A New RSA-Based Signature Scheme

Sven Schäge, Jörg Schwenk

Horst Görtz Institute for IT-Security

Africacrypt 2010

 Naïve RSA signature scheme not secure under the standard definition of security – adaptive chosen message attacks [GMR99].

- Naïve RSA signature scheme not secure under the standard definition of security – adaptive chosen message attacks [GMR99].
- RSA assumption is weaker than popular Strong RSA (SRSA) assumption. In contrast to SRSA: adversary is not allowed to choose from an exponentially large set of solutions.

- Naïve RSA signature scheme not secure under the standard definition of security – adaptive chosen message attacks [GMR99].
- RSA assumption is weaker than popular Strong RSA (SRSA) assumption. In contrast to SRSA: adversary is not allowed to choose from an exponentially large set of solutions.
- Only recently, in CRYPTO'09, Hohenberger and Waters (HW) presented the first hash-and-sign signature scheme that is solely secure under the RSA assumption.

- Naïve RSA signature scheme not secure under the standard definition of security – adaptive chosen message attacks [GMR99].
- RSA assumption is weaker than popular Strong RSA (SRSA) assumption. In contrast to SRSA: adversary is not allowed to choose from an exponentially large set of solutions.
- Only recently, in CRYPTO'09, Hohenberger and Waters (HW) presented the first hash-and-sign signature scheme that is solely secure under the RSA assumption.
- In this work: alternative RSA-based signature scheme with additional properties that are useful in privacy preserving systems.

 A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)

- A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)
- The SRSA-based Camenisch-Lysyanskaya (CL) scheme has proven very useful in many privacy preserving systems. Popular examples: Direct Anonymous Attestation (DAA), compact E-Cash. (Observation 2)

- A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)
- The SRSA-based Camenisch-Lysyanskaya (CL) scheme has proven very useful in many privacy preserving systems. Popular examples: Direct Anonymous Attestation (DAA), compact E-Cash. (Observation 2)
- Three useful properties of CL scheme:

- A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)
- The SRSA-based Camenisch-Lysyanskaya (CL) scheme has proven very useful in many privacy preserving systems. Popular examples: Direct Anonymous Attestation (DAA), compact E-Cash. (Observation 2)
- Three useful properties of CL scheme:
 - Signature scheme supports signing several message blocks.

- A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)
- The SRSA-based Camenisch-Lysyanskaya (CL) scheme has proven very useful in many privacy preserving systems. Popular examples: Direct Anonymous Attestation (DAA), compact E-Cash. (Observation 2)
- Three useful properties of CL scheme:
 - Signature scheme supports signing several message blocks.
 - 2 There exist efficient (NIZK) protocols (in the ROM) to sign committed values.

- A single HW signature can be interpreted as a combination of several Gennaro-Halevi-Rabin signatures. (Observation 1)
- The SRSA-based Camenisch-Lysyanskaya (CL) scheme has proven very useful in many privacy preserving systems. Popular examples: Direct Anonymous Attestation (DAA), compact E-Cash. (Observation 2)
- Three useful properties of CL scheme:
 - Signature scheme supports signing several message blocks.
 - There exist efficient (NIZK) protocols (in the ROM) to sign committed values.
 - 3 There exist efficient (NIZK) protocols (in the ROM) for proving knowledge of a signature without revealing it.

Idea: Combine Observation 1 & Observation 2

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:
 - Starting point CL scheme: CL proof considers three types of forgery.

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:
 - Starting point CL scheme: CL proof considers three types of forgery.
 - Key observation: two of these forgeries already reduce security to the RSA assumption.

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:
 - Starting point CL scheme: CL proof considers three types of forgery.
 - Key observation: two of these forgeries already reduce security to the RSA assumption.
 - Remaining type of forgery can be dealt with using the new proving techniques of HW.

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:
 - Starting point CL scheme: CL proof considers three types of forgery.
 - Key observation: two of these forgeries already reduce security to the RSA assumption.
 - Remaining type of forgery can be dealt with using the new proving techniques of HW.
 - In particular: integrate that for a string *X* all prefixes of *X* are processed as well.

- Idea: Combine Observation 1 & Observation 2
 - Construct signatures that can be interpreted as the combination of several CL signatures. Perhaps the decisive properties of the CL scheme can still be found in the new construction!
- Technique:
 - Starting point CL scheme: CL proof considers three types of forgery.
 - Key observation: two of these forgeries already reduce security to the RSA assumption.
 - Remaining type of forgery can be dealt with using the new proving techniques of HW.
 - In particular: integrate that for a string *X* all prefixes of *X* are processed as well.
 - Modified scheme still allows to reduce the first two forgeries to the RSA assumption (although the proof is slightly more complicated).

Advantages

Disadvantages

- Advantages
 - New scheme supports signing several message blocks

Disadvantages

Advantages

- New scheme supports signing several message blocks
- New scheme allows to sign committed values

Disadvantages

- New scheme supports signing several message blocks
- New scheme allows to sign committed values
- Proof technique can be transferred to Cramer-Shoup, Fischlin and Zhou signature scheme ⇒ Several new RSA-based signature schemes!
- Disadvantages

- New scheme supports signing several message blocks
- New scheme allows to sign committed values
- Proof technique can be transferred to Cramer-Shoup, Fischlin and Zhou signature scheme ⇒ Several new RSA-based signature schemes!
- Disadvantages
 - Signatures are larger than in HW (by just a single exponent)

- New scheme supports signing several message blocks
- New scheme allows to sign committed values
- Proof technique can be transferred to Cramer-Shoup, Fischlin and Zhou signature scheme ⇒ Several new RSA-based signature schemes!
- Disadvantages
 - Signatures are larger than in HW (by just a single exponent)
 - Signature generation and verification take more time

- New scheme supports signing several message blocks
- New scheme allows to sign committed values
- Proof technique can be transferred to Cramer-Shoup, Fischlin and Zhou signature scheme ⇒ Several new RSA-based signature schemes!
- Disadvantages
 - Signatures are larger than in HW (by just a single exponent)
 - Signature generation and verification take more time
 - Until now: No efficient (NIZK) protocols for proving knowledge of a signature without revealing it. – Future Work!

• RSA-based signature schemes in the standard model

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)
 - HW (CRYPTO'09)

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)
 - HW (CRYPTO'09)
- RSA-like (i.e. SRSA-based) hash-and-sign signature schemes in the standard model

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)
 - HW (CRYPTO'09)
- RSA-like (i.e. SRSA-based) hash-and-sign signature schemes in the standard model
 - Gennaro-Halevi-Rabin (EC'99)

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)
 - HW (CRYPTO'09)
- RSA-like (i.e. SRSA-based) hash-and-sign signature schemes in the standard model
 - Gennaro-Halevi-Rabin (EC'99)
 - Cramer-Shoup (ACM Trans. Inf. Syst. Sec.'00)

- RSA-based signature schemes in the standard model
 - Tree-based signature schemes (Dwork-Noar CRYPTO'94 and more efficient Cramer-Damgard CRYPTO'96)
 - Stateful signature scheme (Hohenberger-Waters EC'09)
 - HW (CRYPTO'09)
- RSA-like (i.e. SRSA-based) hash-and-sign signature schemes in the standard model
 - Gennaro-Halevi-Rabin (EC'99)
 - Cramer-Shoup (ACM Trans. Inf. Syst. Sec.'00)
 - Zhou (Chin. Journ. of Elec.'01), Camenisch-Lysyankaya (SCN'02), Fischlin (PKC'03),

Definition (RSA assumption (RSA))

Given an RSA modulus n = pq, where p, q are sufficiently large primes, a prime $\alpha < \phi(n)$ with $gcd(\alpha, \phi(n)) = 1$, and an element $u \in \mathbb{Z}_n^*$, we say that the $(t_{\text{RSA}}, \epsilon_{\text{RSA}})$ -RSA assumption holds if for all t_{RSA} -time adversaries \mathcal{A}

$$\Pr\left[(x) \leftarrow \mathcal{A}(n, u, \alpha), \ x \in \mathbb{Z}_n^*, \ x^{\alpha} = u \bmod n\right] \le \epsilon_{\mathsf{RSA}},$$

where the probability is over the random choices of u, n, α and the random coins of A.

Prime Mapping Function t(X)

• Very similar to HW except that prime mapping function may not be compressive!

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:
 - pseudo-random permutation $f_k : \{0,1\}^{l_x} \to \{0,1\}^{l_x}$ with key k.

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:
 - pseudo-random permutation $f_k : \{0,1\}^{l_x} \to \{0,1\}^{l_x}$ with key k.
 - random value $s \in_R \{0, 1\}^{l_X}$.

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:
 - pseudo-random permutation $f_k : \{0,1\}^{l_X} \to \{0,1\}^{l_X}$ with key k.
 - random value $s \in_R \{0, 1\}^{l_X}$.
- Prime mapping function $t: t(X) := nextprime(s \oplus f_k(X))$

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:
 - pseudo-random permutation $f_k : \{0,1\}^{l_x} \to \{0,1\}^{l_x}$ with key k.
 - random value $s \in_R \{0, 1\}^{l_X}$.
- Prime mapping function $t: t(X) := nextprime(s \oplus f_k(X))$
- Let $X \in \{0,1\}^{l_X}$ and define $X^{(i)} := 0^{l_X i} x_1 \dots x_i \in \{0,1\}^{l_X}$ for all $i \in [l_X]$. (Prefix of X that consists of the first *i* bits).

For convenience: $T(X) := \prod_{i=1}^{t_X} t(X^{(i)})$

- Very similar to HW except that prime mapping function may not be compressive!
- Ingredients:
 - pseudo-random permutation $f_k : \{0,1\}^{l_x} \to \{0,1\}^{l_x}$ with key k.
 - random value $s \in_R \{0,1\}^{l_X}$.
- Prime mapping function $t: t(X) := nextprime(s \oplus f_k(X))$
- Let $X \in \{0,1\}^{l_X}$ and define $X^{(i)} := 0^{l_X i} x_1 \dots x_i \in \{0,1\}^{l_X}$ for all $i \in [l_X]$. (Prefix of X that consists of the first *i* bits).

For convenience: $T(X) := \prod_{i=1}^{i_X} t(X^{(i)})$

• Lemma[HW]: Given $q = q(\kappa)$ distinct input values, the probability that t(X) collides is negligible.

A New RSA-Based Signature Scheme ${\mathcal S}$ (slightly simplified)

• **Gen**(1^{κ}): computes a balanced and safe RSA modulus n = pqand three random generators e, f, g of QR_n . Additionally, it draws $k \in_R \mathcal{K}$ and $s \in_R \{0, 1\}^{l_X}$. PK = (n, e, f, g, k, s), SK = (p, q).

A New RSA-Based Signature Scheme ${\mathcal S}$ (slightly simplified)

- **Gen**(1^{κ}): computes a balanced and safe RSA modulus n = pqand three random generators e, f, g of QR_n . Additionally, it draws $k \in_R \mathcal{K}$ and $s \in_R \{0, 1\}^{l_X}$. PK = (n, e, f, g, k, s), SK = (p, q).
- **Sign**(SK, m): chooses $r \in_R \{0, 1\}^{l_r}$ and $X \in_R \{0, 1\}^{l_X}$:

$$z = (ef^m g^r)^{1/T(X)} \bmod n.$$

The final signature is $\sigma = (z, X, r)$

A New RSA-Based Signature Scheme ${\mathcal S}$ (slightly simplified)

- **Gen**(1^{κ}): computes a balanced and safe RSA modulus n = pqand three random generators e, f, g of QR_n . Additionally, it draws $k \in_R \mathcal{K}$ and $s \in_R \{0, 1\}^{l_X}$. PK = (n, e, f, g, k, s), SK = (p, q).
- **Sign**(SK, m): chooses $r \in_R \{0, 1\}^{l_r}$ and $X \in_R \{0, 1\}^{l_X}$:

$$z = (ef^m g^r)^{1/T(X)} \bmod n.$$

The final signature is $\sigma = (z, X, r)$

• **Verify** (PK, m, σ) : checks if it holds for (z, X, r) that

$$z^{T(X)} \stackrel{?}{=} ef^m g^r \bmod n.$$

Theorem

Assume the $(t_{RSA}, \epsilon_{RSA})$ -RSA assumption holds. Then, S is (q, t, ϵ) -secure against adaptive chosen message attacks provided that

$$\begin{split} q &= q_{\text{RSA}}, \ t \approx t_{\text{RSA}}, \\ \epsilon &\leq 9 q l_X \epsilon_{\text{RSA}}/2 + \textit{negl}(\kappa). \end{split}$$

Signing Message Blocks

- Gen(1^k): is the same as in our main RSA scheme except that it now chooses u + 2 generators e, f₁,..., f_u, g of QR_n.
- **Sign** $(SK, m_1, ..., m_u,)$: to sign a message the signer draws random values $r \in \{0, 1\}^{l_r}$ and $X \in \{0, 1\}^{l_X}$. Next, it computes

$$z = \left(eg^r \prod_{i=1}^u f_i^{m_i}\right)^{1/T(X)} \bmod n.$$

The final signature is $\sigma = (z, X, r)$

• *Verify*($PK, m_1, \ldots, m_u, \sigma$): to verify a signature (z, X, r) the verifier checks whether

$$z^{T(X)} \stackrel{?}{=} eg^r \prod_{i=1}^u f_i^{m_i} \bmod n$$

Protocol for Signing Commited Values

• Interactive ZK protocol between signer *s* and user *u*.

Protocol for Signing Commited Values

- Interactive ZK protocol between signer *s* and user *u*.
- Very similar to protocol for CL.

Protocol for Signing Commited Values

- Interactive ZK protocol between signer *s* and user *u*.
- Very similar to protocol for CL.
- Idea: if *u* successfully proves knowledge of a committed value *m*, then *s* processes the corresponding commitment such that the result is a signature on *m*.

The End

Thank you for your attention. Any questions?