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A New SAR Image Segmentation 
Algorithm for the Detection of 
Target and Shadow Regions
Shiqi Huang, Wenzhun Huang & Ting Zhang

The most distinctive characteristic of synthetic aperture radar (SAR) is that it can acquire data under 

all weather conditions and at all times. However, its coherent imaging mechanism introduces a great 

deal of speckle noise into SAR images, which makes the segmentation of target and shadow regions 

in SAR images very difficult. This paper proposes a new SAR image segmentation method based on 
wavelet decomposition and a constant false alarm rate (WD-CFAR). The WD-CFAR algorithm not only 

is insensitive to the speckle noise in SAR images but also can segment target and shadow regions 
simultaneously, and it is also able to effectively segment SAR images with a low signal-to-clutter 
ratio (SCR). Experiments were performed to assess the performance of the new algorithm on various 

SAR images. The experimental results show that the proposed method is effective and feasible and 
possesses good characteristics for general application.

Image segmentation is fundamental to the �elds of image analysis, image understanding, and image pattern rec-
ognition. It is also an important part of image processing. For this reason, image segmentation has been widely 
used in many �elds, such as biomedicine, remote sensing, video communication, public security, transportation, 
agriculture, environmental analysis, ecology, geology, weather prediction, disaster assessment, and search and 
rescue1–3. With the continuing development of image segmentation technology and theory, its range of practical 
applications may further increase. Although an image can provide a large amount of useful information, only 
some parts of each image are relevant, whereas others are not. �e region of interest (ROI) in an image is o�en 
called the target region, and other regions are called background regions. Image segmentation is the process of 
partitioning an entire image into disjoint and homogeneous regions based on certain criteria. Image segmenta-
tion divides an image into several parts. Each part is an independent, physically meaningful area that acts as a 
unit. �ese individual regions do not overlap each other, and although the information contained in each seg-
mented region has similar characteristics, these characteristics di�er across di�erent segmented regions.

�e theory and methods of image segmentation are very well developed. To date, more than one thousand 
image segmentation methods (algorithms) have been proposed, and new image segmentation algorithms are 
still being continuously introduced4–12. Although there are various types of image segmentation algorithms, each 
algorithm is usually tailored to a certain application background before it is presented. �ere is currently no 
single theory or method, no universal segmentation framework that can be used on any and all images. �ere is 
also no uniform standard for the assessment of segmentation results, and this process still largely relies on visual 
analysis and personal judgment. In general, image segmentation methods can be divided into four categories: (1) 
threshold-based image segmentation, (2) edge-detection-based image segmentation, (3) region-growth-based 
image segmentation, and (4) speci�c-theory-based image segmentation. �reshold segmentation involves the use 
of image gray values to segment images. It encompasses both single-threshold segmentation and multi-threshold 
segmentation. �e advantage of threshold segmentation is that it is simple and easy to perform, and its dis-
advantage is that it is suitable only for images with strong contrast between the target and background areas. 
Edge detection involves detecting and connecting edge points to produce a sub-image with boundaries that seg-
ment the image of interest. Methods of edge detection segmentation can be divided into groups based on the 
techniques used for edge detection, such as serial edge detection segmentation and parallel edge detection seg-
mentation. Region segmentation is usually performed based on statistical features, which are used to divide an 
image into di�erent subregions. Typical methods for region segmentation include the region-growing method, 
the split-and-merge method, and the watershed method. Improvements in science and technology have allowed 
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users to combine image segmentation with a wide variety of speci�c theories and technologies, which has led 
to many new theories and methods of image segmentation13–15. �ese new methods have produced very good 
segmentation results.

Synthetic aperture radar (SAR) is a form of active microwave imaging radar. Its most distinctive characteristic 
is that it can be used to collect remote sensing data under all weather conditions and at all times; consequently, 
it has been widely used in both civilian and military applications. However, its coherent imaging mechanism 
produces images that always contain a large amount of speckle noise, which makes the segmentation and use 
of SAR images very challenging. When an image segmentation algorithm is directly applied to segment a SAR 
image, it is very di�cult to achieve an ideal segmentation e�ect. For this reason, many scholars have used the 
characteristics of SAR images and their speci�c application backgrounds to develop many di�erent segmentation 
algorithms that are tailored particularly for SAR images16–19. �ese algorithms can be divided into two categories 
based on the purpose of segmentation. One category consists of image segmentation methods meant to extract a 
target of interest; the other consists of image segmentation methods designed to classify ground objects. In terms 
of their approaches to image segmentation and reducing the amount of speckle noise in SAR images, SAR image 
segmentation methods can be divided into direct image segmentation methods and post-�ltered image segmen-
tation methods. In direct SAR image segmentation, which generally involves the statistical modeling of SAR data, 
the removal of speckle noise is considered in the segmentation model. Representative algorithms include image 
segmentation based on a constant false alarm rate (CFAR)20, image segmentation based on Markov random �eld 
(MRF)21,22 and image segmentation based on edge detection23.

Image segmentation algorithms based on CFAR detection function as follows. Initially, each image’s sta-
tistical characteristics are estimated, and a threshold is determined. �en, the gray level value of each pixel 
in the image is compared against the threshold value. Finally, the image is segmented. �e advantage of the 
CFAR-detection-based segmentation algorithm is its fast segmentation speed; its disadvantage is that it considers 
only the gray information in the image and does not consider spatial information, and consequently, the segmen-
tation results o�en contain speckle noise, which renders this approach impractical. Although the MRF-based 
SAR image segmentation algorithm considers the spatial neighborhood structure of every pixel, its shortcomings 
are also considerable. For example, the amount of data to be processed is large, the convergence speed is slow, 
many parameters need to be adjusted, and it is very di�cult to optimize. Meanwhile, the edge-detection-based 
SAR image segmentation algorithm can be profoundly a�ected by speckle noise. When there is a large amount of 
speckle noise in a SAR image, it is o�en relatively di�cult for the edge detection operators to produce good edge 
maps, which makes it di�cult to accurately estimate the positions of the edge pixels.

Based on the characteristics of SAR images and using CFAR detectors and multi-scale wavelet decomposition 
theory, this paper proposes a new kind of SAR image segmentation algorithm based on wavelet decomposition 
and the CFAR approach, called the WD-CFAR algorithm. �e algorithm �rst performs wavelet decomposition 
on the SAR image; next, it selects several high-frequency coe�cient sub-images for CFAR detection and then per-
forms an inverse wavelet transform and subtracts the mean value from the image; and �nally, it performs a second 
round of CFAR detection to identify the target and shadow regions in the SAR image. �e WD-CFAR algorithm 
has the following advantages: (1) it is not sensitive to speckle noise, i.e., it reduces the in�uence of speckle noise 
on SAR image segmentation; (2) unlike single CFAR detectors, it does not require high contrast between the 
target and background; (3) it can detect the target and shadow regions simultaneously; (4) it can segment weak 
scattering targets in SAR images, such as runways and highways; and (5) it o�ers strong adaptability for use with 
di�erent types of SAR images, especially those of low and moderate resolution. �e current paper makes several 
contributions to the �eld. �e �rst is the conceptual design for two-tiered CFAR detection; the second is the 
combination of multi-scale wavelet decomposition with CFAR detectors; the third is the improvement in segmen-
tation performance achieved through the subtraction of the mean value; and the fourth is the provision of an ave-
nue for the segmentation of target and shadow regions of di�erent re�ection intensities. Tests of the WD-CFAR 
algorithm on practical SAR image data have shown it to be an e�ective and feasible segmentation algorithm.

CFAR detection algorithm and wavelet decomposition theory
CFAR detection algorithm. CFAR detection is a common method of radar target detection. It involves 
estimating a detection threshold based on the background against which a target is to be detected. Because of 
its simple calculation, constant rate of false positives (false alarms), adaptive threshold adjustment, and rapid 
detection, the CFAR approach has been widely studied and applied for target detection and segmentation in SAR 
images24,25. In SAR images, a target is o�en located in a complex background environment. �is is especially true 
of certain small targets, weakly scattering targets, and concealed targets. If only a �xed threshold is used for target 
detection, it is very di�cult to achieve ideal performance. For this reason, most forms of SAR target detection 
require an adaptive threshold detector. �e CFAR detector is appropriate for automatic methods of threshold 
detection based on pixel levels, in which adaptive threshold selection and determination are performed relative 
to the statistical distribution model of the background region in which the target is located and the rate of false 
alarms is constant. If the rate of false alarms is known, then analysis of the statistical distribution characteristics 
of a SAR image can be used to determine the detection threshold for target detection or segmentation. �e CFAR 
detector usually requires there to be a strong contrast between the target and background regions. In the case 
presented here, it has been found to perform better than other methods. �e WD-CFAR algorithm proposed in 
this paper combines two-tiered CFAR detection with wavelet decomposition to overcome this disadvantage of 
CFAR detection.

�e key to SAR target detection based on the CFAR approach is the determination of the detection threshold. 
It is an adaptive detection technology, and when the background is known and the rate of false alarms is constant, 
its performance depends on the chosen threshold. �ere is a very close relationship between the determination 
of the threshold T and the background clutter distribution model of the SAR image of image. Let the probability 
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density functions for the background and target regions in the SAR image be denoted by pB(x) and pT(x), respec-
tively. �en, the de�nitions of the false alarm rate Pf and the detection rate Pd are given by Equations (1) and (2), 
respectively.

∫=
∞

P P x( )dx
(1)T

f B

∫=P P x( )dx
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�e threshold T can be determined by solving Equation (3).
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Here, Pf denotes the probability of false alarms. Di�erent values of Pf can produce di�erent values of T. �e pos-
sible types of clutter distributions in SAR images mainly include the lognormal, Rayleigh, Weibull, K, Gamma, 
and Pearson distributions. �e Rayleigh distribution is a special case of the Weibull distribution. �e detection 
rule is as follows.
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Here, I(i, j) denotes the gray value of the pixel at point (i, j); a value of 1 indicates a target region, and a value of 0 
indicates a background region.

Wavelet decomposition theory. Using the multi-scale wavelet technique to decompose an image pro-
duces a pyramid structure of decomposition coe�cients. When an image is decomposed using a two-dimensional 
discrete wavelet transform, each decomposition operation produces one low-frequency sub-image (LL) and 
three high-frequency sub-images, i.e., a horizontal sub-image (LH), a vertical sub-image (HL), and a diagonal 
sub-image (HH). �e next level of wavelet decomposition is then applied to the low-frequency sub-image LL 
that is obtained via decomposition at the previous level. Similarly, this process also produces one low-frequency 
sub-image and three high-frequency sub-images. This process is repeated until the decomposition reaches 
level N, which is the number of pre-set decomposition levels (scales). Sub-images obtained at low scales re�ect 
high-frequency information, and sub-images obtained at high scales re�ect low-frequency information. �e 
highest scale contains more than 95% of the energy, but the majority of it is background and trend information. 
�e process of two-dimensional wavelet decomposition is illustrated in Fig. 1.

Figure 1 shows a decomposition process with two scales. As shown in Fig. 1, 3N +  1 sub-images have 
been produced once an image has been decomposed at level N. Furthermore, with an increment of one in the 
decomposition scale, the size of the corresponding sub-images is 1/2 that of the sub-images at the next higher 
scale. Specifically, two-dimensional discrete wavelet decomposition is a process of down-sampling by two. 
In the WD-CFAR algorithm, however, instead of a two-dimensional discrete wavelet transform (DWT), a 
two-dimensional stationary wavelet transform (SWT) is used, which does not perform down-sampling by two. 
�erefore, the sub-images obtained using the two-dimensional SWT are of the same size as the original image.

�e most important step in two-dimensional wavelet decomposition is to determine the number of decom-
position scales, N. If this number is too low, full use cannot be made of the advantages of wavelet decomposition. 
If the number of scales is too high, the decomposition coe�cients obtained at higher scales cannot yield any new 
low-frequency information. �e most suitable decomposition scale is called the optimal scale, which is repre-
sented here by the variable r. �e optimal scale can be determined by considering that boundary and homoge-
neous regions consist of pixels at di�erent scales. At a low resolution, the pixels in a boundary or homogenous 
region can be used to determine whether any other pixel in that region is unreliable. At these decomposition 
scales, the detail and edge information can be ignored in the decomposition process. For some pixels, however, 
not only the edge information but also the geometric details are needed to determine whether the scale of that 
pixel is stable or optimal.

Figure 1. Schematic illustration of wavelet transformations performed on an image. 
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At a given scale n, the multi-scale local coe�cient of variation (LCVn) is used to determine whether a given 
pixel belongs to an edge region or a homogenous region26. �e coe�cient of variation can be used to index and 
describe the degree of local non-homogeneity in SAR images; it also serves as a theoretical value that re�ects the 
intensity of speckle noise. �e de�nition of LCVn is given as follows.

σ

=LCV i j
i j

I i j
( , )

( , )

( , ) (5)
n

n

n

Here, σ n(i, j) and In(i, j) represent the local standard deviation and mean, respectively. Equation (5) is used to cal-
culate the local coe�cient of variation at spatial position (i, j) at decomposition scale n, where n = 1, 2, ···, N − 1, 
N and N represents the highest scale of the wavelet decomposition.

To improve the accuracy of the calculation, a sliding window is used to compute LCVn, and the size of that slid-
ing window is determined by the user. If the sliding window is too small, the local statistical parameters become 
less reliable; if the sliding window is too large, the sensitivity to geometric details decreases. �erefore, the size 
of the sliding window should be chosen by considering the balance between these two properties. Experiments 
have shown that a sliding window with dimensions of 5 ×  5 or 7 ×  7 is generally suitable. �e relationship between 
the sliding window size and the optimal decomposition scale is discussed in detail in the experimental sections. 
�e coe�cient of variation is an estimate of the heterogeneity of the scene; a low value indicates a homogeneous 
region, and a high value indicates a non-homogeneous region (such as an edge or point target). To judge between 
similar regions and heterogeneous regions, a threshold must be de�ned. At decomposition scale n, the global 
coe�cient of variation (GCVn) represents the homogeneity of similar regions; it is de�ned as follows.

σ

=GCV
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Here, σ n and In denote the standard variance and mean of the coe�cient sub-image at decomposition scale n. At a 
given scale, regions can be identi�ed as similar when their coe�cients of variation satisfy the following condition.

≤LCV i j GCV( , ) (7)n n

If all pixels satisfy the condition given in Equation (7) at a decomposition scale n, then this decomposition 
scale n can be considered the optimal scale r (r = n, where n =  1, 2, … , N − 1, N).

Principle of the WD-CFAR algorithm
SAR imaging is the process of mapping from scattering feature space to image space. During this process, speckle 
noise is introduced that affects SAR image segmentation, but radar imaging system parameters (incidence 
angle, polarization, frequency) and ground surface parameters (roughness, dielectric constant) can also a�ect 
SAR image segmentation. For this reason, the fact that di�erent targets in SAR images usually re�ect di�erent 
amounts of light becomes relevant. For example, airport runways and still water are dark in SAR images, whereas 
other man-made objects, such as vehicles and houses, are bright. �ese factors hinder SAR target and shadow 
segmentation.

A SAR image that contains small, weakly scattering and concealed targets usually has a low signal-to-clutter 
ratio (SCR) or signal-to-noise ratio (SNR), and it is very di�cult to completely segment these target regions using 
conventional methods.

�e WD-CFAR algorithm proposed in this paper uses two-tiered CFAR detection to overcome the obstacle of 
low contrast between the target and background regions, and it also incorporates multi-scale wavelet decompo-
sition to its sensitivity to speckle noise. A �owchart of the WD-CFAR algorithm is shown in Fig. 2, and the steps 
of the algorithm are as follows.

 (1)  Input the SAR image. �e original SAR image is entered into the system for segmentation. Notably, the SAR 
image segmentation process discussed herein is focused on target region segmentation rather than ground 
target classi�cation. If there is a shadow region and it is part of the ROI, then that region will be segmented. 
�erefore, the target or shadow region of interest occupies only part of the entire SAR image.

 (2)  Select the wavelet function. �ere are many types of wavelet functions, and di�erent wavelet functions pro-
duce di�erent results because of the di�erences in their structures. �e Daubechies (dbM) wavelet family 
has a compact support set, and its members are orthogonal and regular. �eir regularity increases as the 
sequence number M increases. �e Daubechies 4 (db4) wavelet function not only exhibits better denoising 
performance but also involves simpler decomposition and reconstruction of the �lter coe�cients. For this 
reason, the db4 wavelet function is preferred for the decomposition of SAR images using the WD-CFAR 
algorithm.

 (3)  Perform multi-scale wavelet decomposition. �e input SAR image is decomposed via a multi-scale decom-
position operation using the wavelet function selected in step (2), and several sub-images are obtained at 
di�erent scales. �e most important step is to determine the optimal decomposition scale r, as presented in 
the previous section. N is the total number of decomposition scales. Simultaneously, the two-dimensional 
SWT is applied to decompose the SAR image.

 (4)  Select the coe�cient sub-images to be used in the �rst-round CFAR process. When the SAR image is sub-
jected to wavelet decomposition, if the decomposition scale is N, the process will produce 3 N +  1 coe�cient 
sub-images. In the �rst round of CFAR detection, not all of these sub-images are subjected to CFAR detec-
tion; instead, only some of the sub-images are selected for detection. As the decomposition scale increases, 
the sub-images contain fewer high-frequency components, and thus, the noise and target information is 
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collected mainly in the low-scale sub-images; high-scale sub-images mainly contain background clutter in-
formation. For this reason, the WD-CFAR algorithm selects only low-scale coe�cient sub-images on which 
to perform CFAR detection segmentation. �e selected scale is called the feature scale, and it is denoted by 

Figure 2. Flowchart of the WD-CFAR algorithm. 
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nF, nF ≤  r. In the WD-CFAR algorithm, nF =  2. �us, the coe�cient sub-images at the �rst and second scales 
are selected, and these selected sub-images are used to perform the �rst round of CFAR detection segmen-
tation. �e selection principle for the feature scale nF is described in detail in the experimental sections.

 (5)  Input the CFAR I detector. �e purpose of this step is to set the false alarm rate Pf, which is constant. Dif-
ferent false alarm rates can a�ect the SAR image segmentation results. Di�erent SAR images may also yield 
di�erent rates of false alarms.

 (6)  Perform detection operations on the selected sub-images using the CFAR I detector. Using the previously 
set false alarm rate and the selected coe�cient sub-images, CFAR detection segmentation is performed to 
obtain the �rst round of segmentation results.

 (7)  Perform the inverse wavelet transform. All decomposed wavelet coe�cient sub-images, including both the 
sub-images that were selected for CFAR detection processing and those that were not selected, are subjected 
to reconstruction operations, i.e., the inverse wavelet transform. �is produces a new SAR image following 
the �rst round of detection with the CFAR I detector.

 (8)  Input the �nal purpose of SAR image segmentation. When segmenting a SAR image that includes man-
made objects, there are three modes that can be chosen. �e �rst is the segmentation of the target region, the 
second is the segmentation of the shadow cast by the target, and the third is the segmentation of both, i.e., 
the segmentation of the target and shadow regions.

 (9)  Subtract the mean value. �e SAR image obtained a�er CFAR detection is subjected to the mean value 
removal operation. In the previous steps of the work�ow, no processing has been performed on the low-fre-
quency components of the SAR image because they include only background clutter information, which is 
not the goal of segmentation. Essentially, the subtraction of the mean value is equivalent to the removal of 
background clutter components to improve performance in the second round of segmentation processing 
using the CFAR II detector. Simultaneously, the operation also removes much of the speckle noise intro-
duced by the SAR imaging mechanism.

�e method used to subtract the mean value di�ers depending on the speci�c purpose of the current 
segmentation process. �is can a�ect the �nal segmentation results. If the components of the SAR image to 
be extracted or segmented include the target region, then Equation (8) is used for mean value subtraction.

µ= −I i j I i j( , ) ( , ) (8)T WD WD

Here, IWD(i, j) denotes the SAR image that has been processed via wavelet decomposition, µWD is the mean 
value of IWD(i, j), and IT(i, j) is the image of the target region a�er the mean value has been subtracted from 
IWD(i, j).

If the purpose is to segment the shadow region, then the mean value subtraction is performed as follows.

µ= −I i j I i j( , ) ( , ) (9)S WD WD

In Equation (9), IS(i, j) is the shadow region created by the man-made target in the SAR image.
If the regions to be segmented include both the target and shadow regions in the SAR image, the mean 

value subtraction operation is performed using Equation (10).

= +I i j I i j I i j( , ) ( , ) ( , ) (10)TS T S

Here, ITS(i, j) represents the region consisting of the target and its shadow, which are segmented simul-
taneously. Note that IT(i, j) and IS(i, j) are computed using Equations (8) and (9), respectively. �at is, 
Equation (10) cannot be calculated through direct addition operations as Equations (8) and (9) are. �ese 
calculations must be performed separately.

(10)  Obtain the �rst-round segmentation image Îseg(i, j). A�er the processing described above, the image will 
contain mainly target (or shadow) region components. However, it will also include some background in-
formation, so it must be subjected to a further segmentation process.

(11)  Input the CFAR II detector. As in the case of the CFAR I detector, the key step is to set the false alarm rate; 
however, this value will be lower for the CFAR II detector than for the CFAR I detector.

(12)  Perform the second round of CFAR detection and segmentation processing. �e application of the CFAR II 
detector completes the second round of detection and segmentation for the SAR image. A�er this round of 
processing, the �nal segmented version of the SAR image, Iseg(i, j), is produced.

Experimental results and analysis
Segmentation experiments on various SAR images using different algorithms. To demonstrate 
and con�rm the feasibility of the WD-CFAR algorithm, several comparative experiments were performed. �e 
�rst experiment addressed SAR image segmentation using the WD-CFAR algorithm, and the experimental results 
are shown in Fig. 3. Figure 3(a) shows the various original SAR images, labeled as Fig. 3(A–C). �e SAR image 
data presented in Fig. 3(A) were obtained from the public MSTAR (Moving and Stationary Target Acquisition 
and Recognition) database. �e target region contains several tanks, and the image size is 128 ×  128. �e SAR 
image data shown in Fig. 3(B,C) were obtained from the open image database of Sandia National Laboratories. 
�e image presented in Fig. 3(B) contains various military vehicles and tanks, and its size is 512 ×  400. �e image 
presented in Fig. 3(C) shows an airport runway target, and its size is 400 ×  400. For the image in Fig. 3(C), the 
purpose of segmentation was to segment the airport runway and airport buildings; however, the runway is a 
weakly scattering target, so in this experiment, it was treated as a shadow region for processing. �ese SAR images 
share two common characteristics. First, they are all airborne SAR images; second, they are low-SNR or low-SCR 
images.
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�e SNR of an image is de�ned as the ratio between the power spectra of the signal and the noise. It is very 
di�cult to compute these power spectra. However, the ratio of the signal variance to the noise variance can usu-
ally be used to approximate the value of the SNR. �e local variance of all pixels in the image is computed; the 
maximum local variance is taken as the signal variance, and the minimum value is taken as the noise variance. 
�e ratio of the maximum variance to the minimum variance is taken as the SNR, which is then converted to a 
value in units of dB. �e approximate mathematical model for computing the SNR is as follows.

σ

σ

=SNR 10 log
(11)

10
max
2

min
2

Here, σ2
max is the maximum variance value and σ2

min is the minimum variance value. To compute the local vari-
ances, a sliding window must be established. �e size of the sliding window has little e�ect on the SNR value. For 
this reason, in the WD-CFAR algorithm, the size of the sliding window used to compute the SNR is set to 
100 ×  100. If the SNR value is greater than or equal to 100, i.e., ≥SNR 100, then the image is considered to be a 
high-SNR image; if SNR <  100, then it is a low-SNR image. All SNR values for Fig. 3(A–C) are shown in Table 1.

Figure 3(b) shows the results of target region segmentation. �e segmentation results show that the WD-CFAR 
algorithm can e�ectively segment target regions from low-SNR SAR images. Here, the airport runway shown in 
Fig. 3(C) is used as an example of shadow processing. Figure 3(c) shows the results of shadow region segmenta-
tion. �e segmentation e�ect is very good, and the results show that the WD-CFAR algorithm can be e�ectively 
used to perform segmentation and extract shadow regions in the case of images with a low SNR. False-color 
representations of the segmentation results are shown in Fig. 3(d,e), where red indicates a target region and 
green indicates a shadow region. �ese experimental results show that the segmentation of SAR images using the 
WD-CFAR algorithm is feasible. All parameters used in the above experiments are presented in Table 1.

To demonstrate the feasibility and e�ectiveness of the WD-CFAR algorithm, comparative experiments were 
conducted using di�erent segmentation algorithms. �e algorithms considered for comparison included the 

Figure 3. Segmentation results for various SAR images using the WD-CFAR algorithm. ((a) Original SAR 
images, (b) Target region segmentation, (c) Shadow region segmentation, (d) False-color representation of 
results, (e) Combination of segmentation results and original images.)

Image Size SNR r (7 × 7) nF

Pf

First round Second round

Figure 3(A) 128 ×  128 57.269 3 2 10−5 10−5

Figure 3(B) 512 ×  400 73.387 7 2 10−5 10−10

Figure 3(C) 400 ×  400 81.798 7 2 10−3 10−5

Table 1.  Parameter settings for the experiments presented in Fig. 3.
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direct CFAR detection algorithm, the direct wavelet transform algorithm, and the MRF segmentation method. 
�e main di�erence between the direct wavelet transform algorithm and WD-CFAR algorithm is that the direct 
wavelet transform algorithm performs detection and segmentation on all sub-images and then applies the inverse 
wavelet transform, whereas the WD-CFAR algorithm performs detection and processing on only certain selected 
coe�cient sub-images, without applying any processing to the other sub-images that are not selected, before 
�nally subjecting all sub-images (including both the selected and non-selected coe�cient images) to the inverse 
wavelet transform. Moreover, neither the direct CFAR algorithm nor the wavelet transform algorithm performs 
mean value subtraction. �e subtraction of the mean value is a prominent advantage and innovative feature of 
the WD-CFAR algorithm.

�e experimental data and the corresponding parameters were identical to those used in the experiments 
presented in Fig. 3, and the experimental process was also the same. �e experimental results are shown in Fig. 4. 
Here, Fig. 4(a) shows the original images. Figures 4(A–C) are identical to Fig. 3(A–C). Figure 4(b) shows the 
results of target region segmentation obtained via two rounds of direct CFAR detection. It is obvious that the 
e�ect is not as good as that of the WD-CFAR algorithm, especially for the target region detection for Fig. 4(C). 
Regarding shadow region segmentation, the CFAR detection algorithm cannot successfully perform this task, as 
shown in Fig. 4(c), which indicates that no shadow information was detected. Figure 4(d,e) show the experimen-
tal segmentation results achieved using only multi-scale wavelet decomposition theory; they show the results of 
target and shadow region segmentation, respectively. When multi-scale wavelet decomposition theory alone is 
used to segment SAR image targets, especially in low-SNR images, it is very di�cult to achieve ideal segmen-
tation results. �e WD-CFAR algorithm is not a simple combination of the CFAR algorithm and multi-scale 
wavelet decomposition theory. By using the characteristics of SAR images and the SAR imaging mechanism, 
the WD-CFAR algorithm makes full use of the advantages of both the CFAR principle and multi-scale wavelet 
decomposition and overcomes their shortcomings to achieve e�ective target segmentation. For example, sim-
ple CFAR detection is suitable only for high-contrast images, and in the basic wavelet algorithm, all decom-
posed coe�cient sub-images are used blindly for detection, such that the e�ects of background clutter cannot 
be eliminated. �e segmentation results obtained using the MRF algorithm are shown in Fig. 4(f,g), where the 
former shows the segmentation of the target regions and the latter shows the segmentation of the shadow regions. 
Although the MRF algorithm can detect and abstract both target and shadow regions, it is subject to the in�uence 
of background clutter, as seen, for example, in the segmentation of the SAR image shown in Fig. 4(A). �us, the 
MRF algorithm performs poorly compared with the WD-CFAR algorithm.

�e next experiment di�ered from the two sets of experiments described above. Its purpose was to segment 
SAR images containing only target regions, with no shadow regions. �e experimental results are shown in Fig. 5. 
�ese results were obtained under the same experimental conditions for the four algorithms. �e relevant param-
eters for the images and the experiments are shown in Table 2. Note that the parameter nF is used only in the 
WD-CFAR algorithm, the parameter r is only used in the WD-CFAR algorithm and the wavelet decomposition 
algorithm, and the constant false alarm rate parameter Pf is used in the WD-CFAR algorithm, the wavelet decom-
position algorithm, and the direct CFAR method. Figure 5(a) shows the original SAR images. Figure 5(A) is an 
airborne SAR image with a size of 256 ×  256. It was obtained from the Sandia Laboratory and contains multiple 
tank targets. �e relevant characteristics of this image are that the shadow regions are not obvious or, at least, are 
not signi�cantly di�erent from the background clutter. �is is a high-resolution and high-SNR image, with an 
SNR of 349.134, as shown in Table 2. Figure 5(B) shows SAR image data collected from space via ERS-2, with a 
size of 400 ×  400. Figure 5(B) contains a single ship target. �e SAR image shown in Fig. 5(B) contains no shadow 
region and has a low resolution and a low SNR. Figure 5(b) shows the segmentation results obtained using the 
WD-CFAR algorithm. As shown in Fig. 5(b), the segmentation e�ect is very good, and the target regions were 
e�ectively extracted.

�e segmentation results of the CFAR algorithm are shown in Fig. 5(c). �e false alarm rate for the CFAR 
algorithm was set identical to that for the WD-CFAR algorithm, as shown in Table 2. As shown in Fig. 5(c), the 
segmentation results are not very good. Similarly, when wavelet decomposition is applied for SAR image seg-
mentation without the selection of particular coe�cient sub-images to process, i.e., all sub-images are subjected 
�rst to detection and segmentation and then to inverse transform processing, it is very di�cult to produce good 
results, as shown in Fig. 5(d). �e reason for this is that all wavelet-decomposed sub-images are subjected to seg-
mentation processing, which requires high contrast between the target and background regions to achieve good 
segmentation results. As shown in Fig. 5(e), the MRF segmentation algorithm can produce good segmentation 
results when applied to high-SNR SAR images, but it yields poor results on low-SNR SAR images.

Quantitative analysis of algorithm performance. Above, the experimental results of the WD-CFAR 
algorithm, the direct CFAR detection algorithm, the direct wavelet transform algorithm, and the MRF algorithm 
were compared from a visual perspective. Next, speci�c evaluation factors were used for a further quantitative 
performance analysis. �ese evaluation parameters included the log-normalized likelihood ratio and mean of the 
ratio image, the target region segmentation ratio, and the run time of the algorithm. �ese parameters were used 
to describe and analyze di�erent aspects of the performance of the four algorithms.

The term ratio image (RI) refers to the ratio of the segmented image to the original image, and its 
log-normalized likelihood ratio |D| is typically used to describe the heterogeneity of di�erent regions of the 
image27. For the segmented image, a smaller value of |D| indicates smaller residual target structures in the seg-
mented image, corresponding to a higher accuracy of target segmentation and extraction. �e mean value µRI 
of the ratio image indicates how much information the image contains. If µRI is large, the image contains a large 
amount of information concerning the target region.

Let Iorg (i, j) and Iseg (i, j) denote the original image and the segmented image, respectively. �en, the mathe-
matical de�nition of the ratio image follows:
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Figure 4. Segmentation results obtained using the direct CFAR algorithm, the direct wavelet transform 
algorithm and the MRF algorithm. ((a) Original SAR images, (b,c) is target and shadow region segmentation 
with CFAR method respectively, (d,e) is target and shadow region segmentation with wavelet transform 
respectively, (f,g) is target and shadow region segmentation with MRG method respectively.)
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Here, RI (i, j) is the ratio image. If the size of the ratio image is M ×  N, then the de�nition of the mean value of the 
ratio image is expressed as shown in Equation (13):
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�e log-normalized likelihood ratio of the ratio image is formulated as follows:
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Here, m denotes the number of segmented regions of the same type that are obtained by segmenting an image, i.e., 
m separate sections that share uniformly homogenous characteristics. nK is the number of pixels in the kth seg-
mented uniform region, and RIln k  is the average value of the ratio image in the kth segmented uniform region. 
N0 denotes the total number of pixels, i.e., N0 = M ×  N.

�ere are two types of target segmentation rates: true and false. �e true segmentation rate is the probabilities 
that target pixels are segmented correctly, i.e., that pixels belonging to target regions are segmented as target pixels 
by the algorithm. �e true segmentation rate is de�ned as follows:

= ×P
N

N
100%

(15)
ts

ts

t

Here, Nts denotes the number of pixels belonging to a target region that are found to belong to a target region by 
the algorithm and Nt denotes the total number of pixels in all target regions.

�e false segmentation rate is the probability that pixels that do not belong to a target region are nevertheless 
identi�ed as such by the segmentation algorithm. �e false segmentation rate is de�ned as the ratio of the num-
ber of background clutter pixels identi�ed as target pixels to the total number of pixels identi�ed as target pixels:

Figure 5. Segmentation results obtained using di�erent algorithms for SAR images containing only target 
regions and no shadow regions. ((a) Original SAR images, (b) WD-CFAR algorithm, (c) CFAR method, (d) 
Wavelet transform, (e) MRF method.)

Image Size SNR r (7 × 7) nF

Pf

First round Second round

Figure 5(A) 256 ×  256 349.134 3 2 10−8 10−13

Figure 5(B) 400 ×  400 74.592 7 2 10−8 10−13

Table 2.  Parameter settings for the experiments presented in Fig. 5.
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Here, Nfs is the number of pixels that belong to background clutter regions but are nevertheless identi�ed as 
part of a target region. Ns is the total number of pixels identi�ed as part of a target region by the algorithm: 
Ns = Nts + Nfs.

�e run-time parameter t is an important index that can be used as a measure of the complexity of an algo-
rithm. Because complex theories o�en give rise to complex algorithms, the corresponding run times will tend to 
be high.

�e experimental results are shown in Fig. 6 and Table 3. Here, Fig. 6(a,A) show the original images, and their 
parameters are listed in Table 3. �e SAR image in Fig. 6(a) was obtained from the MSTAR database, and the 
target region contains tanks. Figure 6(A) shows SAR image data acquired from an ocean region by the European 
Space Agency’s ERS-2 satellite. �e dark region in Fig. 6(A) is an oil-polluted belt, which was treated as the target 
region to be segmented in this experiment. �e SAR images in both Fig. 6(a,A) have low SNR values. �e seg-
mentation results obtained using the CFAR detector are shown in Fig. 6(b,B). It is clear that the direct CFAR algo-
rithm cannot be used to detect signs of oil pollution through the detection and segmentation of an oil-polluted 
band of ocean. �e results presented in Fig. 6(c,C) were obtained using the wavelet transform theory. Although 
this method could detect the pro�les of the target regions, the �nal e�ect was not good. �e experimental results 
shown in Fig. 6(d,D) were obtained using the WD-CFAR algorithm. �is algorithm was able to segment all tar-
get regions. �e results of the MRF algorithm are shown in Fig. 6(e,E) and exhibit a poor segmentation e�ect. 
Figure 6(f,F) show the true target regions, which were obtained through visual interpretation. �e experimental 
results presented in Fig. 6 further demonstrate that the WD-CFAR algorithm can e�ectively detect and segment 
weakly scattering target regions in SAR images, such as regions of oil pollution in the ocean.

Table 3 shows the various parameters used to quantitatively describe and compare the di�erent algorithms, 
including the direct CFAR algorithm, the wavelet transform algorithm, the WD-CFAR algorithm, and the MRF 
algorithm, for experimental data shown in Fig. 6.

Figure 6. Experimental results used for quantitative analysis. ((a) and (A) original SAR images, (b) and (B) 
CFAR method, (c) and (C) wavelet method, (d) and (D) WD-CFAR algorithm, (e) and (E) MRF method, (f) 
and (F) ground truth.)

Image Figure 6(a) Figure 6(A)

Size 128 ×  128 1024 ×  1024

SNR 57.3186 64.6911

Method CFAR Wavelet WD-CFAR MRF CFAR Wavelet WD-CFAR MRF

|D| 0.189 0.047 0.014 3.259 0.273 0.301 0.124 0.802

Pts 70.925 48.871 79.672 77.911 0.493 36.441 81.725 98.408

Pfs 32.238 25.625 29.8373 0.031 99.471 56.373 17.036 86.106

µRI 0.022 0.009 0.022 0.722 0.137 0.151 0.595 4.542

t (s) 0.335 0.984 0.549 1.313 1.881 20.225 10.525 4171.1

r — 3 — — 4 —

nF — — 2 — — — 2 —

Pf

First round 10−5

—
First round 10−1

—
Second round 10−5 Second round 10−2

Table 3. Comparisons of performance parameters for di�erent algorithms.
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�e same size and SNR parameters for the experimental images were used as inputs to all algorithms. Five 
parameters, i.e., |D|, Pts, Pfs, µRI, and t, were used as the quantitative evaluation indices for the di�erent algo-
rithms. Note that the parameter Pf is used in all algorithms except the MRF algorithm, whereas the parameter r 
is used in the WD-CFAR algorithm and the wavelet transform algorithm, and the parameter nF is used only in 
the WD-CFAR algorithm. All parameter values are shown in Table 3. As shown, for the segmentation processing 
of the images shown in both Fig. 6(A,a), the minimum value of |D| was achieved by the WD-CFAR algorithm, 
which indicates that this algorithm demonstrates the best performance and the best segmentation e�ect in target 
region segmentation. �e MRF algorithm produced the maximum value of |D|, re�ecting its poor segmentation 
e�ect. For the SAR image shown in Fig. 6(a), the value of Pts was the highest for the WD-CFAR algorithm, indi-
cating that this algorithm achieved the most e�ective segmentation of the target region; for the image shown in 
Fig. 6(A), the Pts value for the WD-CFAR algorithm is again higher than those for the wavelet transform algo-
rithm and the direct CFAR algorithm but lower than that for the MRF algorithm. However, the Pfs value for the 
MRF algorithm is also very high for the SAR image in Fig. 6(A); the value of this quantity is 86.106%, far higher 
than that for the WD-CFAR algorithm, 17.036%. For the image in Fig. 6(A), the WD-CFAR algorithm achieved a 
lower Pfs than either the direct CFAR algorithm or the wavelet transform algorithm, indicating a lower rate of false 
segmentation. �e mean µRI of the segmented target region image obtained using the WD-CFAR algorithm was 
higher than that achieved by any other algorithm except the MRF algorithm, indicating that this algorithm could 
obtain more target information than the other algorithms. �e CFAR algorithm had the shortest run time, but 
its results were not good, and not all targets could be detected or segmented, as shown in Figs 4, 5 and 6. �e run 
time of the WD-CFAR algorithm was typically shorter than that of the wavelet algorithm or the MRF algorithm. 
When all evaluation factors are considered together, the performance of the WD-CFAR algorithm is seen to be 
superior to that of the other three algorithms.

Experiments on sliding window selection and computation of the optimal scale. �e section 
that introduces wavelet decomposition theory mentions that the key step of wavelet decomposition is to deter-
mine the optimal scale r. When Equation (5) is used to compute the variable LCVn, a sliding window must be 
de�ned to obtain more accurate information. �e size of the sliding window typically a�ects the calculation of 
the optimal scale. �e purpose of this experiment was to investigate the e�ect of the window size on the optimal 
decomposition scale. �e SAR images used in this experiment are shown in Fig. 7; the parameters related to these 
three SAR images have been introduced previously. �e sizes of the images presented in Fig. 7(a–c) are 128 ×  128, 
256 ×  256, and 1024 ×  1024, respectively. �e window size settings and experimental results are shown in Table 4.

As shown in Table 4, for each image, as the size of the sliding window increases, the value of the optimal 
scales for wavelet decomposition also slowly increases. �e optimal scale r, however, remains relatively stable in 
a certain range. For example, for Fig. 7(a), the optimal scale is r =  3 for a sliding window size of 3 ×  3, 5 ×  5, or 
7 ×  7. Similarly, r =  4 is found for a window size of 9 ×  9, 11 ×  11, 13 ×  13, or 15 ×  15; however, when the size of 
the window is greater than 15 ×  15, the optimal decomposition scale r remains unchanged, namely, r =  5. �e 
images presented in Fig. 7(b,c) also exhibit similar behavior. �is experiment shows that the size of the window 

Figure 7. Experimental SAR images for determining the relationship between the optimal scale and the 
size of the sliding window. 

Sliding window size 3×3 5×5 7×7 9×9 11×11 13×13 15×15

Optimal scale ( r )

Figure 7(a) 3 3 3 4 4 4 4

Figure 7(b) 2 3 3 4 4 5 5

Figure 7(c) 3 4 4 4 5 5 5

Sliding window size 17×17 19×19 25×25 35×35 45×45 65×65 105×105

Optimal scale ( r )

Figure 7(a) 5 5 5 5 5 5 5

Figure 7(b) 5 5 6 6 7 7 7

Figure 7(c) 5 6 6 6 7 7 7

Table 4. Optimal scales for di�erent window sizes.
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has little in�uence on the selection of the optimal scale for wavelet decomposition. Another interesting problem 
is also evident from Table 4. When the sliding window size is 9 ×  9 or 17 ×  17, the optimal decomposition scale for 
the wavelet transform is the same for all three SAR images. However, in practical applications, the window size is 
generally 5 ×  5 or 7 ×  7. In the WD-CFAR algorithm, when computing the optimal decomposition scale r for all 
experiments, the size of the window was set to seven.

Experiments on feature scale selection. In the implementation of the WD-CFAR algorithm as 
described above, the fourth step involves the selection of a subset of the coe�cient sub-images. �e following is 
a detailed experimental analysis of how the feature scale nF for the coe�cient sub-images should be chosen. As 
mentioned previously, the fundamental di�erence between the multi-scale wavelet decomposition segmentation 
algorithm and the WD-CFAR algorithm is that the WD-CFAR algorithm selects particular sub-images on which 
to perform the segmentation processing, whereas the wavelet transform algorithm not only does not select a 
subset of sub-images but in fact requires all sub-images to be subjected to detection and segmentation processing. 
SAR is coherent imaging radar, which inevitably produces considerable speckle noise; this poses severe problems 
in SAR image processing and interpretation. When multi-scale wavelet transform theory is used to decompose a 
SAR image, as the decomposition scale increases, the high-frequency information contained in the sub-images 
that are produced gradually decreases, while the proportion of background clutter components increases. When 
the objective is the target region segmentation of a SAR image, the target information is mainly concentrated in 
the low-scale sub-images, especially at the �rst and second scales. �e high-scale sub-images mainly contain a 
large amount of background clutter information. If they are used to perform target region detection and segmen-
tation, not only will they not produce good results, but they will also a�ect the target region segmentation. �is 
experiment was performed to con�rm the e�ect of sub-image selection; the experimental results are presented 
in Fig. 8 and Table 5.

Figure 8. Target region segmentation results obtained using di�erent feature scales nF. ((a) Original SAR 
image, (b) Ground truth, (c–i) Result for nF =  1, 2, 3, 4, 5, 6, 7, respectively.)
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Figure 8(a) shows the original SAR image, which is the same as that shown in Fig. 6(A). �e segmentation 
goal was to extract the region polluted with oil, i.e., the dark region in the SAR image. �e true segmented map 
of the oil-polluted region is shown in Fig. 8(b). In this experiment, when multi-scale wavelet theory was used to 
decompose the SAR image shown in Fig. 8(a), the preset decomposition scale was seven, i.e., N =  7, and the opti-
mal decomposition scale r was found to be four for the sliding window size of 7 ×  7, i.e., r =  4. �is was computed 
using Equations (5–7). �e segmentation results for the target region as the feature scale varies from the �rst 
scale to the seventh scale are shown in Fig. 8(c–i), respectively. When a feature scale nF is selected, all coe�cient 
sub-images at scales less than or equal to the feature scale are subjected to target detection and segmentation 
during the �rst round of CFAR detection in the WD-CFAR algorithm, whereas sub-images at scales higher than 
the feature scale are not processed. For example, if the feature scale is four, namely, nF =  4, then all sub-images 
from the �rst scale to the fourth scale are subjected to segmentation, whereas sub-images at scales greater than 
four are not. As shown in Fig. 8, when the decomposition scale is greater than a certain value, if the scale is fur-
ther increased, the segmentation results become worse and the error increases; in this case, the optimal scale was 
two, and when the scale was larger than two, the segmentation e�ect gradually degraded. For this reason, in the 
experiments using the WD-CFAR algorithm, the feature scale for target region segmentation was usually set to 
two, i.e., nF =  2.

Table 5 shows the true and false segmentation rates achieved in the image segmentation process under di�er-
ent feature scale conditions using the WD-CFAR algorithm. As shown in Table 5, the di�erence in these rates was 
not large between the cases in which the feature scale was equal to one and two. To collect as much target infor-
mation as possible, the feature scale was set to two, i.e., nF =  2. Table 5 shows that when the feature scale is greater 
than four, the false segmentation rate begins to increase, which further suggests that the optimal decomposition 
scale in this experiment should be four, namely, r =  4, as found based on the theory introduced previously for 
determining the optimal scale r. As shown in Table 5, as the scale increases, the true segmentation rate gradually 
and continuously decreases, whereas the false segmentation rate initially decreases and then increases.

�e results of the experiments described above show that the WD-CFAR algorithm is a suitable method for 
the segmentation of target and shadow regions in SAR images. �e proposed algorithm not only does not require 
strong contrast in the SAR images to be subjected to detection and segmentation, namely, it is suitable for both 
high- and low-SNR SAR images, but it can also, by virtue of its use of two rounds of CFAR detection and its selec-
tion of a particular subset of the multi-scale wavelet decomposition coe�cient sub-images for processing, reduce 
the in�uence of speckle noise and produce e�ective segmentation results.

�e WD-CFAR algorithm is suitable for application to various types of SAR images, especially moderate- and 
low-resolution SAR images; in other words, it exhibits strong adaptability. It addition to target regions, it can also 
be used to detect and segment shadow regions, including weakly scattering or dark targets such as airport run-
ways and bands of oil pollution in the ocean.

Conclusions
Based on the characteristics of SAR images, CFAR detection theory, and the wavelet transform principle, this 
paper presents a new method of SAR image segmentation called the WD-CFAR algorithm. �is method over-
comes some of the disadvantages of CFAR detection theory and wavelet transform theory when applied individ-
ually. For example, it does not require strong image contrast for successful SAR image segmentation. It is also 
insensitive to speckle noise, and it can segment both target regions and shadow regions e�ectively, even weakly 
scattering targets such as airport runways. Veri�cation experiments have shown that the WD-CFAR algorithm 
not only can perform successful SAR target and shadow segmentation but also can be applied to various types 
of SAR images. �e next step in the further development of this algorithm will be to improve the segmentation 
accuracy and increase the amount of detail that can be collected. �is may facilitate research on target and shadow 
region segmentation in high-resolution SAR images.
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