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A New Robust Regression Model for
Proportions

Cristian L. Bayes∗, Jorge L. Bazán† and Catalina Garćıa‡

Abstract. A new regression model for proportions is presented by considering the
Beta rectangular distribution proposed by Hahn (2008). This new model includes
the Beta regression model introduced by Ferrari and Cribari-Neto (2004) and the
variable dispersion Beta regression model introduced by Smithson and Verkuilen
(2006) as particular cases. Like Branscum, Johnson, and Thurmond (2007), a
Bayesian inference approach is adopted using Markov Chain Monte Carlo (MCMC)
algorithms. Simulation studies on the influence of outliers by considering contam-
inated data under four perturbation patterns to generate outliers were carried out
and confirm that the Beta rectangular regression model seems to be a new robust
alternative for modeling proportion data and that the Beta regression model shows
sensitivity to the estimation of regression coefficients, to the posterior distribution
of all parameters and to the model comparison criteria considered. Furthermore,
two applications are presented to illustrate the robustness of the Beta rectangular
model.

Keywords: Proportions, Beta regression, Bayesian estimation, link function, MCMC

1 Introduction

The Beta regression model was introduced by Ferrari and Cribari-Neto (2004) and it
is adequate for situations where the variable of interest is continuous, restricted to the
interval (0, 1) — such as percentages, proportions and fractions or rates (Kieschnick and
McCullough, 2003) — and related to other variables through a regression structure.

Examples of these situations can be fluctuations in variables whose support is the
standard unit interval, such as income concentration; unemployment rate; proportion of
households subscribing to a cable TV service; proportion of household television viewing
of various programming streams; proportion of votes for an incumbent president running
for re-election, proportion of poor single mothers with children migrating from one state
to another, etc.

In the Beta regression model, the regression parameters are interpretable in terms
of the mean response, and in many aspects are similar to Generalized Linear Models
(GLM). Estimation can be performed by maximum likelihood (Ferrari and Cribari-
Neto 2004) or by Bayesian inference (Branscum et al. 2007). The Beta regression model
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is sufficiently documented by several publications such as Espinheira et al. (2008a,b);
Ferrari et al. (2011); Cribari-Neto and Zeileis (2010) and several applications as, for
example, Kelly et al. (2007) and Wallis et al. (2009).

However, the model proposed by Ferrari and Cribari-Neto (2004) does not model
the dispersion but treats it solely as a nuisance parameter. As indicated by Smithson
and Verkuilen (2006) this is a major oversight, as the ability to model dispersion can
prove very useful. In addition, seemingly independently of Ferrari and Cribari-Neto
(2004), Kieschnick and McCullough (2003) compared the performance of a Beta re-
gression model for proportions, applied in economics and finance research, with several
alternatives and conclude that it is often the best option.

Paolino (2001), by considering maximum likelihood, and Buckley (2002), by con-
sidering a Bayesian approach, use a Beta regression model which considers covariates
between the mean and the dispersion parameters. This model, extensively presented
in Smithson and Verkuilen (2006), is termed the variable dispersion Beta regression in
Simas et al. (2010); Ferrari et al. (2011). In this case, the parameter that accounts for
the precision of the data is not assumed to be constant across observations, as is the
case with the Beta regression model, but is allowed to vary.

The Beta distribution can be considered flexible since the probability density function
(pdf) can take different shapes by considering different values of its parameters. How-
ever, as was noted by Hahn (2008) and Garćıa et al. (2011), the Beta distribution
neither considers tail-area events nor greater flexibility in the variance specification.
We consider that this fact could limit its applications for modeling proportions. More
discussion can be found in Kotz and van Dorp (2004).

It is important to consider diagnostic tools when estimating Beta regressions. The
classical perspective of Ferrari and Cribari-Neto (2004) provided some guidelines for di-
agnostic analysis, including the use of two different residuals. Espinheira et al. (2008a)
proposed two new Beta regression residuals and Espinheira et al. (2008b) proposed mea-
sures of influence analysis. By considering these measures, these authors, particularly
Espinheira et al. (2008b), showed the influence of an observation in applications of the
Beta regression model. However, no study has been carried out to show that the Beta
regression model is not influenced by the estimation of regression parameters when there
are outlying observations in the response variable. Thus, there is no robustness study of
the Beta regression model from a Bayesian perspective by introducing perturbations in
some observations to obtain artificial outliers and evaluating the impact of these pertur-
bations on regression coefficients and on the measure of global fit. Following Pinheiro
et al. (2001) and Barnett and Lewis (1995), we refer to an outlier as an observation (or
set of observations) that appears to be inconsistent with the rest of the data.

In order to obtain some additional flexibility, we provide a regression model that
permits varying amounts of dispersion and greater likelihood of more extreme tail-
area events by considering the Beta rectangular distribution proposed by Hahn (2008).
This new model includes the Beta regression model and the variable dispersion Beta
regression model as particular cases. In addition, following a robust statistical modeling
approach (Pinheiro et al. 2001) we will show that Beta rectangular regression is more
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robust than the Beta regression model.

The Beta rectangular distribution is just a mixture of a Beta distribution with a
Uniform distribution and thus is a finite Beta mixture model as given by Bouguila
et al. (2006). It is well-known that mixture distributions are more robust to outliers
(comparatively large or influential values) since by including an extra distributional
component in the model, the variability is better accounted for and the estimation
of the “true” mean parameter is less affected, as indicated by Markatou (2000). As
expected, we show that the Beta rectangular regression is a simple model and can be
more “robust” compared to the usual Beta regression by considering simulation studies.
In addition, we show an efficient way of simulating a posterior distribution.

The paper is organized as follows. In Section 2, we review the Beta rectangular
distribution and a new parametrization is introduced. In Section 3, the Beta rectangular
regression model is proposed, which can fit the mean and dispersion of the model. In
the fourth section, a Bayesian inference approach is adopted using a Markov Chain
Monte Carlo (MCMC) algorithm. Model comparison criteria for model selection such as
Deviance Information Criterion (DIC), Expected Akaike Information Criterion (EAIC)
and Expected Bayesian Information Criterion (EBIC) are also shown. In Section 5,
two simulation studies are carried out to show that the new model is more robust than
the Beta regression model in the presence of artificial outliers obtained by perturbing
observations in the data by considering a sensitivity study on (a) the estimation of
regression coefficients, (b) the posterior distribution of all parameters and (c) model
comparison criteria. Section 6 presents two applications which are developed to show
the utility of the Beta rectangular regression model. The conclusions are presented in
Section 7.

2 Beta rectangular distribution

2.1 Beta distribution

As the Beta distribution is well-known, we will directly review the reparametrization
proposed by Ferrari and Cribari-Neto (2004). Then, a random variable Y follows a Beta
distribution if its probability density function (pdf) is given by:

b(y | µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1 (1)

where 0 < µ < 1 and φ > 0. We consider the notation Y ∼ Beta(µ, φ). The mean and
variance are expressed by:

E(y | µ, φ) = µ and V ar(y | µ, φ) =
V (µ)
1 + φ

(2)

where V (µ) = µ(1−µ), µ is the mean and φ can be interpreted as a precision parameter.
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As indicated by Morris (1982) with this parametrization, the Beta distribution is a
univariate exponential family but is not a natural exponential family. In addition, by
considering that the quadratic variance function above matches that of the binomial,
there is a failure to characterize the family within all exponential families.

2.2 Beta Rectangular distribution

The Beta distribution can initially be considered as flexible since the pdf can have dif-
ferent shapes by considering different values of µ and φ. However, as was noted by Hahn
(2008) and Garćıa et al. (2011), the Beta distribution neither considers tail-area events
nor greater flexibility in the variance specification. We consider that this fact could
limit its application for modeling proportions. In order to get some additional flexi-
bility, we provide a regression model which permits varying amounts of dispersion and
greater likelihood of more extreme tail-area events by considering the Beta rectangular
distribution proposed by Hahn (2008) whose pdf is given by:

f(y | µ, φ, θ) = θ + (1− θ)b(y | µ, φ), (3)

where 0 ≤ θ ≤ 1 is a mixture parameter. Clearly the Uniform distribution is recovered
when θ = 1 and the Beta distribution is recovered when θ = 0. In Figure 1 we show
several probability density and cumulative distribution functions of the Beta rectangular
distribution for different values of µ, φ and θ.

We consider the notation Y ∼ BR(µ, φ, θ). Note that the Beta rectangular distribution
is a mixture of two Beta variables, a Beta (1/2, 2), or the Uniform distribution, and a
Beta(µ, φ). The mean and variance of this distribution are given by:

E(y | µ, φ, θ) =
θ

2
+ (1− θ)µ

V ar(y | µ, φ, θ) =
V (µ)
1 + φ

(1− θ)(1 + θ(1 + φ)) +
θ

12
(4− 3θ). (4)

Note that when θ = 0 the expressions given in (4) coincide with the expressions of
the mean and variance of the Beta distribution. In a similar way when θ = 1, these
expressions coincide with the mean and variance of the Uniform distribution. In this
case there is not a unique mode, which is of no particular difficulty since the mode is
not a quantity of interest. When 0 < θ < 1 the mode is:

m =
µφ− 1
φ− 2

(5)

which clearly is the same as that of the underlying Beta distribution.
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Figure 1: Examples of Beta rectangular pdf and cdf for µ = 0.5 and φ = 10 (left panels)
and µ = 0.3 and φ = 10 (right panels) with different values of the mixture parameter θ:
θ = 0 (solid line), θ = 0.2 (dashed line), θ = 0.4 (dotted line) and θ = 0.6 (dot dashed
line).

2.3 A reparameterization of Beta Rectangular distribution

For a regression analysis, the mean of the response is typically modeled (Ferrari and
Cribari-Neto 2004). However, the mean of the Beta rectangular distribution (4) is a

function of the mixture parameter θ and µ. If we take E(Y ) =
θ

2
+ (1 − θ)µ = γ, we

obtain that the parametric space of θ is restricted for the value of γ in the following
way:

0 < θ < 1− |2γ − 1| .

In order to obtain a more appropriate regression structure for the mean of the Beta
rectangular distribution, we take

γ =
θ

2
+ (1− θ)µ and α =

θ

1− (1− θ)|2µ− 1| (6)

as a new parametrization. In this case, the parametric space of γ and α is the rectangle
given by {0 ≤ γ ≤ 1, 0 ≤ α ≤ 1}.
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Under this parametrization the pdf of the Beta rectangular distribution is given by:

g(y | γ, φ, α) = α (1− |2γ − 1|) + (1− α (1− |2γ − 1|))
× b

(
y

∣∣∣∣
γ − 0.5α (1− |2γ − 1|)

1− α (1− |2γ − 1|) , φ

)
. (7)

We consider the following notation: Y ∼ BRr(γ, φ, α) with mean parameter γ. In
addition, by considering Figure 2, which depicts the pdf (expression 7) of a BRr distri-
bution for different values of γ, φ and α, we note that α is a shape parameter which is
associated with the thickness of the tails of the distribution and φ is a parameter that
seems to control the precision of the distribution; for larger values of φ we observe less
dispersion. When α = 0 the Beta distribution is recovered.
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Figure 2: Examples of Beta rectangular pdf under reparametrization (6) for different
values of γ, φ and α: α = 0 (solid line), α = 0.2 (dashed line), α = 0.4 (dotted line)
and α = 0.6 (dot dashed line).

3 Beta Rectangular Regression

Let Y = (Y1, ..., Yn)T be a vector of observed responses that takes values in (0, 1). The
Beta rectangular regression model is given by:

Yi ∼ BRr(γi, φi, α),
F−1

1 (γi) = xT
i β,

F−1
2 (φi) = −wT

i δ
(8)
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where β = (β1, ..., βk) and δ = (δ1, ..., δl) are vectors of regression parameters, xi =
(xi1, ..., xik) and wi = (wi1, ..., wil) are vectors of k and l covariates (possibly overlapping
or even identical) and F−1

1 (·) and F−1
2 (·) are strictly monotone and double differentiable

functions on (0, 1) to R in the first case and R+ to R in the second.

In general F1(·) can be any cumulative distribution function corresponding to a
continuous distribution where the inverse function is called the link function relating
the mean parameter γi with covariates xi. Some examples of link functions for F−1

1 (·)
are logit, probit and complementary log-log, but other links can be explored. F−1

2 (·) also
is a link function relating the precision parameter φi with covariates wi. In addition,
as the parameters φi must be strictly positive, the log link that can be used for F−1

2 (·)
is log(φi) = −wT

i δ where we use the negative sign, as indicated by Smithson and
Verkuilen (2006), to make the interpretation of the coefficients δ easier. Because φi is a
precision parameter, a positive-signed δj indicates smaller variance, which is potentially
confusing. It seems more natural to model dispersion rather than precision, and the
negative sign enables us to do so.

The likelihood function for the model proposed can be written, alternatively, con-
sidering the parameterization given in (3) or the parameterization in (7) as:

L(η | Y) =
n∏

i=1

f(yi | µi, φi, θi) =
n∏

i=1

g(yi | γi, φi, α) (9)

where η = (β, δ, α), γi and φi are defined in (8) with θi = α(1 − 2|γi − 1/2|) and

µi =
γi − θi/2

1− θi
.

Note that in (8) when α = 0 and φi is constant, we obtain the Beta regression model
proposed by Ferrari and Cribari-Neto (2004) which is not an exponential family and so
is not a GLM. Note also that, if solely α = 0 then we obtain the variable dispersion
Beta regression model introduced by Paolino (2001), Smithson and Verkuilen (2006) and
recently by Simas et al. (2010). When other values of α are considered, the proposed
regression model achieves greater flexibility.

4 Bayesian inference

The maximum likelihood estimators of the parameters of the model given in (8) can
be obtained in a similar way to Ferrari and Cribari-Neto (2004). However, in some
empirical situations, the sample size may be small and in such cases Bayesian inference
seems to be more suitable if previous information about the parameters is available,
see Congdon (2003) and Gelman et al. (2003). In this section we propose a Bayesian
approach.

With independent data, the likelihood function for the Beta rectangular regression
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model is given by (9) so the posterior distribution is defined as:

p(η | Y) ∝ L(η | Y)p(η). (10)

To complete the Bayesian specification of the model, we assume a prior distribution for
all the unknown quantities η = (β, δ, α). We assume that the elements of the parameter
vector are independent and the following condition is verified:

p(η) = p(β)p(δ)p(α).

We can consider the usual priors to coefficients of regression to the mean and dispersion
given by β ∼ Nk(a,B) and δ ∼ Nl(c,D). In addition, we can consider a noninformative
uniform prior α ∼ Uniform(0, 1). So we have that the posterior distribution is given
by

p(η | Y) ∝
n∏

i=1

α
(
1− ∣∣2F1(xT

i β)− 1
∣∣) +

(
1− α

(
1− ∣∣2F1(xT

i β)− 1
∣∣))

× b

(
y

∣∣∣∣∣
F1(xT

i β)− 0.5α
(
1− ∣∣2F1(xT

i β)− 1
∣∣)

1− α
(
1− ∣∣2F1(xT

i β)− 1
∣∣) , F2(wT

i δ)

)
(11)

× φk(β | a,B)× φl(δ | c,D)× 1

where φk(.) and φl(.) denote the density function of a multivariate normal distribution
of order k and l respectively.

In the particular case when we have the mean-regression model without modeling the
dispersion parameter, the prior distributions considered for η = (β, φ, α) are

p(η) = p(β)p(φ)p(α)

where φ ∼ Gamma(c, c) as in Branscum et al. (2007). In preliminary explorations, we
have observed that the inference on the coefficients of regression to the mean which
are the main focus of interest are similar under different choices of hyperparameter
c = 0.1, 0.01, 0.001.

The normalizing constant of the posterior distribution of the parameters in (11) cannot
be obtained analytically. So, a possible approximation is obtained though MCMC to
draw samples from the posterior density. A simple way is to implement a Metropolis
sampling in OpenBUGS software (Lunn, Spiegelhalter, Thomas, and Best 2009). In
addition, it is possible to implement a Metropolis-within Gibbs and slice sampling in
WinBUGS software (Lunn, Thomas, Best, and Spiegelhalter 2000) which can be more
stable. For this, we use an augmented version considering the usual mixture model
representation similar to the procedure proposed by Bouguila et al. (2006) introducing
latent variables for the mixture parameter, see for example the BUGS code in the
appendix.
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For all estimations in Sections 5 and 6, we simulate a large number of iterations,
discarding the first 50 % of them as a burn-in period. To avoid correlation problems,
we considered a spacing of size or thin equal to 10. Efficiency as measured by Effective
Sample Sizes above 0.9 was obtained. In addition, convergence criteria given by Geweke
(1992) as implemented in CODA (Plummer et al. 2006) were achieved.

4.1 Model Comparison Criteria

There are several methodologies for comparing competing models for a given dataset.
We consider three approaches to Bayesian model selection: the Deviance Information
Criterion (DIC, Spiegelhalter et al. 2002), the Expected Akaike Information Criterion
(EAIC) and the Expected Bayesian Information Criterion (EBIC), which were proposed
by Brooks (2002) and used for example in Bolfarine and Bazán (2010). These model
criteria are simple to compute as the relevant quantities can be calculated directly from
the MCMC output.

In order to obtain this, the following criteria are considered:

E [D(η)] , D(E[η]) and ρD = E [D(η)]−D(E[η])

which represent the posterior mean of the deviance; deviance of posterior mean,
which is obtained by considering the mean values of the posteriori of the parameters in
the deviance of the model; and the effective number of parameters as given in Spiegel-
halter et al. (2002).

These quantities can be estimated by using the MCMC output, considering the value
of

D̄ =
1
B

B∑

b=1

D
(
ηb

)
, D̂ = D

(
1
B

B∑

b=1

ηb

)
and ρ̂D = D̄ − D̂,

respectively, where B represents the number of iterations, and D(ηb) = −2 log L(ηb | Y)
is the value of the deviance in the iteration b.

The criteria EAIC, EBIC and DIC can be estimated using MCMC output by con-
sidering

ÊAIC = D̄ + 2p, ÊBIC = D̄ + p log(n) and D̂IC = D̄ + ρ̂D = 2D̄ − D̂,

respectively, where p is the number of parameters in the model and n is the total
number of observations.

Smaller values of D̄, DIC, EBIC and EAIC imply better model fit.
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5 Robustness Study

In this section, we compare the sensitivity of the Beta and Beta rectangular regression
models in the presence of outliers by considering two simulation studies, one without
covariates and the other considering covariates.

5.1 Simulation Study 1

In this subsection, an extensive simulation study is carried out to evaluate the relative
performance of the procedure for estimating the Beta and Beta rectangular models
without covariates for Beta data by considering (a) two values of φ = {10, 30}, (b) three
sample sizes n = {50, 100, 200} and (c) percent of cases in outliers r = {2%, 5%, 8%}.

First, a dataset with sample size n was simulated from the Beta distribution with
parameters µ = 0.2 and parameter of dispersion φ. Next, a sample of size r×n/100 was
taken without replacement from n. Later, these cases were replaced by values generated
from the Uniform distribution (q,1), where q corresponds to the 0.999 quantile of the
simulated Beta distribution — that is, outliers in the right tail of the distribution by
considering values generated from another distribution. This data can be considered
contaminated Beta data.

The combination of values of φ, n and r produce 2×3×3 = 18 scenarios of contami-
nated simulated Beta data (see Table 1). For each scenario, 100 replications of contami-
nated Beta data were generated. For example, for scenario 2 (with φ = 10, n = 100 and
r = 2%) 100 simulations of a sample of size 100 of a Beta(µ × φ = 2, (1 − µ) × φ = 8)
were initially simulated. Later, 2 of the 100 cases selected without replacement were
replaced by values of a Uniform (q, 1) where q = 0.999, 2, 8.

For each dataset generated, we fit the Beta rectangular and the Beta model, by
considering the estimation procedure described in section (4). We burned-in 10, 000 of
the 20, 000 values of the chain. The effective sample is 10, 000. An efficiency of over 0.9
was obtained by using the above Effective Sample Sizes.

Bias and MSE were obtained for each model by considering the replications in each
scenario. The percentage of cases in which the Beta rectangular model was selected
in relation to Beta was obtained. This was defined in terms of the percent of time
that the Beta rectangular model achieved a lower DIC. The results are shown in Table
1. From the simulation study, we found that for any scenario with outliers, there
was an improvement in the accuracy (bias and MSE decrease) for the estimation of
the model’s parameters when using a Beta rectangular rather than the Beta model
for a contaminated dataset. We confirm the Beta rectangular model rather than the
Beta model as the best choice in a high percentage of cases by considering the DIC.
This became more evident as sample size increased and the percentage of outliers is
incremented.
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Table 1: Comparison of Bias, MSE and percentage of selection of the model Beta
Rectangular versus Beta considering DIC for different scenarios of contaminated Beta
data (two values of φ, three % of outliers and three sample sizes) by considering 100
dataset replications in each scenario.

Scenarios Beta Beta Rectangular DIC %
φ % of outliers n Bias MSE Bias MSE

1 10 2 50 0.0253 0.0010 0.0234 0.0008 0.66
2 10 2 100 0.0242 0.0007 0.0186 0.0005 0.81
3 10 2 200 0.0246 0.0007 0.0157 0.0003 0.93
4 10 5 50 0.0655 0.0047 0.0434 0.0022 0.9
5 10 5 100 0.0512 0.0028 0.0325 0.0012 0.95
6 10 5 200 0.0520 0.0028 0.0318 0.0011 1
7 10 8 50 0.0812 0.0070 0.0540 0.0032 0.94
8 10 8 100 0.0805 0.0067 0.0492 0.0026 1
9 10 8 200 0.0797 0.0065 0.0468 0.0023 1
10 30 2 50 0.0204 0.0006 0.0179 0.0004 0.85
11 30 2 100 0.0224 0.0006 0.0159 0.0003 0.97
12 30 2 200 0.0186 0.0004 0.0118 0.0002 0.99
13 30 5 50 0.0547 0.0034 0.0353 0.0014 0.99
14 30 5 100 0.0444 0.0021 0.0291 0.0009 0.99
15 30 5 200 0.0439 0.0020 0.0257 0.0007 1
16 30 8 50 0.0678 0.0050 0.0434 0.0020 0.96
17 30 8 100 0.0689 0.0049 0.0421 0.0018 1
18 30 8 200 0.0671 0.0046 0.0399 0.0016 1

5.2 Simulation Study 2: Sensitivity Study

In this subsection, we conduct a second specific study to compare the sensitivity in the
presence of outliers in the Beta and Beta rectangular models, taking covariates into
account when a Beta regression dataset is considered. In order to conduct this study, a
dataset was first taken from a Beta regression model with parameters β0 = 0.5, β1 = 1,
φ = 30 and a logit link to consider the model regression structure. It was generated
from yi ∼ Beta(µi, φ) and logit(µi) = β0 + β1xi and i = 1, .., n, where x = (x1, ..., xn)T

was generated from a Uniform distribution on (−3, 3) and n = 200. The data was an
uncontaminated Beta dataset.

In Table 2, we present the posterior mean and 95% Bayesian confidence interval for
the parameters of the model for both Beta and Beta Rectangular models. We note
that the Beta and Beta Rectangular fits for the regression parameters were identical
for this uncontaminated Beta dataset, but as expected the DIC, EAIC and EBIC for
the Beta model (−532.0,−529.0,−519.1) are better than that corresponding to the Beta
Rectangular model (−530.4,−525.4,−512.2).
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Table 2: Posterior mean and 95% Bayesian credible interval for the parameters for the
second simulated dataset.

Model Beta Beta Rectangular
Parameter Mean 2.5% 97.5% Mean 2.5% 97.5%

β0 0.54 0.47 0.61 0.53 0.47 0.60
β1 0.98 0.93 1.03 0.98 0.92 1.03
φ 27.34 22.13 32.97 27.58 22.67 33.86
α 0.02 0.00 0.07

Next, for this uncontaminated Beta dataset we defined four contamination strategies
by considering outlier patterns described in the next subsection.

Contaminated data under four perturbation patterns to generate outliers

To evaluate the influence of outlying observations on estimates of regression parame-
ters, we consider contamination of 2% of the observations for the simulated dataset, that
is to say, we replaced these data points y∗i by their contaminated values y∗i (∆) = y∗i ±∆.
We consider four perturbation patterns:

(i) A decrease of ∆ units of the response values to higher values of x,

(ii) An increase of ∆ units of the response values to lower values of x,

(iii) A decrease and increase of ∆ units of the response values for higher and lower
values of x, respectively

(iv) A decrease of ∆ units of the response values for central values of x.

See Figure 3. For perturbation patterns (i), (ii) and (iii) ∆ varies from 0 to 0.8 with
increments of 0.05 (17 cases) and for perturbation pattern (iv) ∆ varies from 0 to 0.5
with increments of 0.05 (11 cases).

For each type of contaminated dataset, we studied three aspects in making a com-
parison between Beta and Beta Rectangular models: (a) sensitivity in the estimation
of the regression coefficients; (b) sensitivity on the posterior distribution of all param-
eters by considering a measure of global influence and (c) effects on model comparison
criteria.

(a) Sensitivity on the estimation of regression coefficients
For each perturbation pattern and each value of ∆ we re-estimate the Beta and Beta
Rectangular models. To re-estimate the models, we burned-in 10,000 of the 20,000
values of the chain considering thin equal to 10. Thus, we have a total of 1,000 samples
upon which the posterior inference is based on. Figures 4 and 5 show the posterior mean
and the 95%-credible interval for the regression parameters, β0 and β1 respectively, in
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Figure 3: Generation of contaminated datasets under four different outlier patterns in
the uncontaminated Beta dataset: (i) decrease ∆ units of the response values to higher
values of x, (ii) increase ∆ units of the response values to lower values of x, (iii) decrease
and increase ∆ units of the response values for higher and lower values of x and (iv)
decrease ∆ units of the response values for central values of x.

each perturbation pattern and each case for the Beta and Beta Rectangular models.
The posterior mean is depicted by a dashed line and 95%-credible interval by a solid
line for both coefficients.

We find that the Beta Rectangular regression models are less sensitive to variations
in ∆ than the Beta regression models. The variations in ∆ have a considerable impact
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for the Beta model on both the posterior mean and the credible interval for all the outlier
patterns considered in this study. Note also that the size of the interval increases as |∆|
increases in particular for β0.
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Figure 4: Posterior mean (dashed line) and 95%-credible interval (solid line) for β0

under Beta and Beta Rectangular regression models for different values of perturbation
∆ under four different outlier patterns in the contaminated Beta dataset.
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Figure 5: Posterior mean (dashed line) and 95%-credible interval (solid line) for β1

under Beta and Beta Rectangular regression models for different values of perturbation
∆ under four different outlier patterns in the contaminated Beta dataset.
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(b) Sensitivity on the posterior distribution of all parameters
Now we evaluate the influence of the outlier perturbations for each ∆ by considering a
divergence measure between the posterior distribution with the uncontaminated data
p(η | Y) and the posterior distribution with the contaminated dataset p(η | Y(∆)) for
Beta and Beta Rectangular models, where Y(∆) represents the contaminated dataset.
As a measure of divergence, we consider the Kullback−Leibler divergence measure
KL(∆)

KL(∆) =
∫

log
(

p(η | Y)
p(η | Y(∆))

)
p(η | Y)dη.

In order to estimate KL(∆) we consider a Monte Carlo estimate of these divergences
by using the MCMC output following the ideas of Peng and Dey (1995). In this case
the KL estimate is given by:

K̂L(∆) = log
{∏B

b=1 1/ϑ(ηb)}1/B

{B−1
∑B

b=1 ϑ(ηb)}−1

where ϑ(ηb) = f(yi +∆ | ηs)/f(yi | ηs), {ηb}B
b=1 are MCMC samples from the posterior

distribution p(η | Y) and B is the sample size of the MCMC procedure.

KL(∆) can be considered a measure of influence. We estimate these measures for
each Beta and Beta Rectangular model. We expected that the robust model where
there were outliers would yield a lower estimated value of KL(∆).

Figure 6 shows the K̂L(∆) for both models with Beta shown as a solid line and Beta
Rectangular shown as a dashed line under the four outlier patterns described above and
for each ∆. We note that the K̂L(∆) for the Beta regression model is an increasing
function of ∆ while for the Beta Rectangular regression model, it is more stable. That
is to say, the influence of the outlying observations is unbounded for the Beta model,
but clearly bounded for the Beta Rectangular model. That can be considered evidence
that the Beta Rectangular model performs better compared with the Beta model.

In particular for closer contamination (∆ < 0.2), all models display the same influence
curve. This occurs because the contaminated observation is not distant enough from
the typical data to be considered as an outlying observation. Therefore, all models have
the same efficiency for close contamination cases.

(c) Sensitivity on model comparison criteria
In Figure 7 we study the behavior of the DIC under the presence of outlying observa-
tions. As in Figure 6 using KL, for closer contamination (∆ < 0.25), the DIC favors the
Beta regression model. Again, the reason is that the contaminated observation is not
considered to be an outlying observation. Also the DIC, as has been shown in Figures 4,
5 and 6, has the same efficiency for close contamination cases. However for greater con-
tamination ∆ > 0.25, the DIC favors the Beta Rectangular regression model, indicating
the model’s robustness where there are outlying observations.
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Figure 6: Kullback−Leibler divergence measure between p(η | Y) and p(η | Y(∆)) under
Beta (solid line) and Beta Rectangular (dashed line) regression models for different
values of perturbation ∆ under four different outlier patterns in the contaminated Beta
dataset.

6 Applications

6.1 Application 1

In this section, we consider the Bayesian analysis of the Australian Institute of Sport
(AIS) Dataset included in the library sn for R (available for download at http://
azzalini.stat.unipd.it/SN/index.html). We consider only the data of 37 rowing

http://azzalini.stat.unipd.it/SN/index. html�
http://azzalini.stat.unipd.it/SN/index. html�
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Figure 7: Deviance Information Criterion under Beta (solid line) and Beta Rectangular
(dashed line) regression models for different values of perturbation ∆ under four different
outlier patterns in the contaminated Beta dataset.

athletes in the AIS dataset. We are interested in the prediction of the body fat percent-
age (Bfat) of each athlete by considering their lean body mass (lbm).

We define the Beta Rectangular regression model relating Bfati and lbmi as follows:

Bfati ∼ BRr(γi, φ, α), logit(γi) = β0 + β1lbmi, i = 1, 2. . . . , n. (12)

We fitted two models: a Beta Rectangular regression as defined in (12) and a Beta
Regression (when α = 0) considering all observations. To fit these models, we burned-
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Figure 8: Scatter plot of the AIS dataset with fitted regression lines for the mean of
Bfat under the Beta distribution (dashed line) and Beta rectangular distribution (solid
line) using all observations (left panel) and without outliers (right panel).

in 50,000 of the 100,000 values of a chain considering thin equal to 10 (the runtime for
Beta Rectangular regression model is 206.28 seconds and the runtime for Beta regression
model is 39.96 seconds on an Intel Core i-5 processor with 2.30 GHz and 4.00GB RAM).
Thus, we have a total of 5,000 samples upon which the posterior inference is based. To
carry out a model comparison, we computed DIC, EAIC and EBIC for each model.
These criteria and the estimates of the parameters of the models are shown in Table
3. After considering various criteria, the Beta Rectangular regression model yielded the
best fit.

As suggested by the Associate Editor, we identified two outlier observations marked
as ∗ (see left panel in Figure 8) and then refitted both models after removing these
two outliers. The results are shown in Table 3. As expected from Simulation Study 2,
the estimates of the parameters are similar but the model comparison criteria correctly
choose the Beta regression as the better model. This suggests that there is not much
difference between the models in estimating the mean regression model when there
are no outliers. However, outlying observations may have a considerable impact on
estimates in the Beta regression model. Since this behavior was not observed under
the Beta Rectangular regression model, it might be safer to use it rather than the Beta
model.
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Table 3: Posterior mean and a 95%−credible interval for the parameters under the Beta
and Beta rectangular regression models for the AIS dataset using all observations and
without outliers.

Beta Beta Rectangular

Observations Parameter mean 2.5% 97.5% mean 2.5% 97.5%

β0 0.089 -0.447 0.611 0.900 0.436 1.310
All β1 -0.027 -0.035 -0.019 -0.037 -0.043 -0.029

φ 86.879 50.980 132.900 203.143 106.098 316.800
α 0.188 0.043 0.405

DIC -136.13 -145.51
EAIC -133.24 -141.55
EBIC -128.41 -135.11

β0 0.830 0.412 1.244 0.859 0.443 1.264
Without β1 -0.038 -0.044 -0.031 -0.037 -0.044 -0.031
outliers φ 204.435 118.985 314.800 203.628 118.098 317.703

α 0.072 0.002 0.235
DIC -160.41 -158.61

EAIC -157.51 -153.81
EBIC -152.84 -147.59

6.2 Application 2

As a second application, we study the influence of the Human Development Index (HDI)
of an electoral district on the proportion of blank votes in the 2006 Peruvian general
election. We obtained the voting data from www.onpe.gob.pe, which provided data on
past elections, and the HDI data from www.pnud.org.pe.

For these datasets, we consider the following general model:

yi ∼ BRr(γi, φ, α), logit(γi) = β0 + β1HDIi, log(φi) = δ0 + δ1HDIi, i = 1, 2. . . . , n
(13)

where yi is the proportion of blank votes and HDIi is the Human Development Index
of electoral district i. Peru has n = 194 electoral districts. We fitted four models: (1)
a Beta rectangular regression with variable dispersion as defined in (13); (2) a Beta
regression with variable dispersion (α = 0); (3) a Beta rectangular regression (δ1 = 0
and φ = exp(δ0)) and (4) a Beta regression (α = 0, δ1 = 0 and φ = exp(δ0)). To
fit these models, we burned-in 50,000 of the 100,000 values of a chain considering thin
equal to 10. Thus, we have a total of 5,000 samples upon which the posterior inference
is based.

Table 4 compares the four models using the model selection criteria presented in
section 4.1. The runtimes for each model are also included. We note that the models
that assume a Beta Rectangular distribution improved over the corresponding Beta
models, in particular the Beta Rectangular model without variable dispersion gave the
best fit. Posterior mean and a 95%−credible interval for the parameters under both

www.onpe.gob.pe�
www.pnud.org.pe�
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models without variable dispersion are shown in Table 5.

Table 4: Model comparison measures for the 2006 Peruvian electoral dataset.

Model Runtime∗ DIC EAIC EBIC
Beta 195.11 -675.56 -672.61 -662.81
Beta Rectangular 1070.27 -695.71 -691.51 -678.44
Beta with variable dispersion 248.03 -674.28 -670.27 -657.20
Beta Rectangular with variable dispersion 1046.02 -693.81 -688.58 -672.24
(*) Runtime in seconds for 100000 iterations in an Intel Core i-5 processor with 2.30

GHz and 4.00GB RAM

Table 5: Posterior mean and a 95%−credible interval for the parameters under Beta
and Beta Rectangular regression models for the 2006 Peruvian electoral dataset.

Beta Beta Rectangular
Parameter mean 2.5% 97.5% mean 2.5% 97.5%

β0 2.0472 1.6020 2.5060 2.2603 1.8640 2.6590
β1 -6.2869 -7.1110 -5.4730 -6.6042 -7.3310 -5.8820
φ 80.6561 65.7890 97.9302 107.9722 86.0595 134.0000
α 0.0553 0.0119 0.1255

7 Final Comments

In this paper, we proposed a new regression model for responses measured in the unit
interval. The main advantage of this model is its flexibility for working with data where
there are outlying observations. Indeed, the Beta Rectangular regression includes the
Beta regression model proposed by Ferrari and Cribari-Neto (2004) and the variable
dispersion Beta regression model introduced by Smithson and Verkuilen (2006) as par-
ticular cases. However, other models can be formulated by considering other values of
the mixture parameter between Beta and Uniform distributions.

The Beta Rectangular regression model is easily formulated as the generalization of
the Beta regression model. Furthermore, the implementations of the Bayesian approach
can easily be obtained in WinBUGS or PROC MCMC of SAS.

Simulation studies on the influence of outliers confirm that the Beta rectangular
regression model seems to be a new robust alternative for modeling proportion data
and that the Beta regression model offers sensitivity in the estimation of regression
coefficients, sensitivity on the posterior distribution of all parameters by considering
the Kullback-Liebler divergence as a measure of global influence, and effects on model
comparison criteria (DIC) when data is contaminated under the four outlier patterns
studied. In addition, the two applications presented here show the potential use of the
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Beta Rectangular regression model for practitioners.

We note that WinBUGS may not be that efficient for a large data set, but it does
make Bayesian inference with Beta Rectangular regression models easily accessible for
applied researchers and its generic structure allows for a lot of flexibility in model
specification. From the perspective of a practitioner, we expect that the WinBUGS
code can help to popularize the model. Additional studies including the use of new
Bayesian algorithms (see for example Gamerman and Lopes 2006) are needed to study
how to improve the performance of the MCMC procedure for the Beta Rectangular
regression model when the number of observations is extremely large. Also, a general
Metropolis-Hastings algorithm could run much faster in a programming language, for
example using C++ with R (Eubank and Kupresanin 2012). As pointed out by an
anonymous referee, a possible extension of this work may improve the performance of
the Beta Rectangular regression model when the number of observations is extremely
large.

Additionally, we suggest future work should explore new choices of prior distributions
for φ and α and their corresponding sensitivity studies for these choices, given that
some sensitivity is observed for these parameters. For example we suggest to study
the sensitivity of the choice of the hyperparameter c for the prior distribution φ ∼
Gamma(c, c) as in Ghosh et al. (2009). By contrast, sensitivity was not observed in the
estimates of the coefficients of regression parameters, which were the main focus of our
analysis in this paper.

Also, diagnostic tools in Beta rectangular regression can be considered in future
work, for instance in using the Kullback-Liebler divergence as a diagnostic measure for
each observation as in Peng and Dey (1995) and Cho et al. (2009), and local influence
and residual analysis as proposed by Ferrari et al. (2011) could be formulated from a
Bayesian perspective.

Appendix

The WinBUGS code for a Beta Rectangular regression model with logit link for the
mean parameter, a log link for the precision parameter and a single continuous covari-
ate is presented below. For example, in the electoral dataset, x denotes HDI and y
denotes the proportion of blank votes of an electoral district. The hyperparameters in
the priors for all the parameters need to be specified by the user.

model{
for(i in 1 : n) {
y[i] ~ dbeta(a[i,u[i]], b[i,u[i]])

v[i] ~ dbern(theta[i])
u[i]<-v[i]+1

a[i,1] <- mu[i]*phi[i]
b[i,1] <- (1-mu[i])*phi[i]
a[i,2] <- 1
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b[i,2] <- 1

logit(gamma[i]) <- beta0.star+beta1 * (x[i] -mean(x[]))
log(phi[i]) <- -delta0.star-delta1 * (x[i] -mean(x[]))

theta[i]<-alpha*(1-2*abs(gamma[i]-.5))
mu[i]<-(gamma[i]-0.5*theta[i])/(1-theta[i])
}

beta1 ~dnorm (,)
beta0.star ~dnorm (,)
beta0<-beta0.star-beta1 * mean(x[])

delta1 ~dnorm (,)
delta0.star ~dnorm (,)
delta0<-delta0.star-delta1 * mean(x[])

alpha.star ~ dunif(0,1)
}
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Espinheira, P., Ferrari, S., and Cribari-Neto, F. (2008a). “Influence diagnostics in beta
regression.” Computational Statistics & Data Analysis, 52(9): 4417–4431. 842

— (2008b). “On Beta Regression Residuals.” Journal of Applied Statistics, 35(4):
407–419. 842

Eubank, R. L. and Kupresanin, A. (2012). Statistical Computing in C++ and R .
Chapman & Hall/CRC. 861

Ferrari, S. and Cribari-Neto, F. (2004). “Beta regression for modelling rates and pro-
portions.” Journal of Applied Statistics, 31: 799–815. 841, 842, 843, 845, 847,
860

Ferrari, S., Espinheira, P. L., and Cribari, F. (2011). “Diagnostic Tools in Beta Regres-
sion with Varying Dispersion.” Statistica Neerlandica, 65: 337–351. 842, 861

Gamerman, D. and Lopes, H. F. (2006). Markov Chain Monte Carlo: Stochastic Sim-
ulation for Bayesian Inference. Chapman & Hall/CRC. 861
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