 
proposed TCR based DA-RNS system. The OHR datum value 
in the output register, which supplies input A to the OHR 
modulo adder, is initially set to 0 at the beginning of each 
accumulation execution cycle. The other input B to the OHR 
modulo adder is the value output from the DALUT which is 
encoded in the BC format. Based on the value of the input B, 
the OHR modulo adder will perform circular shift to the OHR 
value applied at input A, hence performing the modulo 
accumulation function as described earlier.  

Due to the simplicity of the system (no carry bit propagation 
or modulo 2n scaling), it is hence possible to execute the 
system at higher clock rate compared to the BC DA and the 
BCR DA-RNS. Because of the same unit bit weight assigned 
to all bits in the TCR, the design can also be easily extended to 
operate at 2-bit-at-a-time (2BAAT) [1] or higher to further 
compensate for the longer bit-length of the TCR. Fig. 8 shows 
a 2BAAT design, where two OHR modulo adders are simply 
connected in cascade to sum two DALUT outputs, each driven 
by one group of bit-serial stream allocated from the TCR 
input. Since the order of addition is not important, the two 
groups of bit-serial streams used can be allocated based on the 
even bits and odd bits of the TCR datum, or the lower half and 
upper half of the tn bits of the TCR datum if this is more 
hardware amenable.  

VI. FIR FILTER IMPLEMENATATION 

Design and performance analysis of a DA-RNS based FIR 
digital filter using proposed TCR is presented in this section 
to demonstrate the practicality of the proposed concept. A 
FIR low pass filter output y[n] is related to its input signal 
x[n] through the filter coefficients 	as follows:  

[ ] = [ − ] 
Its operation consists of multiple inner product computations 
as a series of input data are made available to the filter. 
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A. FIR Filter Characteristics 

A 4th order FIR low pass filter, designed using the Parks-
McClellan algorithm with coefficients as shown below is used 
for this illustrative, but elementary example. 
 [ ] = 3 [ ] + 11 [ − 1] + 15 [ − 2] +11 [ − 3] + 3 [ − 4]                      (14) 

The frequency response of this FIR filter generated using 
the Scilab simulator is shown in Fig. 9. The corner frequency 
is chosen to be about 0.1 of the filter operating frequency fS, 
with maximum attenuation of -55dB below the pass band 
occurring at 0.35fS.To clearly demonstrate the operating 
principles of this filter using the proposed method, an input 
data sequence is generated which contains a signal component 
with frequency at about 0.06fS, i.e. within the pass band of the 
filter, together with another component having frequency 
located at about 0.35fS. In addition, to simplify the numerical 
conversion between input data binary number and its RNS 
representation, the data sequence is assumed to consist of 
integer values. The signal amplitude is also intentionally kept 
within bounds such that the resultant output DR can be 
adequately covered using [5,7,8] moduli set for this numerical 
example.  Based on these approaches, an input data sequence 
with 51 points is generated with values as follows:  

x[n] = {  1, 1, 2, 3, 3, 5, 5, 5, 6, 5, 5, 5, 3, 4, 2, 1,2, 
0, 0, 1, 0, 2, 2, 2, 5, 4, 5, 6, 5, 6, 5, 4, 4, 2,  
2, 2,  0, 1, 0, 0, 2, 1, 2, 4, 3, 5, 6, 5, 6, 5 }      (15) 

Using the Scilab simulator, the input data sequence is then 
applied to the 4th order FIR filter and the resultant output y[n] 
is obtained as follows: 

y[n] = {  3, 14, 32, 57, 86, 118, 154, 187, 212, 226, 
230, 226, 212, 190, 165, 133, 100, 71, 47, 
28, 17, 21, 39, 61, 89, 125, 162, 194, 215, 
230, 237, 230, 212, 183, 147, 114,  86, 61, 
39, 21, 17, 28, 47, 71, 100, 133, 168, 201,  

 227, 237, 233 }                                               (16) 

The time domain response of the FIR filter is also 

generated with these data using the Scilab simulator for visual 
confirmation of its filtering effect and its operation as 
intended. The simulated time domain input and output 
waveforms are shown in Fig. 10.  

The input x[n] shows significant amount of irregularity due 
to the high frequency components as well as the quantization 
effect of rounding the input to integers. The output response 
shows that the FIR filter is performing an adequate job of 
filtering the input as intended, sufficient for the illustrative 
purpose here. 

B. TCR Based DA-RNS FIR Filter Design 

The FIR filter designed is next translated to the RNS 
representation. A [5,7,8] moduli set that provides a DR of 
[0,280) is chosen for the implementation, sufficient to 
accommodate for the maximum output value observed in 
(16). Fig. 11 shows the DA-RNS system block diagram based 
on this design. Three residue channels, one for each modulus 
with design based on Fig. 7 or Fig. 8, are required to 
implement these DA-RNS based FIR filters.  

The corresponding DALUT’ entries for the three different 
moduli channels are next derived using the expression (13) 
with the various filter coefficient  values shown in (14) as 
follows: ( , ) 		= 	 																								(17) 
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The calculated values for the DALUT table entries are 
summarized and listed in Table 1. As the FIR filter contains 5 
coefficients, there are 32 entries in each of the three DALUTs 
corresponding to the three moduli [5,7,8].  

C. Numerical Analysis of TCR DA-RNS FIR Filter 
Response 

Step-by-step calculation of the TCR based DA-RNS filter 
response is now presented to demonstrate its operation. The 
input data sequence x[n] of (15) is first translated to the 
corresponding RNS representations for the [5,7,8] moduli set. 
For brevity, only the first seven values are shown in Table 2, 
and are used in the following numerical calculations to 
validate the response of the filter designed using the TCR 
based DA-RNS technique. Table 3 shows the corresponding 
TCR bit patterns of these first seven input data, which are 
then sent in bit-serial manner to their respective moduli 
DALUT. 

Starting with time instance n=0, the first group of data are 

x[0], x[-1], x[-2], x[-3] and x[-4]. At n=1, the second group of 
data sent are x[1], x[0], x[-1], x[-2], and x[-3]. The data will 
then progressively advance to subsequent x[n] with its 
previous four data.  In causal system, data prior to x[0] will be 
considered to be 0. Hence in this case, the response of the FIR 
filter will reach steady state at time instance n=4. The 
following shows details of the operation for the three 
channels, A, B and C corresponding to the three moduli.  
i) Channel A for Modulus-5 

Table 4 shows the sequence of data involved in the 
operation of the TCR based DA-RNS system. The x[n] 
data are sent 1BAAT in bit-serial manner to access the 
DALUT associated with modulus 5, whose entries are 
shown in Table 1. The resultant DALUT outputs are 
indicated under the DALUTm=5 column for each row of 
bit-serial stream received. For each time instance n, four 
summation values are provided and are modulo-5 
accumulated over four execution cycles as shown under 
the Mod-5 Acc column in Table 4.  
The output appears at the 4th execution cycle  (i.e. at 
tcycle=3) of each time instance n  and is hence the inner 
product derived from residues of the input signal entries 

Table 4: FIR filter output – Modulus-5 Channel A 

n tcycle x[n] x[n-1] x[n-2] x[n-3] x[n-4] DALUTm=5  Mod-5 Acc 

0 0 1 0 0 0 0 3 3 
 1 0 0 0 0 0 0 3 
 2 0 0 0 0 0 0 3 
 3 0 0 0 0 0 0 3 
1 0 1 1 0 0 0 4 4 
 1 0 0 0 0 0 0 4 
 2 0 0 0 0 0 0 4 
 3 0 0 0 0 0 0 4 
2 0 1 1 1 0 0 4 4 
 1 1 0 0 0 0 3 | | =  
 2 0 0 0 0 0 0 2 
 3 0 0 0 0 0 0 2 
3 0 1 1 1 1 0 0 0 
 1 1 1 0 0 0 4 4 
 2 1 0 0 0 0 3 | | =  
 3 0 0 0 0 0 0 2 
4 0 1 1 1 1 1 3 3 
 1 1 1 1 0 0 4 | | =  
 2 1 1 0 0 0 4 | | =  
 3 0 0 0 0 0 0 1 
5 0 0 1 1 1 1 0 0 
 1 0 1 1 1 0 2 2 
 2 0 1 1 0 0 1  
 3 0 0 0 0 0 0 3 
6 0 0 0 1 1 1 4 4 
 1 0 0 1 1 1 4 | | =  
 2 0 0 1 1 0 1 4 
 3 0 0 0 0 0 0 4 

 

 

Table 2: RNS representations of x[n] 

n (for x[n]) Input value Modulo-5 Modulo-7 Modulo-8 

0 1 1 1 1 
1 1 1 1 1 
2 2 2 2 2 
3 3 3 3 3 
4 3 3 3 3 
5 5 0 5 5 
6 5 0 5 5 

Table 1: FIR filter DALUTs contents 

Input Code 
DALUT entries 

(A0 = A4 = 3; A1 = A3 = 11; A2 = 15) 

 t1n t2n  t3n   t4n t5n Entry value m=5 m=7 m=8 

0 0 0 0 0  0 0 0 0 

0 0 0 0 1  A4= 3 | | = 	  | | =  | | =  
0 0 0 1 0  A3 = 11 | | =  | | =  | | =  
0 0 0 1 1  A3+A4 = 14 | | = 	  | | =  | | =
0 0 1 0 0  A2 = 15 | | =  | | =  | | =  
0 0 1 0 1  A2+A4 = 18 | | =  | | =  | | =  
0 0 1 1 0  A2+A3 = 26 | | = 	  | | =  | | =
0 0 1 1 1  A2+A3+A4 = 29 | | = 	  | | =  | | =
0 1 0 0 0  A1 = 11 | | = 	  | | =  | | =
0 1 0 0 1  A1+A4 = 14 | | = 	  | | =  | | =
0 1 0 1 0  A1+A3 = 22 | | = 	  | | =  | | =
0 1 0 1 1  A1+A3+A4 = 25 | | = 	  | | =  | | =
0 1 1 0 0  A1+A2 = 26 | | = 	  | | =  | | =
0 1 1 0 1  A1+A2+A4 = 29 | | = 	  | | =  | | =
0 1 1 1 0  A1+A2+A3 = 37 | | = 	  | | =  | | =
0 1 1 1 1  A1+A2+A3+A4 = 40 | | = 	  | | =  | | =
1 0 0 0 0  A0 = 3 | | =  | | =  | | =  
1 0 0 0 1  A0+A4 = 6 | | = 	  | | =  | | =  
1 0 0 1 0  A0+A3 = 14 | | =  | | =  | | =  
1 0 0 1 1  A0+A3+A4 = 17 | | = 	  | | =  | | =
1 0 1 0 0  A0+A2 = 18 | | =  | | =  | | =  
1 0 1 0 1  A0+A2+A4 = 21 | | =  | | =  | | =  
1 0 1 1 0  A0+A2+A3 = 29 | | = 	  | | =  | | =
1 0 1 1 1  A0+A2+A3+A4 = 32 | | = 	  | | =  | | =
1 1 0 0 0  A0+A1 = 14 | | = 	  | | =  | | =
1 1 0 0 1  A0+A1+A4 = 17 | | = 	  | | =  | | =
1 1 0 1 0  A0+A1+A3 = 25 | | = 	  | | =  | | =
1 1 0 1 1  A0+A1+A3+A4 = 28 | | = 	  | | =  | | =
1 1 1 0 0  A0+A1+A2 = 29 | | = 	  | | =  | | =
1 1 1 0 1  A0+A1+A2+A4 = 32 | | = 	  | | =  | | =
1 1 1 1 0  A0+A1+A2+A3 = 40 | | = 	  | | =  | | =
1 1 1 1 1  A0+A1+A2+A3+A4 = 43 | | = 	  | | =  | | =

Table 3: TCR representations of x[n] 

 x[n] Modulo-5 Modulo-7 Modulo-8 

x[0] 1  00011 1  0000011 1  00000011 

x[1] 1  00011 1  0000011 1  00000011 

x[2] 2  00111 2  0000111 2  00000111 

x[3] 3  01111 3  0001111 3  00001111 

x[4] 3  01111 3  0001111 3  00001111 

x[5] 0  00001 5  0111111 5  00111111 

x[6] 0  00001 5  0111111 5  00111111 
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and the filter coefficients  for time instance n. From Table 
4, the filter output from modulus-5 channel output for n = 
0 to 6 are as follows:  

y5[n] = {3, 4, 2, 2, 1, 3, 4}                    (18) 

ii) Channel B for Modulus-7 
Similar steps can be used to derive the modulus-7 
channel B response and its output for n = 0 to 6 can be 
shown to be:  

y7[n] = {3, 0, 4, 1, 2, 6, 0}                    (19) 

iii) Channel C for Modulus 8 
In this case the TCR bit-length is 7 bits, the resultant 
DALUT outputs are obtained at interval of every 7th 
execution cycle (indicated as  tcycle=6) as shown under the 
Mod-8 Acc column in Table 5. The corresponding output 
for n = 0 to 6 are as follows:  

y8[n] = {3, 6, 0, 1, 6, 6, 2}                       (20) 

Consolidating the outputs of all three RNS channels’ 
output from (20), (21) and (22) for n=0 to 6: 

y5[n] = {3, 4, 2, 2, 1, 3, 4} 
y7[n] = {3, 0, 4, 1, 2, 6, 0} 
y8[n] = {3, 6, 0, 1, 6, 6, 2} 

The output data sequence of the FIR filter, in RNS 
representation is hence as follows. For n=0 to 6:     

y[n] = {<3,3,3>, <4,0,6>,<2,4,0>,<2,1,1>,  
<1,2,6>,<3,6,6>,<4,0,2>};                      (21) 

The correctness of this RNS based output can be confirmed 
by performing a reverse conversion using the Chinese 
Remainder Theorem (CRT) [2], which can be shown to 
produce the following binary representations:  

y[0] = <3,3,3>  3 
y[1] = <4,0,6>  14 
y[2] = <2,4,0>  32 
y[3] = <2,1,1>  57 
y[4] = <1,2,6>  86 
y[5] = <3,6,6>  118 
y[6] = <4,0,2>  154 

These calculated values are exactly the same as the first 
seven values given in (16), hence confirming the correctness 
of the proposed approach. 

VII. CIRCUIT SIMULATIONS 

To further demonstrate the practical feasibility of the 
proposed approach, circuit level simulations using LTspice 
SPICE simulator are next performed to ascertain the output of 
the circuit.  

A. 1BAAT Operation For Modulus-5 Channel A 

The block diagram for the 1BAAT design is shown in Fig. 
7. The DALUTs are constructed using CMOS circuit, and the 
implementation of modulus-5 channel A’s DALUT is shown 
in Fig. 12 corresponding to 32 entries shown in Table 1. 

The 1BAAT operation of the FIR filter (modulus-5 channel 
A) is then simulated and the timing diagram is shown in Fig. 
13. In the simulation, a signal, Acc_Rst is used to reset the 
content of the accumulator output register to 0 for each time 

Table 5: FIR filter output – Modulus-8 Channel C 

n tcycle x[n] x[n-1] x[n-2] x[n-3] x[n-4] DALUTm=8  Mod-8 Acc 

0 0 1 0 0 0 0 3 3 
 1 0 0 0 0 0 0 3 
 2 0 0 0 0 0 0 3 
 3 0 0 0 0 0 0 3 
 4 0 0 0 0 0 0 3 
 5 0 0 0 0 0 0 3 
 6 0 0 0 0 0 0 3 

1 0 1 1 0 0 0 6 6 
 1 0 0 0 0 0 0 6 
 2 0 0 0 0 0 0 6 
 3 0 0 0 0 0 0 6 
 4 0 0 0 0 0 0 6 
 5 0 0 0 0 0 0 6 
 6 0 0 0 0 0 0 6 

2 0 1 1 1 0 0 5 5 
 1 1 0 0 0 0 3 | | =  
 2 0 0 0 0 0 0 0 
 3 0 0 0 0 0 0 0 
 4 0 0 0 0 0 0  0 
 5 0 0 0 0 0 0  0 
 6 0 0 0 0 0 0 0 

3 0 1 1 1 1 0 0 0 
 1 1 1 0 0 0 6 6 
 2 1 0 0 0 0 3 | | =  
 3 0 0 0 0 0 0 1 
 4 0 0 0 0 0 0 1 
 5 0 0 0 0 0 0 1 
 6 0 0 0 0 0 0 1 

4 0 1 1 1 1 1 3 3 
 1 1 1 1 0 0 5 | | =  
 2 1 1 0 0 0 6  6 
 3 0 0 0 0 0 0  6 
 4 0 0 0 0 0 0  6 
 5 0 0 0 0 0 0  6 
 6 0 0 0 0 0 0  6 

5 0 1 1 1 1 1 3 3 
 1 1 1 1 1 0 0 3 
 2 1 1 1 0 0 5 | | =  
 3 1 0 0 0 0 3 3 
 4 1 0 0 0 0 3 6 
 5 0 0 0 0 0 0 6 
 6 0 0 0 0 0 0 6 

6 0 1 1 1 1 1 3 3 
 1 1 1 1 1 1 3 6 
 2 1 1 1 1 0 0 6 
 3 1 1 0 0 0 6 | | =  
 4 1 1 0 0 0 6 | | =  
 5 0 0 0 0 0 0 2 
 6 0 0 0 0 0 0 2 

 
Figure 12: DALUT of modulus-5 Channel A 
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instance n prior to computing each round of the FIR filter 
output. Each computation takes 4 execution cycles, which 
corresponds to 4 clock cycles as indicated by the CLK signals 
in Fig. 13. By using the Acc_Rst reset signal as the reference, 
the output value of the FIR filter computed by the DA-RNS 
system are captured at its falling edge at various time 
instances.  As shown in Fig. 13, the output in one-hot residue 
format appears as a sequence {3,4,2,2,1,3,4}, matching 
exactly what was obtained in (18). Similar 1BAAT design 
could be used in the modulus-7 Channel B, but would 
consume 6 execution cycles per computation due to the 
longer data bit length. An alternative approach is illustrated in 
the next section.  

B. 2BAAT Operation For Modulus-8 Channel C 

As the bit-length of the modulus 7 and 8 channels are 
longer, their 1BAAT operation would take 6 and 7 execution 
cycles as indicated in Table 5 for modulus-8 channel. To 
reduce the number of execution cycles due to their longer bit 
lengths, a 2BAAT design can be used for these two channels 
using the arrangement as shown previously in Fig. 8. The 
following presents the design for the modulus-8 channel 
which can be equally applied to the modulus-7 channel. 

Two OHR based modular 8 adders are cascaded as shown 
in Fig. 14 to enable the 2BAAT operation for modulus 8 
channel C. These cascaded adders are then connected in the 
DA-RNS system as illustrated in Fig. 8. 

To further demonstrate the flexibility of the TCR based 
DA-RNS system, two bit-serial streams are created, one from 
the input TCR’s lower four bits, and the other from the upper 
three bit padded with one extra ‘0’ bit to balance the two 
groups. These two groups of data are then sent in parallel to 
the DA system through two DALUTs. The BC encoded 
outputs of the two DALUTs are then used to increment the 
cascaded modulo adders of Fig. 14 that performs the inner 
product calculation. 

Fig. 15 shows the timing diagram captured for the channel 
C 2BAAT based operation, where each time instance output 
is completed in four execution (and clock) cycles, the same 
duration taken by the modulus-5 channel. The output values 

are captured on the falling edge of the Acc_Rst signal. As 
expected, the output of the system in one-hot residue code 
format appears as {3,6,0,1,6,6,2} sequence, matching exactly 
that shown in (20). 

These simulation results confirm the practical feasibility of 
the proposed idea. Using a combination of TC, BC and OHC 
formats for the residues, an efficient means to perform DA-
RNS based inner product calculation can be achieved. To 
compensate for the longer word length of the TCR, higher 
BAAT rate can be easily used due to the same unit weight of 
all the TCR’s bits.  

VIII.   PERFORMANCE EVALUATION 

It is clear that the key advantage of the TCR based DA 
operation lies in its simple accumulation operation during the 
computation of inner products. Compared to the scaling 
accumulator (Fig. 2) for the binary DA system and the 
modulo scaling accumulator (Fig. 3) for the BCR DA-RNS 
system, the TCR based DA-RNS system only needs modulo 
addition without scaling.  

On the other hand, owing to its longer bit lengths, TCR 
requires more number of execution cycles compared to the 
BCR DA-RNS system. However, the 2 	and |2 |  factor 
related to scaling operations needed in binary DA and BCR 
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Figure 14: Cascaded modulus-8 adders for 2BAAT operation 
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DA-RNS would  require extra clock cycle(s) for each 
execution cycle which would then nullify their advantage of 
shorter bit-lengths. As such, the performance of the TCR-DA 
system hinges on the efficiency of its modulo adder used in 
the modulo accumulator. This section compares the 
performance and complexity of the proposed OHR based 
modulo adder against the binary adders that are used in the 
BC based DA-RNS system.  

A. Approach 

For the modulo adder, we consider popular moduli values 
between 5 and 15, as these will be more practical in terms of 
hardware realization and suitable for applications that require 
small and medium DR (about 2^16 with a combination of 
moduli within this set). The corresponding BCR based system 
will then need two binary adders of either 3-bit or 4-bit 
arranged as shown in Fig. 5a, although it is possible to reduce 
the latency to one adder using the parallel version of Fig. 5b 
but at higher hardware cost due to its three input operands. 

For the binary adder, two standard representative binary 
adders are used in the comparison. These are the ripple-carry 
(RC) adder and the carry-look-ahead (CLA) adder [12], [13]. 
The RC adder is the most hardware efficient but is the 
slowest, while the CLA adder is one of the fastest ways to 
implement binary adder but with tradeoff in hardware circuit 
complexity. It should be mentioned that there are also other 
fast binary adders based on parallel prefix operations (e.g. 
Brent–Kung adder and Kogge–Stone adder), but their speed 
and logic complexity would be on the same order as the CLA 
adder for smaller sized moduli used here, and hence are not 
included. In addition special modulo adders that are 
optimized for specific classes of moduli value (e.g. 2  and the 
likes) are not considered in order to provide a balanced 
comparison for system based on arbitrary moduli. 

Fig. 16(a) shows the logic gate implementation for one bit 
of the RC full adder [13]. A 3-bit or 4-bit RC adder will use 3 
or 4 of this circuit. For a 3-bit CLA adder, the circuit consists 
of the one shown in Fig. 16(a) for the 1st bit. For the 2nd and 
the 3rd bits, the portion of the circuit shown within the dotted 
box in Fig. 16(a) is replaced with those shown in Fig. 16(b) 
and Fig. 16(c) respectively. For the corresponding OHR 
modulo adder with modulus value of m, the number of 

multiplexers in the log shifter needed is equal to m log m , 
with arrangement as shown in Fig. 6. 

Gate count comparison between TC and BC based adders 
is complicated by the fact that practical circuit realization of 
the multiplexer is done by using transistor based circuits such 
as the 4-transistor based CMOS Transmission Gate or the 2-
transistor based Pass-Transistor logic. Hence it is more 
appropriate to compare hardware complexity in terms of 
transistor count here, although this does not reflect the 
complexity involved in the wiring of the underlying circuit. In 
the comparison here, 6 transistors are used for each 2-input 
XOR logic gate, 4 transistors for all other 2-input logic gates, 
2 transistors for each extra input pin and 2 transistors for one 
NOT gate. For the multiplexer, the 4-transistor based CMOS 
transmission gate is used as this is a fairly conservative 
design, with one NOT gate shared among all multiplexers to 
generate the internal complement shift control signal. 

Critical path gate-delay comparison is based on the longest 
path that a signal propagates through each circuit. For the BC 
based modulo adder, this is equal to the delay through the two 
binary adders in order to generate the S’’ data for the output 
multiplexer as shown in Fig. 5a. Each RC adder has a 
propagation delay equal to (2n+2) due to the carry bit 
propagation [13]. For the CLA adder, the most optimum 
implementation will have 6 gate-delays independent of the 
number of bits [2]. The TCR based modulo adder does not 
use any combinatorial logic gates in its implementation. Its 
latency is thus depends solely on the signal propagation delay 
through the multiplexers. 

In order to obtain a more definitive comparison for the 
signal propagation latency delay, HPSICE simulations based 
on 45nm technology node are performed for the binary full 
adders and the log shifter multiplexer based circuit for various 
moduli considered here. In the simulations, the basic blocks 
of the OHR modular adder and BCR modular adder, e.g., 
column of multiplexers and 1-bit adder are first manually 
created. Based on the layout of their basic blocks, the area 
and the length of routing wires are estimated, and the RC 
values of their interconnects are then derived using the PTM 
model [14]. Transistors used in both designs are also sized 
(PMOS width = 270nm and NMOS width = 90nm) to give 
symmetric rise and fall delays as well as sufficient drive. The 
interconnect parameters together with transistor model cards 
[14] are then fed to HSPICE for the delay simulation. 

B. Results And Discussion 

Table 6 summarizes the comparison among the three types 
of modulo adders in terms of transistor counts (t-cnt) and 
latency in ps for different moduli. Results in Table 6 show that 
compared to the BCR RC adder, the OHR based modulo adder 
has lower order of transistor count for lower moduli, and only 
slightly higher at the high moduli 13 and 15, but with much 
superior latency performance throughout. Compared to the 
BCR CLA adder, the OHR multiplexer based modulo adder is 
superior in both aspects.  
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While these values are broadly indicative of performance, 
the vast difference in the latency suggests that the TCR-OHR 
based DA system could potentially operate at much higher 
clock frequency and hence faster execution cycle, which 
would largely compensate for its longer bit-length penalty. 
Taking into consideration the latency due to the |2 |  modulo 
scaling factor faced in the BCR based system, the proposed 
system implementation would be of even greater merit, 
although more detailed analysis of the comparison would need 
to be performed based on actual implementations. Further, 
[11] has presented another version of OHR modulo adder 
based on linear barrel shifter that potentially could further 
minimize operating power and be implemented with even 
lower transistor count. However, it would require a bigger size 
(m2 versus m log m ) DALUT when used with the TCR 
based DA system, since its DALUT would need to output the 
B augend as a full length m-bit one-hot code, compared to the 
binary code used in our proposed system. 

While the proposed OHR-MUX modulo adder is found to 
be uniformly faster and more area efficient than the high speed 
BCR-CLA modulo adder for the moduli shown in Table 6, the 
validity of such an observation toward larger moduli could be 
further evaluated as follows. First assume that the 20ps 
propagation delay as observed in Table 6 is incurred for every 
doubling of the modulus value (i.e. extra column of the 
multiplexers is added). Direct extrapolation using Table 6 
entries would indicate that the propagation delay of the OHR-
MUX system will remain superior up to modulus value of 
m=27=127, before it reaches the 115ps of a corresponding 
idealized BCR-CLA based system. Similarly, the transistors 
count could be shown to be at similar level (about 450) when 
m=22 for both systems. However, these estimations have 
omitted the practical implementation complications, in 
particular the interconnect complexity of the underlying 
circuitry at large modulus values for both the OHR-MUX and 
BCR-CLA approaches. As such, concrete answers on their 
performance can only be obtained by performing detailed 
circuit layout and measurements for large modulus value. 

Nevertheless, to exploit the benefits of using RNS 
principles that reduce the internal circuit complexity of the 
RNS ADC [4], and to maintain reasonable TCR bit-serial 
length for the DA operation, we would recommend the use of 

multiple intermediate size moduli such as [11,13,14,15], 
instead of a few large moduli to obtain the dynamic range 
required by the signal processing functions concerned. 

IX. CONCLUSION 

This paper presents a novel approach to compute inner 
products using RNS based DA techniques in which residues 
are represented by thermometer codes instead of the 
conventional binary code format. This eliminates the 2  
modulo scaling factor encountered in the binary coded residue 
version, and results in a very simple accumulator requirement. 
In addition, use of the one-hot code format for the operation of 
the modulo adder is proposed for the accumulator. This 
approach overcomes the carry propagation inefficiencies as 
well as the complication arising out of repetitive modulo 
operations that need to be performed in retaining the results of 
addition in the residue form. As such, it is easier to operate the 
proposed systems at high clock rates and to scale to parallel 
bit-serial operations to further enhance the throughput 
performance. 

Design of an DA-RNS based FIR filter is then described 
and analyzed based on the proposed approach. Its operation is 
also simulated using SPICE simulator that validates the 
correctness and confirms the practical feasibility of the 
proposed scheme. A broad performance comparison against 
the conventional approach also suggests that there is no 
penalty incurred in terms of transistor count and latency in the 
proposed approach. 
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