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ABSTRACT A new robust strap-down inertial navigation system (SINS) and Doppler velocity log (DVL)
integrated navigation algorithm are proposed in this paper with a focus on suppressing the process uncertainty
andmeasurement outliers induced by severemanoeuvering. In the proposed algorithm, the one-step predicted
probability density function is modeled as Student’s t-distribution to deal with the heavy-tailed process noise,
and hierarchical Gaussian state-space model for SINS/DVL integrated navigation algorithm is constructed.
To detect and eliminate the measurement outliers, each measurement is marked by a binary indicator variable
modeled as a beta-Bernoulli distribution. The variational Bayesian approach is used to jointly estimate state
vector, auxiliary random variable, scale matrix, Bernoulli variable, and beta variable. The experimental
results illustrate that the proposed algorithm has better robustness and navigation accuracy to deal with
process uncertainty and measurement outliers than existing state-of-the-art algorithms.

INDEX TERMS Measurement outlier, process uncertainty, SINS/DVL integrated navigation system,
variational Bayesian.

I. INTRODUCTION

Strap-down inertial navigation system (SINS) can con-
tinuously provide position, velocity, and attitude by the
measurements of gyroscopes and accelerometers, how-
ever, its position and velocity errors are accumulated over
time [1]–[3]. Doppler velocity log (DVL) can provide veloc-
ity by the principle of Doppler effect, but it can’t provide atti-
tude of the vehicle. SINS/DVL integrated navigation system
combines the outputs of SINS and DVL, which can provide
a long term accuracy position, velocity, and attitude infor-
mation [4], [5]. For SINS/DVL integrated navigation system,
the state-space model can easily be linearised. According to
the linear model of SINS/DVL integrated navigation system,
the navigation errors can be estimated by Kalman filter (KF)
when the statistics of process noise and measurement noise
are known as Gaussian distributions [6]. However, in the
case of severe manoeuvering, such as turning and oscillating,
the output error of the gyroscope may increase, and the
inertial navigation error will increase with the output error
of the gyroscope [7], [8]. Thus, the inertial navigation error
will be introduced into the process model causing process
uncertainty, and the heavy-tailed distribution process noise is
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induced by the process uncertainty and gyroscope error [3].
Due to the complexity of underwater environment, such as
gulf, ocean trench, and ocean current, the velocity provided
by DVL may have outliers, which may also degrade the
estimation accuracy of integrated navigation system.

To address the process uncertainty, a series of adap-
tive Kalman filters (AKFs), such as multiple model AKF
(MMAKF) [9], [10] and Sage-Husa AKF (SHAKF) [4], [11]
were proposed to estimate the statistic of the process
noise. The MMAKF runs with multiple Kalman filters to
address the process uncertainty, however, it suffers from a
large amount of computation [12]. The SHAKF adopts the
maximum posterior criterion to estimate the statistic of pro-
cess noise, but it’s easy to cause the divergence of the fil-
ter [13]. Thus, a type of robust Student’s t based Kalman
filters (RSTKF) is proposed [14]–[18]. In [16], Student’s
t-distribution is used to model the heavy-tailed process noise
and measurement noise which may contain some valid infor-
mation, but its performance will degrade when the mea-
surement carries useless outliers. Aiming at reducing the
impact of ouliers in measurement, a robust Kalman filter
with outliers detection (ODKF) is proposed [19]. In ODKF,
the measurement is assigned a binary indicator variable
modelled by the beta-Bernoulli distribution to detect and
eliminate the outliers, which has been successfully used to
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address outliers [19]–[21], but the ODKF is applicable to the
case where the process noise is Gaussian distribution and the
statistic of process noise is accurately known. For SINS/DVL
integrated navigation system with process uncertainty and
measurement outlier, the performance will degrade, as will
be shown by later simulations.
In order to suppress the process uncertainty and measure-

ment outlier, a robust Kalman filter for SINS/DVL integrated
navigation system is proposed in this paper. First, a new state-
space model for SINS/DVL integrated navigation system is
constructed. For process uncertainty, the one-step predicted
probability density function (PDF) is modelled as a Student’s
t-distribution to deal with the heavy-tailed process noise.
To detect the measurement outliers, the measurement likeli-
hood PDF is involved in a binary indicator variable modelled
by beta-Bernoulli hierarchical prior. Then, the navigation
errors of SINS/DVL integration are estimated by the new
robust Kalman filter, where the state vector, scale matrix,
auxiliary random variable, Bernoulli variable, and beta vari-
able are jointly estimated through variational Bayesian (VB)
method. Finally, the position, velocity, and attitude can be
corrected with the estimated navigation errors. Experiment
results show that the proposed algorithm has better navigation
performance to address the process uncertainty and measure-
ment noise of SINS/DVL integrated navigation system than
existing state-of-the-art algorithms.
This paper is organized as follows. In Section II,

a linear state-space model for SINS/DVL integrated navi-
gation system is modelled by the error propagation equa-
tions. Section III derives the proposed robust KF by using
VB approach. Finally, experiment results are reported in
Section IV, and conclusions are given in Section V.

II. STATE-SPACE MODEL FOR SINS/DVL INTEGRATED

NAVIGATION SYSTEM

The process model for SINS/DVL integrated navigation
system can be constructed by the position error equation,
velocity error equation, and attitude error equation of SINS.
Suppose that the calibration errors and installation errors of
the accelerometers and gyroscopes have been compensated,
the attitude error equation of SINS is given by [22], [23]

ϕ̇ = ϕ × ωn
in + δωn

in − Cn
bδω

b
ib (1)

where i denotes inertial frame, e is the earth frame, n is the
local level navigation frame (East-North-Up), and b denotes
the body frame. ϕ =

[

ϕE ϕN ϕU
]T

denotes the misalign-
ment angle vector of the navigation frame, and ϕE , ϕN , ϕU
denote pitch, roll, and heading errors, respectively. ωn

in =
ωn
ie + ωn

en is the angular rate of the navigation frame with
respect to the inertial frame, and δωn

in = δωn
ie + δωn

en denotes
the corresponding calculated error of ωn

in. ωn
ie is the earth

rotation rate in the navigation frame, and δωn
ie denotes the cal-

culated error of ωn
ie. ω

n
en is the angular rate of the navigation

frame with respect to the earth frame, and δωn
en denotes the

calculated error ofωn
en.C

n
b(t) is the coordinate transformation

matrix of the body framewith respect to the navigation frame,

and the gyroscope drift error δωb
ib consists of constant drift ε

b

and random drift ηbg.
The velocity error equation is written as [22], [23]

δv̇n =
(

Cn
bf
b
)

× ϕ − (2ωn
ie + ωn

en) × δvn

+ vn × (2δωn
ie + δωn

en) + Cn
bδf

b + δgn (2)

where vn =
[

vnE vnN vnU
]

and δvn = [ δvnE δv
n
N δv

n
U ] denote

the ground velocity in the navigation frame and correspond-
ing velocity error respectively. fb and δfb denote the specific
force measured by the accelerometer and measurement error
of accelerometer respectively, and the measurement error δfb

consists of accelerometer bias ∇b and random drift ηba. δg
n

is the gravity error.
The position error equations are given by [22], [23]

δL̇ =
δvnN

RM + h
−

vnN

(RM + h)2
δh (3)

δλ̇ = secL

RN + h
δvnE + vnE secL tanL

RN + h
δL − vnE secL

(RN + h)2
δh

(4)

δḣ = δvnU (5)

where L, λ, and h denote latitude, longitude and height of the
vehicle, and the corresponding latitude error, longitude error,
and height error are respectively denoted by δL, δλ and δh.
RN is the curvature radius of the prime vertical circle, and RM
denotes the curvature radius of the meridian circle.
The velocity ṽndvl provided by DVL can be written as

ṽndvl = [I3×3 − ϕ×]Cn
b(1 − α×)(1 + δc)vd

≈ vn + vn × ϕ + Cn
b(v

d×)α + Cn
bv
dδc

= vn + vn × ϕ + δvndvl (6)

where vd is the velocity measured by DVL, α is the installed
error vector, δc denotes scale factor error.

In this paper, the SINS/DVL navigation systemmodel used
in surface navigation is established, which ignores the effect
of altitude channel, and the corresponding process equation
can be formulated as follow

ẋ(t) = A(t)x(t) + B(t)w(t) (7)

where x(t) =
[

ϕT (δv)T2,1 δL δλ
(

εb
)T (

∇
b
)T

]T
is the

state vector, and w(t) is the process noise. A(t) and
B(t) denote the state-transition matrix and process noise
driven matrix, respectively, which can be obtained from (1)
to (5) [3]. (·)m,n means the first m rows and first n columns of
the matrix (·).
Suppose that the installation error and scale factor error

have been compensated, the velocity error induced by resid-
ual installation error and scale factor error can be mod-
eled into the measurement noise. The difference between
the velocity provided by DVL and SINS is utilized as the
measurement, and the measurement model is formulated as

z(t) = Hx(t) + η(t) =
(

ṽn
)

2,1 −
(

ṽndvl
)

2,1 (8)

VOLUME 7, 2019 51387



L. Luo et al.: New Robust Kalman Filter for SINS/DVL Integrated Navigation System

where z denotes the measurement vector, and η denotes the
measurement noise. ṽn = vn + δvn is the velocity provided
by SINS, and H =

[

− (vn×)2,3 I2×2 02×8
]

denotes the
measurement matrix.

Suppose that the sampling time is Ts, the discrete time
index is k , and tk = kTs. Then, the discrete-time state-space
model for SINS/DVL integrated navigation system can be
obtained through equations (7) and (8)

xk = Fkxk−1 + Gkwk−1 (9)

zk = Hkxk + vk (10)

where xk = x(tk ), wk = w(tk ), zk = z(tk ), vk = v(tk ),
the state transition matrix Fk = I13 + TsA(tk ), the process
noise matrix isGk = TsB(tk ), and the measurement matrix is
Hk = H [24].

Generally, the navigation errors of SINS/DVL integration
can be estimated by Kalman filter through the state-space
model (9)-(10), when the process noise and measurement
noise are Gaussian distribution. However, in the case of
severe manoeuvering, the output error of gyroscope will
increase and be introduced into the SINS, which will increase
the error of SINS. Thus, the statistic of the process noise
changes into heavy-tailed distribution. Due to the complexity
of underwater environment, the output of DVL may have
outliers which will be introduced into measurement. As a
result, the statistic of process noise and measurement noise
go against the Gaussian assumption, which will degrade
the performance of SINS/DVL integration based on the
traditional KF. Aiming at this problem, a new robust Kalman
filter for SINS/DVL integrated navigation system is proposed
in this paper.

III. A NEW ROBUST SINS/DVL INTEGRATED

NAVIGATION ALGORITHM

A. THE PROBABILITY DENSITY MODEL

For normal measurement, the measurement noise vk can be
described as a Gaussian distribution with zero mean vector
and nominal covariance matrix Rk . To address the outliers in
measurement, a binary indicator variable λk modeled by beta-
Bernoulli distribution is involved, which has been applied in
outliers detection [19]–[21]. λk = 0 means that the mea-
surement zk is an outlier, while λk = 1 indicates zk is a
normal measurement. Thus, the measurement likelihood PDF
p(zk |xk , λk ) can be formulated as

p(zk |xk , λk ) = N(zk ;Hkxk ,Rk )
λk (11)

where N(x;µ,6) is the Gaussian PDF, µ denotes mean
vector x, and 6 is covariance matrix of x. Obviously, λk = 1
means that p(zk |xk , λk ) is a normal Gaussian distribution. For
λk = 0, p(zk |xk , λk ) must be a constant, then, zk is picked out
and cannot be used for measurement update. Hence, the indi-
cator variable λk is modelled by beta-Bernoulli hierarchical
prior, and λk has a Bernoulli distribution controlled by beta
variable πk

p (λk |πk) = Bn (λk ;πk) = πk
λk (1 − πk)

(1−λk ) (12)

where Bn (·;π) denotes the Bernoulli PDF controlled by π ,
and πk has a beta distribution controlled by parameters e0 and
f0

p (πk |e0, f0) = Be (πk ; e0, f0) = πk
e0−1(1 − πk)

f0−1

B (e0, f0)
(13)

where Be (·; e0, f0) denotes the beta PDF, and B(·; ·) is beta
function.

For heavy-tailed process noise, the one-step predicted PDF
p(xk |z1:k−1) can be modelled as a Student’s t-distribution as
follow [16]

p(xk |z1:k−1) = St(xk ; x̂k|k−1,6k , νk ) (14)

St(·; µ,6, ν) is the Student’s t PDFwithmean vectorµ, scale
matrix 6, and dof parameter ν. Since the Student’s PDF can
be regarded as mixed Gaussian PDFs, the equation (14) can
be rewritten as [16]

St(xk ; x̂k|k−1, 6k , νk ) =
∫ +∞

0
N(xk ; x̂k|k−1,

6k

ξk
)

×G(ξk ;
ν

2
,
ν

2
)dξk (15)

where x̂k|k−1 is predicted state with covariancematrixPk|k−1,
ξk denotes an auxiliary random variable satisfied Gamma
distribution, and G(·;α, β) is Gamma PDFwith shape param-
eter α and rate parameter β. Employing equations (11)-(15),
the likelihood PDF p(zk |xk , λk ) can be rewritten as follows

p(xk |ξk , z1:k−1) = N(xk ; x̂k|k−1,
6k

ξk
) (16)

p(ξk ) = G(ξk ;
ν

2
,
ν

2
) (17)

As the result that the inaccurate nominal process noise matrix
Qk has a great influence on the covariance matrix Pk|k−1,
Pk|k−1 is not suitable to be utilized as scale matrix 6k .
Therefore, the scale matrix 6k is adaptively estimated by
VB approach, and 6k is modelled as inverse Wishart distri-
bution, i.e.,

p (6k) = IW (6k ; uk ,Uk) (18)

where IW (6k ; uk ,Uk) is the inverse Wishart PDF, uk is
dof parameter of 6k , and Uk is inverse scale matrix of 6k .
To obtain the prior information of scale matrix, the mean
value of p(6k ) is set as

Uk

uk − n− 1
= Pk|k−1 (19)

where

uk = n+ τ + 1 (20)

Uk = τPk|k−1 (21)

where n is the dimension of xk , and τ ≥ 0 denotes
a tuning parameter. Employing equations (11)-(13) and
(16)-(18), a new robust SINS/DVL integrated navigation
model is constructed.
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B. THE THEORETICAL DERIVATION BASED ON

VARIATIONAL BAYESIAN APPROACH

The next step is to jointly estimate the state vector, scale
matrix, auxiliary random variable, Bernoulli variable, and
beta variable through VB approach. Therefore, the jointly
posterior PDF p (2k |z1:k) needs to be calculated, where

2k
1= {xk , ξ k ,6k , λk , πk}. For hierarchical Gaussian state-

space model, there is no analytical solution for p (2k |z1:k).
Thus, the VBmethod is adopted to obtain a free form factored
approximate PDF for p (2k |z1:k) to obtain an approximate
solution, and p (2k |z1:k) can be approximated as [25]

p (2k |z1:k) ≈ q (xk) q (ξk) q (6k) q (λk) q (πk) (22)

Suppose that φ is an arbitrary element of 2k , and
q (φ) denotes the approximate PDF of φ. For stan-
dard VB approach, these approximate posterior PDFs in
equation (22) subject to the equation as follow [16], [25]

log q(φ) = E
2

(−φ)
k

[log p(2k , z1:k )] + cφ (23)

where 2
−φ
k denotes all elements in 2k except for φ, cφ is

the constant related to variable φ, and E[·] is the expectation
operation. For the fact that the variational parameters are
coupled, the fixed-pointed iterations are used to obtain an
approximate solution for (23) [3]. Thus, the q(φ) is updated
as qi+1(φ) at the i+ 1th iteration.
Utilizing the conditional independence properties of the

hierarchical state-space model, the joint PDF p (2k |z1:k) can
be factored as

p(2k , z1:k ) = p(zk |xk )p(xk |ξk , z1:k−1)p(ξk )p(6k )

× p(λk |πk )p (πk |e0, f ) p(z1:k−1) (24)

Substituting (11)-(13) and (16)-(18) into (24) yields

p(2k , z1:k ) = N(zk ;Hkxk ,Rk )
λkN(xk ; x̂k|k−1,

6k

ξk
)

×G(ξk ;
ν

2
,
ν

2
)IW (6k ; uk ,Uk)Bn (λk ;πk)

×Be (πk ; e0, f0) p(z1:k−1) (25)

Taking the logarithm of both sides of equation (24) yields

log p(2k , z1:k )

= −1

2
λk(zk − Hkxk)

TR−1
k (zk − Hkxk)

− 1

2
λk log |2πRk |−

1

2
ξk (xk−x̂k|k−1)

T6−1
k (xk − x̂k|k−1)

+ (
n+ ν

2
− 1) log ξk − νξk

2
− 1

2
(n+ uk + 2) log |6k |

− 1

2
tr(Uk6

−1
k ) + λk logπk + (1 − λk) log (1 − πk)

+ (e0 − 1) logπk + (f0 − 1) log (1 − πk)+ c2k (26)

Let φ = λk and utilizing (26) in (23) obtains

log q(i+1)(λk )

= −1

2
E(i)

2
(−λk )
k

[λk (zk − Hkxk )
TR−1

k (zkHk − xk)]

−1

2
λk log |2πRk | + λkE

(i)

2
(−λk )
k

[

logπk
]

+ (1 − λk)E
(i)

2
(−λk )
k

[

log (1 − πk)
]

+ cλk

= −1

2
λk tr

[

E
(i)
k R−1

k

]

− 1

2
λk log |2πRk |

+ λkE(i)
πk

[

logπk
]

+ (1 − λk)E
(i)
πk

[

log (1 − πk)
]

+ cλk

(27)

where

E
(i)
k = E(i)

2
(−λk )
k

[

(zk − Hkxk) (zk − Hkxk)
T
]

(28)

λk is a Bernoulli variable, thus

p(i+1)(λk = 1) = A exp

{

E(i)
πk
[logπk ] − 1

2
tr{E(i)

k R−1
k }

− 1

2
log |2πRk |

}

(29)

p(i+1) (λk = 0) = A exp
{

E(i)
πk

[

log (1 − πk)
]

}

(30)

where the normalizing constant A is defined to make sure
p(i+1) (λk = 1)+ p(i+1) (λk = 0) = 1.

Let φ = πk and substituting (26) into (23) yields

log q(i+1) (πk)

= E(i+1)

2
(−πk )
k

[λk ] logπk + (e0 − 1) logπk

+ {1 − E(i+1)

2
(−πk )
k

[λk ]} log(1 − πk )

+(f0 − 1) log(1 − πk ) + cπk

= {E(i+1)
λk

[λk ] + e0 − 1} logπk

+
{

f0 − E(i+1)
λk

[λk ] + 1 − 1
}

× log (1 − πk)+ cπk (31)

Employing (31), the approximated posterior PDF
q(i+1) (πk) can be updated as beta PDF controlled by param-
eter ek and fk ,i.e.,

q(i+1) (πk) = Be
(

πk ; ei+1
k , f i+1

k

)

(32)

where

ei+1
k = E(i+1)

λk
[λk ] + e0 (33)

f i+1
k = f0 − E(i+1)

λk
[λk ] + 1 (34)
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Let φ = ξk and using (26) in (23) obtains

log q(i+1)(ξk )

= −1

2
{E(i)

2
(−ξk )
k

[(xk − x̂k|k−1)
T
6−1
k (xk

− x̂k|k−1
)

] + ν}ξk + cξk

= (
n+ ν

2
− 1) log ξk − 1

2

{

tr
[

D
(i)
k E(i)

6k
[6−1

k ]
]

+ν
}

ξk

+ cξk (35)

where

D
(i)
k = E(i)

xk

[

(xk − x̂k|k−1)(xk − x̂k|k−1)
T
]

(36)

Using (35), the approximated posterior PDF q(i+1)(ξk ) can
be shown as a Gamma PDF as follow

q(i+1)(ξk ) = G(ξk ; η(i+1)
k , θ

(i+1)
k ) (37)

where

η
(i+1)
k = 0.5 (n+ ν) (38)

θ
(i+1)
k = 0.5

{

ν + tr
[

D
(i)
k E(i)

6k

[

6−1
k

]]}

(39)

Let φ = 6k and substituting (26) into (23) yields

log qi+1 (6k)

= −1

2
E(i+1)

2
(−6k )
k

{

ξk (xk − x̂k|k−1)
T
6−1
k

(

xk − x̂k|k−1
)

}

− 1

2
(n+ uk + 2) log |6k |

− 1

2
tr(Uk6

−1
k ) + c6k

= −1

2
tr

{

Uk6
−1
k + E(i+1)

ξk
[ξk ]D

(i)
k 6−1

k

}

− 1

2
(n+ uk + 2) log |6k | + c6k (40)

Employing (40), q(i+1) (6k) can be shown as

q(i+1)(6k ) = IW(6k ; û(i+1)
k , Û

(i+1)
k ) (41)

where

û
(i+1)
k = uk + 1 (42)

Û
(i+1)
k = Uk + E(i+1)

ξk
[ξk ]D

(i)
k (43)

Let φ = xk and using (26) in (23) obtains

log q(i+1)(xk )

= −1

2
E(i+1)

2
(−xk )
k

[λk ] (zk − Hkxk)
TR−1

k (zk

− Hkxk)−
1

2
E(i+1)

2
(−xk )
k

[ξk (xk−x̂k|k−1)
T
6−1
k (xk−x̂k|k−1)]

+cxk
= −1

2
E(i+1)
λk

[λk ] (zk − Hkxk)
TR−1

k (zk − Hkxk)+ cxk

− 1

2
E(i+1)
ξk

[ξk ] (xk − x̂k|k−1)
TE(i+1)

6k

[

6−1
k

]

(xk−x̂k|k−1)

= −1

2
(zk − Hkxk)

T R̃−1
k (zk − Hkxk)

− 1

2
(xk − x̂k|k−1)

T P̃−1
k|k−1(xk − x̂k|k−1) + cxk (44)

According to (44), the modified measurement noise matrix
R̃
(i+1)
k and the modified predicted error covariance matrix

P̃
(i+1)
k|k−1 are given by

R̃
(i+1)
k = Rk

E(i+1)
λk

[λk ]
(45)

P̃
(i+1)
k|k−1 =

{

E(i+1)
6k

[

6−1
k

]}−1

E(i+1)
ξk

[ξk ]
(46)

Using (44), q(i+1)(xk ) can be updated as Gaussian PDF as
follow

q(i+1)(xk ) = N(xk ; x̂(i+1)
k|k ,P

(i+1)
k|k ) (47)

where mean vector x̂(i+1)
k|k and covariance matrix P(i+1)

k|k can be
updated by Kalman filter,i.e.,

K
(i+1)
k = P̃

(i+1)
k|k−1H

T
k (Hk P̃

(i)
k|k−1H

T
k + R̃

(i+1)
k )−1 (48)

x̂
(i+1)
k|k = x̂k|k−1 + K

(i+1)
k (zk − Hk x̂k|k−1) (49)

P
(i+1)
k|k =

(

In − K
(i+1)
k Hk

)

P̃
(i+1)
k|k−1 (50)

To mark the measurement outliers, we define λo as indi-
cator value which is close to 0. When E(i+1)

λk
[λk ] ≤ λo,

the measurement can be marked as an outlier which will
be eliminated, and q(i+1)(xk ) is updated by the predicted
distribution,i.e.,

x̂
(i+1)
k|k = x̂k|k−1 (51)

P
(i+1)
k|k = P̃

(i+1)
k|k−1 (52)

AfterN iterations, the approximate posterior PDFs in equa-
tion (22) can be updated as

q (xk) ≈ qN (xk ) = N(xk ; x̂Nk|k ,PNk|k ) (53)

q(ξk ) ≈ qN (ξk ) = G(ξk ; ηNk , θNk ) (54)

q(6k ) ≈ qN (6k ) = IW(6k ; ûNk , ÛN
k ) (55)

q (λk) ≈ qN (λk) = Bn
(

λk ; pN (λk = 1)
)

(56)

q (πk) ≈ qN (πk) = Be (πk ; ek , fk) (57)

According to the property of each approximated posterior
distribution, the required expectations are given by

E(i+1)
ξk

[ξk ] =
ηi+1
k

θ i+1
k

(58)

E(i+1)
6k

[

6−1
k

]

=
(

ûi+1
k − n− 1

) (

Ûi+1
k

)−1
(59)

E(i+1)
λk

[λk] = p(i+1) (λk = 1)

p(i+1) (λk = 1)+ p(i+1) (λk = 0)
(60)

E(i+1)
πk

[

logπk
]

= ψ (ek)− ψ (ek + fk + 1) (61)

E(i+1)
πk

[

log (1 − πk)
]

= ψ (fk + 1)− ψ (ek + fk + 1)

(62)
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where ψ (·) is a digamma function. After updating (53),
the required expectation D(i+1)

k and E(i+1)
k are calculated as

D
(i+1)
k = E(i+1)

xk

[

(xk − x̂k|k−1)(xk − x̂k|k−1)
T
]

= E(i+1)
xk

[

(xk − x̂i+1
k|k + x̂i+1

k|k − x̂k|k−1)
(

xk − x̂i+1
k|k

+ x̂i+1
k|k − x̂k|k−1

)T
]

= E(i+1)
xk

[

(xk − x̂i+1
k|k )(xk − x̂i+1

k|k )
T
]

+ (x̂i+1
k|k − x̂k|k−1)

(

x̂i+1
k|k − x̂k|k−1

)T

= P
(i+1)
k|k + (x̂i+1

k|k − x̂k|k−1)(x̂
i+1
k|k − x̂k|k−1)

T (63)

E
(i+1)
k = E(i+1)

2
(−λk )
k

[

(zk − Hkxk) (zk − Hkxk)
T
]

= E(i+1)
xk

[(

zk − Hk x̂
i+1
k|k + Hk x̂

i+1
k|k − Hkxk

)

(

zk − Hk x̂
i+1
k|k + Hk x̂

i+1
k|k − Hkxk

)T
]

=
(

zk − Hk x̂
i+1
k|k

) (

zk − Hk x̂
i+1
k|k

)T
+ HkP

i+1
k|k H

T
k

(64)

The proposed robust Kalman filter for SINS/DVL inte-
grated navigation system consists of (9), (10), (18)-(21),
(32)-(34), (37-39), (41)-(43), (45)-(52), and (58)-(64), and
the implementation pseudo-code for the proposed algo-
rithm is shown in Algorithm 1. For the process uncertainty,
we obtained a modified one-step predicted covariance matrix
to suppress the influence of process uncertainty. For the
measurement noise, we use an indicator variable to detect
the useless outliers and remove it, and we also obtained a
modified measurement noise covariance matrix to adapt the
variation of measurement noise. The corresponding block
diagram of the proposed SINS/DVL integrated navigation
method is shown in Fig. 1. The proposed robust Kalman
filter is adopted to estimate the navigation errors, and the
navigation errors can correct the navigation parameters with
output correction method.

IV. TEST RESULT

In order to verify the validity of the proposed robust Kalman
filter, a sea trial experiment is carried out to verify the perfor-
mance of SINS/DVL integrated navigation algorithm based
on the proposed filter. The experimental equipments consist
of the photonics inertial navigation system (PHINS), self-
made fiber-optic-SINS (FSINS), Doppler velocity log, and
global position system (GPS) receiver. The specific force fb

and rotation rate ωb
ib are provided by the FSINS equipped

with accelerometers (bias 10−4g, noise 10−5g/
√
Hz ) and

gyroscopes (drift 0.01◦/h, noise 0.1◦/h/
√
Hz), and the

ground velocity is provided by DVL (noise: standard vari-
ance 0.3m/s). The outputs attitude, velocity, and position
of GPS/PHINS high-accuracy integration navigation system
are used as the reference, the accuracy of reference attitude
is 0.01◦, the accuracy of reference velocity is 0.1m/s, and

Algorithm 1 One Time Step of the Proposed KF

Inputs: x̂k−1|k−1, Pk−1|k−1, Fk , Gk , Hk , zk , Qk−1, Rk , e0,
f0, ν, τ , n, N , λo.
Time update:

1. Update x̂k|k−1 and Pk|k−1.
x̂k|k−1 = Fk x̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k + GkQk−1G

T
k

Measurement update:

2. Initialization: uk = n + τ + 1, Uk = τPk|k−1, e
0
k = e0,

f 0k = f0, E
(0)
6k

[

6−1
k

]

= (uk − n− 1)U−1
k , x̂(0)k|k = x̂k|k−1 and

P
(0)
k|k = Pk|k−1.

for i = 0 : N − 1
3. Update q(i+1) (λk) = Bn

(

λk ; p(i+1) (λk = 1)
)

E
(i)
k =

(

zk − Hk x̂
(i)
k|k

) (

zk − Hk x̂
(i)
k|k

)T
+ HkP

(i)
k|kH

T
k

E(i+1)
πk

[

logπk
]

= ψ
(

eik
)

− ψ
(

eik + f ik
)

E(i+1)
πk

[

log (1 − πk)
]

= ψ
(

f ik
)

− ψ
(

eik + f ik
)

p(i+1) (λk = 1) = A exp
{

E(i+1)
πk

[

logπk
]

− 0.5tr
{

E
(i)
k R−1

k

}

−0.5 log |2πRk |}
p(i+1) (λk = 0) = A exp

{

E(i+1)
πk

[

log (1 − πk)
]

}

E(i+1)
λk

[λk ] = p(i+1) (λk = 1)/
(

p(i+1) (λk = 1)+ p(i+1)

(λk = 0)
)

4. Update q(i+1) (πk) = Be
(

πk ; ei+1
k , f i+1

k

)

ei+1
k = E(i+1)

λk
[λk ] + e0, f

i+1
k = f0 − E(i+1)

λk
[λk ] + 1

5. Update q(i+1)(ξk ) = G(ξk ; η(i+1)
k , θ

(i+1)
k )

D
(i)
k = P

(i)
k|k + (x̂ik|k − x̂k|k−1)(x̂

i
k|k − x̂k|k−1)T ,

η
(i+1)
k = 0.5 (n+ ν)

θ
(i+1)
k = 0.5

{

ν + tr
[

D
(i)
k E(i)

|bm6k

[

6−1
k

]]}

,

E(i+1)
ξk

[ξk ] = ηi+1
k /θ i+1

k

6. Update q(i+1)(6k ) = IW(6k ; û(i+1)
k , Û

(i+1)
k )

û
(i+1)
k = uk + 1, Û(i+1)

k = Uk + E(i+1)
ξk

[ξk ]D
(i)
k ,

E(i+1)
6k

[

6−1
k

]

=
(

ûi+1
k − n− 1

) (

Ûi+1
k

)−1

7. Update q(i+1)(xk ) = N(xk ; x̂(i+1)
k|k ,P

(i+1)
k|k )

R̃i+1
k = Rk/E

(i+1)
λk

[λk ],

P̃
(i+1)
k|k−1 =

{

E(i+1)
Pk|k−1

[P−1
k|k−1]

}−1
/E(i+1)

ξk
[ξk ],

K
(i+1)
k = P̃

(i+1)
k|k−1H

T
k (Hk P̃

(i+1)
k|k−1H

T
k + R̃k )−1,

x̂
(i+1)
k|k = x̂k|k−1 + K

(i+1)
k (zk − Hk x̂k|k−1),

P
(i+1)
k|k =

(

In − K
(i+1)
k Hk

)

P̃
(i+1)
k|k−1

if E(i+1)
λk

[λk ] ≤ λo

x̂
(N )
k|k = x̂k|k−1, P

(N )
k|k = P̃

(i+1)
k|k−1, i = N

end
end for

8. x̂k|k = x̂
(N )
k|k , Pk|k = P

(N )
k|k

Outputs: x̂k|k and Pk|k

the accuracy of reference position is 5 − 20m. The total test
time is 5400s, and the trajectory, heading angle, and heading
rate provided by the reference are shown in Fig. 2-Fig. 3.
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FIGURE 1. The block diagram of SINS/DVL integrated navigation method.

FIGURE 2. The trajectory of the ship.

As shown in Fig. 2-Fig. 3, the ship maneuvered severely with
several turns before the former 4000s and sailed smoothly
from 4000s to 5400s, thus the process uncertainty is induced
by severe manoeuvering [3]. The measurement noise can be
calculated by the reference velocity and the velocity provided
by DVL, and the PDF of the measurement noises are plotted
in Fig. 4. The enlarged portion in Fig. 4 shows that the
velocity provided by DVL contains some outliers, and the
RMS error of the velocity with outliers is 1.2 m/s. Therefore,
the experiment data can be used to verify the performance of
the proposed KF.

FIGURE 3. The heading angle and heading rate of the ship.

FIGURE 4. The PDF of the DVL measurement noise.

In this paper, we carried out three tests with differ-
ent data segments which has been plotted in Fig. 2, and
each data segment lasts 1800s. To verify the performance
of the proposed algorithm, the proposed KF is tested by
the three data segments and compared with existing KF,

TABLE 1. The RMSs of the attitude errors of different filtering algorithms.
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TABLE 2. The RMSs of the velocity errors of different filtering algorithms.

TABLE 3. The RMSs of the position errors of different filtering algorithms.

TABLE 4. The implementation times in a single step run of different
filtering algorithms.

RSTKF [16], ODKF [19], and outlier detection KF based
on innovation standard deviation (ISODKF) [26]. The cor-
responding parameters are set as follow: the initial state
is x0|0 = 013×1, and the state error covariance matrix is
P0|0 = diag ([0.1◦; 0.1◦; 0.1◦; 0.1m/s; 0.1m/s; 1◦/h; 1◦/h;
0.01◦/h; 0.01◦/h; 0.01◦/h; 10−4g; 10−4g; 10−4g

])2
. The

nominal process noise and measurement noise covariance
matrixes are set as Qk = diag ([0.01◦/h; 0.01◦/h; 0.01◦/h;
2.5 × 10−3g; 2.5 × 10−3g; 2.5 × 10−3g

])2
and Rk =

diag ([0.3m/s; 0.3m/s])2 respectively. The tuning parameter
is τ = 5, and the dof parameter is ν = 5 [16]. For
the proposed KF, the parameters are chosen as e0 = 0.9,
f0 = 0.1, and the iteration numbers of all robust filters are
all set as N = 3 [19]. The indicator value is selected as
λo = 1 × 10−10 [19] to detect the measurement outliers
effectively. The corresponding root mean square (RMSs)
of the attitude error, velocity error, and position error of

FIGURE 5. The attitude angle errors from different algorithms.

the three tests are summarized in Table 1-Table 3, and the
implementation times in a single step run of different filtering
algorithms are summarized in Table 4. To show the single run
results, the attitude errors, velocity errors, and position errors
of the SINS/DVL integrated navigation system of the segment
1 are plotted in Fig. 5-Fig. 7.

As shown in Fig. 5-Fig. 7 and Table 1-Table 3, the pitch
error and the roll error calculated by the existing KF,
RSTKF, ODKF, ISODKF and the proposed KF are almost
the same, but the heading error calculated by the KF is
bigger than the other four algorithms. Besides, the velocity
errors and position errors calculated by the proposed KF are
smaller than that calculated by the KF, ODKF, ISODKF,
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FIGURE 6. The velocity errors from different algorithms.

FIGURE 7. The position errors from different algorithms.

and RSTKF. Table 4 shows that the computational times of all
algorithms are far less than the sampling period 0.01s, which
can meet the requirement of SINS/DVL integrated navigation
system. Note that due to the influence of the heavy-tailed
distribution process noise induced by process uncertainty,
the process noise is violated with Gaussian distribution,
which will degrade the performance of the ODKF and
ISODKF. For RSTKF, useless measurement outliers are also
introduced in the filter, which will result in performance
degradation of the RSTKF. The proposed KF address the
process uncertainty and measurement outliers by modelling
the one-step predicted as a Student’s t-distribution and the
binary indicator variable as beta-Bernoulli distribution, and
the useless measurement outliers can be accurately elimi-
nated, thus the proposed KF exhibit better robustness and
higher accuracy. In a word, compared with the existing state-
of-the-art algorithms, the proposed KF for SINS/DVL inte-
grated navigation system has better robustness and navigation
accuracy to address process uncertainty and measurement
outliers.

V. CONCLUSION

To suppress the process uncertainty and measurement outlier
of SINS/DVL integrated navigation system, a novel robust
KF is proposed in this paper. By modelling the one-step
predicted as Student’s t-distribution and the binary indicator
variable as beta-Bernoulli distribution, the proposed KF for
SINS/DVL integrated navigation system is able to suppress
the process uncertainty and measurement outliers induced by
severe maneuvering and obtain better navigation accuracy
than the other four algorithms. Experimental results illustrate
that the proposed algorithm has better robustness and nav-
igation accuracy for suppression of the process uncertainty
andmeasurement outliers than the state-of-the-art SINS/DVL
integrated navigation algorithms, which is more suitable for
SINS/DVL integrated navigation system.
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