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A new satellite-based global climatology of dust aerosol optical depth

KARA K. VOSS
∗

AND AMATO T. EVAN
†

Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA

ABSTRACT

Dust is the largest contributor to global aerosol loading, by mass. Yet, long term observational records of
dust, particularly over the ocean, are extremely limited. Here, two nearly-global observational datasets of dust
aerosol optical depth (τdu) are created based primarily on optical measurements of the aerosol column from 1)
the MODerate resolution Imaging Spectroradiometer (MODIS) aboard the Terra satellite spanning from 2001
to 2017 and 2) the Advanced Very High-Resolution Radiometer (AVHRR) from 1981 to 2017. The quality
of the new data is assessed by comparison with other high-quality but less comprehensive measurements.
Retrievals of aerosol optical thickness from AVHRR are limited where there is optically thick dust, causing a
substantial negative bias in the seasonal mean τdu over characteristically dusty regions. The climatology of τdu

based on MODIS retrievals compares well with two in-situ measurements of dust. Between 2001 and 2017,
τdu decreased over Asia and increased significantly over the Sahara, Middle East, and parts of eastern Europe,
with the largest increase found over the Aral Sea where emissive playa surfaces are exposed. Between 1981
and 2017, τdu increased near the Arabian Peninsula and decreased in the tropical North Atlantic near Cape
Verde. These daily, observational and quasi-global records of dust allow for a deepening of our understanding
of the impacts of dust on climate and may prove useful for evaluating its representation in climate models.

1. Introduction

Aeolian dust makes up the largest mass fraction of the

global aerosol burden, and produces profound impacts

on the natural and anthropological system (Textor et al.

2006). Dust becomes aerosolized when windblown sand

saltates, ejecting mineral particles from the disturbed soil

that are small enough to remain in the air (Gillette et al.

1974; Shao et al. 1993). These particles can then have

impacts locally, or can impact areas far from their source

by remaining lofted for weeks at a time to be transported

thousands of miles in the prevailing winds (Prospero 1999;

Duce et al. 1980; Uematsu et al. 1983). Through direct

radiative effects, aeolian dust it is known to impact sea

surface temperature and precipitation patterns (Yoshioka

et al. 2007; Evan et al. 2009; Foltz and McPhaden 2008).

Through indirect effects, when acting as cloud or ice nu-

clei, dust is known to impact cloud microphysics, cloud

persistence (Rosenfeld et al. 2001; Kaufman et al. 2005),

and precipitation (Isono et al. 1959; DeMott et al. 2003;

Ault et al. 2011; Creamean et al. 2013, 2016; Fan et al.

2014). In the tropical North Atlantic, it is known to shape
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the development of some tropical cyclones, at times con-

trolling both spatial structure and intensity (Evan et al.

2006; Dunion and Velden 2004; Lynn et al. 2016). Addi-

tionally, dust impacts the human system in ways that can

be detrimental to human health (Tong et al. 2017; Griffin

2007), agricultural systems (Brown 2002), and transporta-

tion (Shao 2008; Mani and Pillai 2010; Ai and Polenske

2008),

Climate models underestimate dust aerosol optical

depth and dust emission from Africa, limiting their abil-

ity to provide meaningful insight into its impacts on future

climate (Evan et al. 2014), and projected trends in dust

aerosol emission are spatially heterogeneous and highly

uncertain (Pu and Ginoux 2017; Mahowald and Luo 2003;

Tegen et al. 2004). A major limiting factor in understand-

ing the global distribution of dust, how it will change in

the future, and its complex impacts, is the limited avail-

ability of measurements, especially over the ocean (Pros-

pero and Mayol-Bracero 2013). Airborne campaigns have

provided measurements for select places and times (Ralph

et al. 2016; Formenti 2003; Chen et al. 2011; Formenti

et al. 2008; Stith et al. 2009; Ryder et al. 2013; Klaver

et al. 2011), and ground based networks have provided

long term measurements for specific regions (Malm et al.

1994; Prospero and Nees 1986; Prospero 1999; Holben

et al. 1998).

Several studies have used satellite-based products to

study dust aerosol optical depth (DAOD) over either
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the ocean or land in select locations. Over the At-

lantic Ocean, Kaufman (2005) analyzed dust aerosol op-

tical depth (τdu) using the MODerate Imaging Spectro-

radiometer (MODIS) retrievals of aerosol optical depth

(AOD), and Evan and Mukhopadhyay (2010) used a sim-

ilar method to create a record of DAOD based on re-

trievals by the Advanced Very High Resolution Radiome-

ter (AVHRR). Ginoux et al. (2012) used τdu over bright

land surfaces based on MODIS Deep Blue AOD to iden-

tify dust source regions, and Ridley et al. (2016) produced

a long-term mean dataset of DAOD between 2004 and

2008 using AOD retrievals from multiple satellite plat-

forms and dust estimates from several global models.

Here, we expand on the work of Evan and Mukhopad-

hyay (2010) by using the extended record of satellite

retrievals to produce two nearly-global τdu datasets de-

veloped using MODIS (2001-2017) and AVHRR (1981-

2017) with the former dataset extended to cover both land

and ocean regions. The first dataset, extending from 2001

to 2017, is produced over land and water surfaces at 1◦

x 1◦ resolution and compares well with independent mea-

surements of dust in the western U.S. and in the Carribean.

These τdu estimates elucidate increasing dust trends in the

Sahara and parts of the U.S. and decreasing trends in Asia

for the temporal limits of the record. The second dataset

extends from 1981 to 2017 at the same spatial resolution

as the first dataset.

In the next section, we describe the data and methods

used in the estimation of global τdu, and a an estimation

of the associated uncertainty. Our results, in Section 3,

include identification of climatological seasonal patterns

in τdu, a comparison our τdu estimates as derived from two

different sensors, and a comparison of the the preferred

dataset to pre-existing ground based measurements of dust

aerosol from several locations. We then identify regional

trends in dust aerosol optical depth for the period of each

record.

2. Methodology

Two datasets of τdu were created. This first, which here-

after will be referred to as τdu,MODIS, is based primarily on

AOD retrievals from the MODIS instrument on the Terra

platform, with a companion set of estimates created for

the same instrument aboard the Aqua platform, (both ac-

cessed at https://ladsweb.modaps.eosdis.nasa.gov) and ex-

tends from 2001 through 2017. The τdu,MODIS dataset in-

cludes estimates over both land and water-covered sur-

face. The second dataset, which combines aerosol opti-

cal thickness (AOT) retrievals from the AVHRR instru-

ments aboard the NOAA series of satellites over the period

1981 through 2017, will be called τdu,AV HRR (Heidinger

et al. 2014; Zhao et al. 2008, 2002; Zhao and Program

2017). τdu,AV HRR estimates are only provided over water

as AVHRR AOT retrievals are not available over land.

a. Datasets used

MODIS level 3, collection 6 daily AOD is derived from

the measured 500 m resolution radiance from all visible

MODIS bands by taking the average of the measured radi-

ance over all scenes that are cloud-free and glint-free over

the ocean within a 10km grid box, and fitting these values

to a lookup table. MODIS fine mode fraction (FMF) is a

ratio of the small mode AOD to the total AOD. MODIS

AOD over ocean has been shown to have an expected er-

ror of ∆τ ±0.03±0.05τ (Kaufman et al. 1997; Tanré et al.

1997). For dust dominated regions, it has been shown that

there is a bias of +5% (Kaufman 2005). The uncertainty

associated with MODIS fine mode fraction is estimated at

20% (Remer et al. 2005). The equivalent set of estimates

for τdu,MODIS from the Aqua platform extends from 2003

to 2017. AOD from MODIS TERRA and AQUA have

been shown to agree very well (Ichoku 2005). However,

over ocean, collection 5 was shown to introduce a 0.015

offset between Terra and Aqua mean MODIS AOD (Re-

mer et al. 2008), and this carries over as a -0.004 bias for

Aqua τdu,MODIS relative to Terra τdu,MODIS. This paper will

focus largely on the τdu,MODIS from the Terra platform, as

it is a longer record. However, we will briefly discuss the

decadal trends in the τdu,MODIS derived from Aqua in a

later section.

As our τdu estimate is built upon AOD, it carries with it

the known limitations of the sensors from which it is de-

rived. For MODIS, this includes a high bias over turbid

coastal waters and errors in locations where the surface

wind speed is significantly different from the value of 6

m/s assumed in the product algorithm (Kahn et al. 2007;

Kleidman et al. 2012). MODIS AOD retrievals are limited

to cloud-free pixels and errors in cloud screening will im-

pact the AOD estimate. The MODIS aerosol cloud mask

uses the standard deviation of reflectance in sets of pix-

els to remove cloudy pixels, which increase spatial vari-

ability. Absolute reflectance at 1380 nm and the ratio of

reflectances at 1380 nm and 1240 nm, as well as several

infrared tests are used for additional screening of thin cir-

rus. Over ocean, the brightest and darkest 25% of the

remaining pixels are arbitrarily removed and the average

reflectance in each channel is calculated from these re-

maining pixels. Over land, the brightest 50% and darkest

30% of pixels are discarded before the averaging step (Re-

mer et al. 2012). While this usually produces a reasonable

result, in the case that unscreened clouds remain before

the discarding of the brightest and darkest retrievals, this

can produce AOD estimates that are biased high (Kahn

et al. 2007). It is known that MODIS AOD is biased very

high in the southern hemisphere mid to high latitudes over

the Southern Ocean due to extensive broken stratocumu-

lus and cirrus cloud contamination (Toth et al. 2013). We

have limited these datasets to extend from 60◦N to 50◦S

in order to avoid this region and high latitude regions with
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limited coverage due to restrictions on the solar zenith an-

gle for remote sensing retrievals by MODIS and AVHRR.

AEROsol RObotic NETwork (AERONET) O’Neil

algorithm fine mode fraction retrievals (accessed at

https://aeronet.gsfc.nasa.gov) are used to estimate

τdu,MODIS and τdu,AV HRR over the ocean. In the determi-

nation of AERONET fine mode fraction, two spectral

modes of AOD are defined based on the premise that the

coarse mode spectral variation is approximately neutral

while the derivative of the fine mode spectral variation

is an approximate function of the fine mode angstrom

exponent (O’Neill 2003). From this, the ratio of fine mode

to total AOD is determined at a reference wavelength

of 500nm from a second order polynomial fit of the

natural logarithm of AOD and wavelength applied to each

AOD spectrum, across 6 bands. All AERONET data

used here are from the Level 2 products. MODIS FMF

has been shown to slightly overestimate the fine mode

fraction in dust or salt dominated regions by 0.1 - 0.2

relative to AERONET FMF as generated from the O’Neil

algorithm (Kleidman et al. 2005), which has the potential

to introduce a small postive bias in our estimated τdu.

MODIS Deep Blue products (AOD, single scatter-

ing albedo (SSA), angstrom exponent (AE) accessed at

https://ladsweb.modaps.eosdis.nasa.gov) were used in the

estimation of τdu,MODIS over land (Hsu et al. 2013). These

products use the blue channels of MODIS, where surface

reflectance is very low. Pixel level retrievals are aver-

aged over 10km x 10km grids and data are then aggre-

gated into granuals. In the present study, Collection 6

Level 3 MODIS Deep Blue products were used, which

are provided at 1◦ x 1◦ resolution. SSA at 412nm and

at 660nm were used in addition to AE, which is inversely

proportional to particle size (Angstrom 1929). MODIS C6

Deep Blue AOD was used as the basis for estimation of

τdu,MODIS over land and is reported to have an expected er-

ror of +(0.04 + 10%) - (0.02+10%) (Hsu et al. 2014). The

collection 6 (C6) deep blue AOD release extended cover-

age to all non-snow land surfaces, where collection 5 only

included bright land surfaces.

The AVHRR AOT at 630nm climate data record (CDR)

(accessed at https://www.ncei.noaa.gov/data/) was used in

the estimation of τdu,AV HRR (Zhao and Program 2017).

The CDR dataset was created using the NOAA AVHRR

PATMOS-x Level-2B data product (Zhao et al. 2008,

2002; Zhao and Program 2017). This dataset combines

retrievals from 17 different sensors, and the overpass time

and number of observations per day (4-8 obs/day) varied

between sensors. Large data gaps occur for years before

1985. AVHRR AOT was re-gridded from its native res-

olution of 0.1◦ x 0.1◦ to a resolution of 1◦x1◦ using in-

verse distance weighted interpolation. Aerosol retrievals

are only available over ocean and require clear-sky condi-

tions, which in this case are defined by cloudy probability

less than 1%. Cloudy probability is determined through a

naive Bayesian cloud detection technique performed on a

3 x 3 pixel grid surrounding a given pixel (Heidinger et al.

2014). The CDR AVHRR AOT dataset has a systematic

error of 0.03±0.006 and a random error of ±0.113 (Zhao

and Program 2017).

Daily mean surface wind speed from the second

Modern-Era Retrospective Analysis for Research and Ap-

plications (MERRA-2) (Gelaro et al. 2017) one hour time-

averaged surface flux assimilation product (accessed at

https://disc.gsfc.nasa.gov/) was used in the estimation of

marine AOD. This was re-gridded from its native resolu-

tion of 0.625◦longitude x 0.5◦latitude to a resolution of 1◦

x 1◦ using bilinear interpolation. MERRA-2 surface wind

patterns have been shown to be similar to other datasets,

but greater in magitude in most regions than MERRA

and ERA-Interim and weaker in magitude than NCEP-R2

(Bosilovich et al. 2015). Similar to most reanalysis prod-

ucts, MERRA-2 winds are weaker than 93% of observa-

tions considered in Bosilovich et al. (2015).

b. τdu,MODIS over ocean

τdu,MODIS over the ocean for the time period between

2001 and 2017 was estimated based on the method of

Kaufman (2005), but with several minor modifications.

Briefly, assuming that the major contributions to total

AOD are anthropogenic aerosol, marine aerosol, and dust

aerosol, one can deduce τdu by estimating the contribu-

tions from the other two aerosol types. As anthropogenic

aerosols are generally dominated by submicron particles,

the ratio of fine mode aerosol optical depth to coarse mode

aerosol optical depth, called the fine mode fraction ( f ),

can be used to discriminate these types. The total aerosol

optical depth (τ) is defined by

τ = τdu + τma + τan (1)

where τdu, τma, and τan are the dust, marine and anthro-

pogenic contributions to the aerosol optical depth, respec-

tively. The fine mode aerosol optical depth is given by f τ ,

and can be expressed as a function of the fine mode optical

depth contributions from the individual aerosol species,

f τ = fduτdu + fmaτma + fanτan (2)

where f , fdu, fma, and fan are the total, dust, marine,

and anthropogenic contributions to the fine mode fraction,

respectively. Equations 1 and 2 can be combined and rear-

ranged to yield the dust aerosol optical depth (τdu):

τdu =
τ( fan − f )− τma( fan − fma)

fan − fdu

(3)

Data sources for each of these variables can be found

in Table 1. Characteristic fine mode fraction for marine

( fma) , anthropogenic ( fan), and dust ( fdu) aerosol were

determined using the average fine mode fraction from
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TABLE 1. Summary of variables and data types used in equations 1, 2, and 3.

Variable Plat f orm Instrument Retrieval Wavelength

τ TERRA/NOAA MODIS/AVHRR 550 nm or 630 nm

f TERRA MODIS N/A

fdu AERONET Sun Photometer (O’Neill method) 500 nm

fma AERONET Sun Photometer (O’Neill method) 500 nm

fan AERONET Sun Photometer (O’Neill method) 500 nm

τmar MERRA-2 Parameterized based on surface wind speed N/A

TABLE 2. AERONET stations used for calculation of fan, fdu, and fma with the years of data used from each station in this calculation.

Variable Mean AERONET Stations

fan 0.73 Alta Floresta (1993-2018), GSFC (1993-2018), Campo Grande (1995), Mongu (1995-

2010), Mainz (1997-2018), Abracos Hill (1999-2005), Belterra (1999-2005), Cordoba

CETT (1999-2010), CEILAP BA (1999-2018), Palaiseau (1999-2018), Skukuza Aero-

port (2000), UCLA (2000-2018), Hamburg (2000-2018), Rio Branco (2000-2018),

Philadelphia (2001), CCNY (2001-2018), Cuiaba Miranda (2001-2018), Rome Tor

Vergata (2001-2018), Fresno (2002-2012), Billerica (2002-2018), Halifax (2002-2018),

New Delhi (2004-2010), Petrolina Sonda(2004-2017), Hong Kong PolyU (2005-2018),

HongKong Hok Tsui (2007-2010), Dayton (2008-2018), Hong Kong Sheung (2012-

2018).

fdu 0.40 Solar Village (1999-2015), Hamim (2000-2007), Tamanrasset INM(2006-2018),

Tamanrasset TMP(2006), Eilat (2007-2018)

fma 0.36 Midway Island (2001-2015), Nauru (1999-2013), Amsterdam Island (2002-2018),

Crozet Island (2003-2013), ARM Graciosa (2013-2018), American Samoa (2014-2017)

AERONET stations dominated by each aerosol type (Ta-

ble 2). MODIS retrievals were not used for determining

these coefficients, since fine mode fraction is only distin-

guishable over the ocean with this instrument making it

likely that all MODIS fine mode fraction estimates contain

some significant contribution from sea spray. This repre-

sents a deviation from the methods of Kaufman (2005).

1) MARINE AEROSOL CONTRIBUTION

Kaufman (2005) parameterized marine aerosol based

on NCEP surface (1000hPa) wind speed at 2.5◦ x 2.5◦

resolution. This parameterization was based on the rela-

tionship between surface wind speed from a National Cli-

matic Data Center (NCDC) meteorological station and an

AERONET station on Midway Island from 14 months of

data, excluding the dust season (February through May)

(Smirnov et al. 2003).

Here we have chosen to use MERRA-2 in order to take

advantage of a higher resolution reanalysis product, and

have updated the equation of the parameterization based

on more recent findings regarding the wind speed depen-

dence of marine aerosol. We expect that the wind speed

dependence of total marine aerosol is primarily the result

of the coarse mode aerosol (Lehahn et al. 2010; Satheesh

et al. 2006). The parameterization used here is derived

from the relationship between MODIS TERRA coarse

mode AOD and MERRA-2 surface wind speed interpo-

lated to a 1◦x1◦ grid in the southern equatorial Pacific

(0-25◦S, 178-130◦W), where it is assumed there is no in-

fluence from pollution or dust aerosol, and the mean fine

mode AOD in this region (not shown). Based on these

data, the fine mode contribution to the total marine aerosol

optical depth was independent of wind speed, with a mean

of 0.05±0.03.

From these reanalysis wind speeds and AOD retrievals

over this region in the Equatorial South Pacific, the contri-

bution of marine aerosol (τma) to the total aerosol was pa-

rameterized based on daily mean MERRA-2 surface wind

speed (w) according to

τma = τma,c + τma, f (4)

τma,c = 0.007w+0.02 (5)

τma, f = 0.05(±0.03) (6)
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Where τma,c and τma, f are the coarse and fine mode con-

tributions to marine aerosol, respectively. These results

are consistent with the findings of Lehahn et al. (2010),

which found coarse marine aerosol to be linearly related

to surface wind speed with a slope of 0.009± 0.002m/s.

We investigated the wind speed dependence of marine

aerosol using daily mean MERRA-2 surface wind speed

and MODIS TERRA coarse and fine mode aerosol at sev-

eral island stations, including American Samoa, Nauru,

and Midway Island, and the results were consistent with

the parameterization used here, and were within the range

reported in Lehahn et al. (2010) (not shown).

c. τdu,MODIS over land

Dust AOD over land for the time period between 2001

and 2017 was estimated based on the methods of Gi-

noux et al. (2012) with minor modifications. Ginoux

et al. (2012) used MODIS deep blue AOD to identify pix-

els over land that contained dust by their column opti-

cal characteristics including deep blue AOD greater than

0.1, angstrom exponent (AE) less than 0, single scattering

albedo (SSA) at 412 nm less than 0.95, and SSA at 412nm

greater than SSA at 660nm. If a retrieval met each of these

criteria, its deep blue AOD contributed to the long-term

mean of dust aerosol optical depth at that grid cell. In or-

der to test the thresholds used in Ginoux et al. (2012), we

collected these same data within three over-land regions

where the aerosol signal is dominated by dust, and one

over-land region where mineral aerosols are unlikely to be

present, and binned the pixels of this data for each loca-

tion by their optical properties. The dust-dominated loca-

tions included a region over the Sahara desert (10-30◦E,

19-30◦N) (Figure 1a), a region over the Arabian desert

(40-50◦E, 23-35◦N) (Figure 1b), and a region over the

Taklamakan desert (77-88◦E, 36-40◦N) (Figure 1c). The

non-dust dominated location chosen was over equatorial

Africa (10-32◦E, 10◦S-5◦N) (Figure 1d).

In all three dust-dominated regions, 98%, or more, of

pixels meet the criteria for SSA at 412nm less than 0.95

while in the region dominated by other aerosol types, only

24.22% of pixels meet this criteria. Similarly, in each

dust-dominated region, greater than 99% of pixels meet

the criteria of SSA at 412nm exceeding or equal to SSA at

660nm, while only 35.95% meet this criteria for the non-

dust region. The criteria used in Ginoux et al. (2012) of

deep blue AOD greater than 0.1 was not used in the cre-

ation of τdu,MODIS here.

Ginoux et al. (2012) used a conservative requirement of

AE less than 0 to identify dust. However, the updated algo-

rithm used to create the C6 deep blue AE product now lim-

its the valid range of values to 0 ≥ AE ≤ 1.8 (Sayer et al.

2013; Hsu et al. 2013). Therefore, we chose a new thresh-

old based on the distribution of AE in our three desert re-

gions. When this threshold was replaced with a criteria

of AE less than 0.6, 84.71% of pixels in the Sahara desert

region, 65.2% of pixels in the Arabian desert region, and

55.31% of pixels in the Taklamakan desert region met the

new threshold while only 3.60% met it in the non-dust re-

gion. The new threshold of 0.6 we have used here is within

the values of AE reported for dust regimes in Dubovik

et al. (2002). In summary, daily estimates of τdu,MODIS

over land grid cells are comprised of the deep blue AOD

if that pixel that met the following criteria:

• MODIS TERRA Collection 6 (C6) aerosol angstrom

exponent (AE) 470nm-670nm, which is inversely

proportional to particle size, less than 0.6

• MODIS TERRA C6 single scattering albedo (SSA)

at 412 nm, the ratio of aerosol scattering to extinction

coefficients at that wavelength, less than 0.95

• MODIS TERRA C6 SSA at 412 nm greater than or

equal to SSA at 660 nm

If a pixel did not meet these criteria, its τdu was set

equal to zero. An analysis of the accuracy of this method,

through comparison with AERONET, is presented in Sec-

tion 3c of this manuscript.

d. τdu,AV HRR (1981 - 2017)

τdu,AV HRR over the ocean from 1981 to 2017 was de-

rived similarly to what was previously described for

MODIS. However, AOT from AVHRR was used rather

than MODIS AOD, and the climatological seasonal mean

fine mode fraction from the MODIS period was used in

equation 1. Evan and Mukhopadhyay (2010) showed that

over the tropical North Atlantic, a dusty region, the sea-

sonal cycle in the fine mode fraction is far larger than the

inter-annual variability, such that monthly climatological

mean fine mode fraction can be used in place of monthly-

mean fine mode fraction without introducing significant

biases. Here we also assume that the use of monthly clima-

tological fine mode fraction can be used in place of daily

fine mode fraction. We tested this assumption by calcu-

lating the τdu,MODIS using climatological fine mode frac-

tion and the results were similar to the estimated τdu,MODIS

calculated using daily fine mode fraction, with a bias of

0.00 in the long-term global mean over the ocean for the

period 2001-2017 (RMSE: 0.03). The characteristic find

mode fractions, fma, fdu, and fan, were the same as those

used in the calculation of τdu,MODIS . Following Evan and

Mukhopadhyay (2010), stratospheric aerosol as estimated

in Sato et al. (1993) was removed from AVHRR AOT be-

fore calculation of τdu,AV HRR for years prior to 1999 and

was assumed to be zero in subsequent years.

The global mean time series of τdu,AV HRR created by this

method contained very large fluctuations in years prior to

1995 related to the impact of satellite drift on AVHRR

AOT (Figure 2). This problem has previously been noted
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FIG. 1. Histograms of Angstrom Exponent (top), Single Scattering Albedo (middle), and ratio of Single Scattering Albedo at 412 nm divided

by Single Scattering Albedo at 660nm (bottom) for three characteristically dusty regions a) the Sahara desert (10-30◦E,19-30◦N), b) the Arabian

desert (40-50◦E,23-35◦N), and c) the Taklamakan desert (77-88◦E,36-40◦N), and one anthropogenic aerosol dominated region, d) Equatorial Africa

(10-32◦E,10◦S-5◦N) for the period from 2001 to 2017. Colored green (1a-c) or brown (1d) bars indicate bins that match the criteria used to identify

dust for the respective optical property.

in the long-term AVHRR records of cloud cover (Fos-

ter and Heidinger 2013; Norris and Evan 2015). In or-

der to remove this signal, following the method of Norris

and Evan (2015), we regressed the monthly global mean

time series of τdu,AV HRR, with the seasonal cycle removed,

onto the time series of monthly-mean τdu,AV HRR at each

grid point, with the seasonal cycle removed, and then sub-

tracted the product of the regression coefficient and the

global mean time series, with seasonal cycle removed,

from the de-seasoned τdu,AV HRR at each grid point before

adding the seasonal cycle back in. While this results in a

global DAOD trend of zero, a limitation of this method, it

removes variability caused by satellite drift in equatorial

crossing time, changes in satellite zenith angle, and unre-

alistically large anomalies associated with instrument cal-

ibration problems and does not have a significant impact

on regional variability or regional trends.

e. Uncertainty Analysis

In order to evaluate how constrained our DAOD esti-

mates are, we calculated the uncertainty on each estimate

of τdu,MODIS and τdu,AV HRR over water. These datasets

may be applied in the future for evaluation of dust in



J O U R N A L O F A P P L I E D M E T E O R O L O G Y A N D C L I M A T O L O G Y 7

FIG. 2. Uncorrected global mean time series of τdu,AV HRR with sea-

sonal cycle removed (blue) and global mean time series of τdu,AV HRR

after correction for orbital drift (red).

climate models, and an estimate of uncertainty on our

observations-based τdu may be useful in understanding

whether modeled dust is within the distribution of ob-

served τdu. The climatological mean uncertainty associ-

ated with each grid box over water in the τdu,MODIS was es-

timated by propagating the 1σ error associated with each

term in equations 3 and 4. The standard deviation of all

AERONET fine mode fraction measurements used in the

calculation of fma, fan, and fdu was taken as the uncer-

tainty in those coefficients. The expected error in MODIS

AOD and in MODIS fine mode fraction were used as

the uncertainty associated with those terms. The marine

aerosol uncertainty term is calculated from the standard er-

ror of the regression coefficient for the linear relationship

between coarse AOD and wind speed in the southern equa-

torial Pacific (0-25◦S, 178-130◦W) from 2001 to 2017 and

the standard deviation of the fine mode AOD there. The

uncertainty associated with this τdu estimate scales with

magnitude of AOD and, as a result, is highest in dusty re-

gions such as the equatorial Atlantic and near to the Arabic

Peninsula (not shown). Fractional error is lowest in these

regions, and very high fractional error occurs in regions

where dust does not frequently occur (ie. where clima-

tological τdu is very low). The long-term mean global

τdu,MODIS over the ocean was found to be 0.03 ± 0.06,

which accounts for the variance in the global mean time

series of τdu,MODIS and the 1σ errors for each pixel. We

note that τdu does not follow a gaussian distribution. This

global mean and 1σ error were calculated using a closed-

form equation. However, we obtain the same result when

calculating this mean and uncertainty using Monte-Carlo

methods.

The uncertainty associated with the τdu,AV HRR was cal-

culated in the same manner as the τdu,MODIS over-water.

However, the random error in AVHRR AOT was used,

rather than the expected error in τdu,MODIS, and the uncer-

tainty associated with the use of climatological fine mode

fraction was estimated by adding in quadrature the ex-

pected error in MODIS fine mode fraction, and the stan-

dard deviation of fine mode fraction estimates used in cal-

culating the climatological fine mode fraction. The long-

term mean global τdu,AV HRR over ocean was found to be

0.02±0.10.

The uncertainty associated with τdu,MODIS over land

could be assumed to be the expected error in the MODIS

Deep Blue aerosol optical depth at 550 nm, since the τdu at

any grid cell that matched the optical properties indicative

of dust is equal to the the Deep Blue AOD at that grid cell.

However, in order to evaluate the accuracy of our identifi-

cation, we created three time-series datasets of dust from

AERONET stations in regions with different characteristic

aerosol types. The first, the Tamanrasset station (2006),

we consider to be a dusty region as it is in the Sahara

desert. The second, the Mainz station (2003-2017), we

consider to be an anthropogenic aerosol-dominated region

in Germany. The third, the Ilorin station (2001-2017), we

consider to be a mixed polluted dust region in the southern

Sahel. For each of these stations, AERONET daily mean

Angstrom Exponent (AE 440nm-870nm) less than 0.5 was

used to identify dust, and AE 440nm-870nm greater than

1 was used to identify days without dust. This choice

was consistent with Giles et al. (2012), which found that

AERONET extinction AE 440nm-870nm for most of the

dust-dominated stations analyzed had values of 0.3± 0.2
while , anthropogenic aerosol-dominated stations had val-

ues equal to or exceeding 1. We chose a different thresh-

old than what was used to estimate τdu,MODIS over land

because AERNONET AE is measured at different wave-

lengths than AE from MODIS, and we wanted to remain

consistent with what is published specifically for the AE

using these wavelengths. This binary classification (dust

or no dust) for each station was compared with time se-

ries of τdu,MODIS at the closest grid cell to each station,

with any τdu,MODIS greater than zero considered as a dust

classification and any τdu,MODIS equal to zero, a no dust

classification. The results of this analysis are presented

in Table 3. False positives are less than 5% in all cases,

with 0% occurence of false postives for the polluted re-

gion. Missed dust occurences are high (35%) in the pol-

lution and dust mixed region and about 10% occurence

in the dusty region. This is consistent with our hypoth-

esis that this method would have the least skill in regions

where dust is heavily mixed with pollution. Including a re-

quirement of Deep Blue AOD greater than or equal to 0.1,

as is done in Ginoux et al. (2012) would increase misses

to 18% occurrence in the dusty region.
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TABLE 3. Quantified skill for τdu,MODIS over land in regions with differente dominant aerosol type. AERONET daily mean Angstrom Exponent

(440nm-870nm) less than 0.5 was used as ground truth to identify dust and greater than 1 was used to identify non-dust aerosol.

Region type Station Accuracy (dust) Accuracy (no dust) Missed False Positive

Dusty Tamanrasset (22.79◦N, 5.530◦E) 86.29% 9.43% 10.32% 3.81%

Polluted Mainz (49.99◦N, 8.4◦E) 12.5% 95.21% 0.70% 4.41%

Mixed Ilorin (4.675◦N, 8.484◦E) 15.63% 100% 35.11% 0%

FIG. 3. Scatter of monthly mean τdu,MODIS and τdu,AV HRR a) glob-

ally, and b) for a region over the tropical Atlantic (5◦S-20◦N, 20-30◦W)

for the period from 2001 to 2017. The solid black line is the best fit to a

linear form. a) Globally, this is the fit to y = 1.10(±0.002)x+ 0.009

with a corrected r-squared value of 0.48, RMSE equal to 0.07, and

SSE of 15010. b) In the tropical Atlantic, this fits the equation y =
1.24(±0.006)x+ 0.009 with a corrected r-squared value of 0.74, root

mean squared error (RMSE) equal to 0.08 and summed square of resid-

uals (SSE) equal to 362.30.

3. Results

The primary results of this work are two near-global,

daily, observational datasets of τdu at 1◦ x 1◦ resolu-

tion that can be used for studies of dust transport, trends,

and physical processes, including one dataset that covers

both water and land surfaces. The remainder of this sec-

tion will be used to discuss a) a comparison of τdu,AV HRR

and τdu,MODIS, b) a description of seasonal climatologi-

cal mean τdu, c) verification of τdu,MODIS against ground-

based measurements of dust aerosol, and d) trends in τdu

as an example of the utility of this dataset.

a. Comparison of MODIS and τdu,AV HRR

Globaly, monthly mean estimates of τdu,MODIS and

τdu,AV HRR are related by the linear least squares best-fit

to y = 1.10x + 0.009 (r2 = 0.48, RMSE:0.07, Bias: -

0.01) (Figure 3a). However, it is useful to compare these

two estimates in a region that is characteristically dust-

dominated. In the tropical North Atlantic, a dusty region,

they linearly related with a form y = 1.24x + 0.009 (r2

= 0.74, RMSE:0.08, Bias: -0.04) (Figure 3b). Monthly

mean τdu,AV HRR is biased low (Bias:-1.18) compared to

τdu,MODIS for τdu,MODIS greater than unity. We hypothe-

size that the low bias in τdu,AV HRR is an artifact of mis-

classification of optically thick dust layers as clouds in the

AVHRR AOT cloud clearing algorithm (Xuepeng Zhao,

personal communication, April 18, 2018), although it also

could have been a result of the difference wavelengths

between MODIS AOD retrievals and AVHRR AOT re-

trievals (Zhao et al. 2008). In order to test this, we also cal-

culated the linear least squares best-fit between the daily

τdu,MODIS and daily τdu,AV HRR. We expect that if the low

bias of τdu,AV HRR relative to τdu,MODIS is due to missing

data in regions of optically thick dust, rather than due to

the difference in wavelength, the slope of the regression

between these datasets will be significantly less steep for

the daily data than for the monthly data in the tropical

North Atlantic. Indeed, we found that the daily τdu,MODIS

and daily τdu,AV HRR are related by the relationship y =

0.93x + 0.05 (r2 = 0.46, RMSE:0.15, SSE: 7439, Bias:

-0.03) in the tropical North Atlantic, which is a significant

0.31 difference in slope (not shown).

The discrepancy in retrievals over large dust plumes can

be easily visualized in the case of June 27th, 2014, over

the tropical Atlantic (Figure 4). In this case, τdu,MODIS in-

dicates an optically thick dust plume, centered near 15◦N,

30◦W, that has been advected over the tropical Atlantic

from the Sahara (Figure 4a). This particularly strong event

allowed for dust to be measured in-situ as far as Colombia

(Bedoya et al. 2016). In figure 4, grid cells that are miss-

ing estimates of τdu or AOD, or grid cells over land, are

masked in grey. For the same day, the τdu,AV HRR (Figure

4b) is largely missing estimates in the region of optically

thick dust. This is a result of missing retrievals of AVHRR

AOT (Figure 4d), which occur due to a combination of sun

glint and because of the cloud-screening algorithm which

may be classifying optically thick dust as cloud.

Geographically, MODIS and τdu,AV HRR are well corre-

lated (r > 0.70) in high τdu regions including the equa-
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FIG. 4. June 27th, 2014 MODIS a) τdu and b) AOD from the Terra

platform and AVHRR c) τdu and d) AOT. Retrievals and estimates over

land and locations where there is missing data are shown in grey.

torial Atlantic, and the Indian Ocean near to the Arabian

Peninsula (not shown). MODIS and τdu,AV HRR are not sta-

tistically significantly correlated (r < 0.19) in characteris-

tically low τdu regions, where dust may be transient and

detectable only at the overpass time of one of the sensors.

For the remaining analysis, a correction in the form

τdu,AV HRR,corrected = 1.24τdu,AV HRR,raw is applied to the

monthly-mean τdu,AV HRR based on the linear best-fit to

τdu,MODIS in the tropical North Atlantic as described in

the first paragraph of this section. We chose to base the

correction on a dusty region because we expect most ap-

plications of this dataset to be in dusty regions.

b. Seasonal Dust AOD

Maximums in seasonal mean τdu,MODIS are found over

the Sahara and the Arabic Peninsula in austral summer

(JJA) (Figure 5a), and the Taklamakan and Gobi deserts

during spring (MAM) (Figure 5c). Aeolian transport from

the Sahara towards the Americas is visible during all sea-

sons with a maximum extension westward during the sum-

mer (Figure 5d,h), which is well known (Prospero and

Mayol-Bracero 2013; Prospero et al. 1996). The Spring

maximum in dust aerosol over Asia can be attributed to the

high frequency of cold air outbreaks that cause the Mon-

golian cyclonic depression and frontal systems in that sea-

son, when synoptic systems are unstable and the climate

is at its driest (Sun et al. 2001; Ge et al. 2014). During

this season, dust is transported from the Asian continent

over the North Pacific Ocean towards North America at

latitudes between 30◦N and 50◦N. It is presumed that this

dust is primarily from the Taklimakan desert as the local

topographical and meteorological conditions allow for it to

be entrained to elevations exceeding 5km while dust from

the Gobi desert is, for the most part, confined closer to the

surface (<3km) (Sun et al. 2001). It has also been shown

that some portion of this trans-Pacific dust originates from

Africa (Creamean et al. 2013).

Seasonal mean τdu,AV HRR, appears far lower than

τdu,MODIS near to major dust sources in all seasons, due

to limited retrievals in regions of optically thick dust as

described in the previous section. However, the correction

based on comparison with τdu,MODIS greatly reduces this

bias (Figure 5e-h).

Discrepancies between τdu,MODIS over land and

τdu,MODIS over adjacent ocean are visible in some areas

with significant anthropogenic aerosol sources, including

the Sahel region of Africa and India during austral fall and

spring (Figure 5b,c). This may be due to different meth-

ods and data sources used for estimating τdu,MODIS over

land and ocean. The method used for τdu,MODIS over the

ocean leads to a continuous range of τdu,MODIS, whereas

the threshold approach used for estimation of τdu,MODIS

over land may prevent these gradients when there is sig-

nificant mixing between anthropogenic aerosols and dust

aerosol. However, this may also partially be the result of

the different algorithms used in the retrieval of AOD over

land and ocean (Sayer et al. 2013; Hsu et al. 2013). While

these unphysical discrepancies could be avoided through

spatial interpolation across these boundaries, we have cho-

sen not to do this in order to minimize our assumptions and

retain a daily dataset that is directly representative of the

satellite observations.

Summertime trans-Pacific transport of dust has been oc-

casionally observed previously (Yumimoto et al. 2010).

However, visual inspection of MODIS TERRA corrected

reflectance on days when τdu,MODIS over the western

North Pacific (Figure 5c) was high during summer months

yielded indications of contamination from biomass burn-

ing over Europe and Russia. We compared summer

seasonal mean τdu,MODIS and MERRA-2 organic carbon

extinction optical thickness at 550nm (not shown, ac-

cessed at https://giovanni.gsfc.nasa.gov/) and confirmed

that summer seasonal mean organic carbon was highest

over the western North Pacific in years when summer sea-

sonal mean τdu,MODIS was highest, supporting the hypoth-

esis that there may be biomass burning contamination over

the western North Pacific during these months. The fine

mode fraction ( f ) during these summer high τdu,MODIS

events is approximately 0.57−0.63 which is greater than

the characteristic fine mode fraction for dusty regions

( fdu = 0.40). However, it is less than the characteristic

fine mode fraction for anthropogenic aerosol-dominated

regions ( fan = 0.73), allowing some small portion of the
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FIG. 5. Seasonal mean a−d) τdu,MODIS averaged over the period from 2001 to 2017 and e−h) τdu,AV HRR over the period from 1981 to 2017. The

long-term global mean τdu ±1σ uncertainty over the ocean for each season and dataset is featured in the bottom left-hand corner of each panel.

MODIS AOD for that pixel to contribute to τdu,MODIS if it

exceeds the contribution from marine aerosol. When the

MODIS AOD is very large, this can lead to a significant

contribution to τdu,MODIS. In the springtime, most of the

high τdu,MODIS events are associated with fine mode frac-

tions near 0.50, which is closer to fdu

In addition, this region in the western North Pacific has

few retrievals during the summer months, as extensive low

clouds cover that area. The limited number of retrievals is

evident in the number of pixels used in the estimate of

MODIS Dark Target AOD during the summer in that re-

gion (not shown). While greater than 36 pixels are incor-

porated on average in the equatorial Pacific estimations of

MODIS Dark Target AOD, only approximately 26 on av-

erage are used in this estimation in parts of the western

North Pacific. This signal was not present in the τdu,AV HRR

(Figure 5c-f).
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FIG. 6. Annual mean τdu,MODIS from land grid points in the South-

western United States within the region shown in the red box (125-

95◦W, 30-42◦N), compared with number of dust events annually in the

southwestern U.S. as reported in Tong et al. (2017) (green) and dust con-

centration from IMPROVE sites in the southwestern U.S. as reported in

Hand et al. (2016) (blue). IMPROVE stations used in the Tong et al.

(2017) analysis are marked with green stars on the inset map, while sta-

tions used in the Hand et al. (2016) analysis are marked with blue stars.

There are several overlapping stations.

c. Comparison with existing datasets

It is informative to compare our τdu to previously pub-

lished estimates of atmospheric dust. Here, we compare

τdu,MODIS with two recently published time series of dust

concentrations over the western U.S. (Tong et al. 2017;

Hand et al. 2016) and one over the Caribbean (Prospero

and Nees 1986; Prospero et al. 1996). The measurements

of dust over the western U.S. are based on surface concen-

trations of aerosol species. In Hand et al. (2016), Fe from

IMPROVE stations was used a proxy for fine dust con-

centrations and τdu,MODIS compares well with these an-

nual mean fine dust concentrations (r = 0.71, p < 0.01)

(Figure 6). In Tong et al. (2017), high PM10 and PM2.5

concentrations, a low ratio of PM2.5 and PM10, high con-

centrations of crustal elements (SI, CA, K, Fe, and Ti),

low concentration of anthropogenic components, and low

enrichment factors of anthropogenic pollution elements

from IMPROVE data were used to confirm dust events that

had previously been detected in satellite imagery. Annual

mean τdu,MODIS also correlates well with these estimates

of annual number of dust events (r = 0.71, p < 0.05). Al-

though τdu is a measure of column integrated aerosol, we

still expect surface concentrations to be correlated with

column integrated values, especially when averaged over

a large region. Interestingly, while an increasing trend in

dust was noted for these studies for the period between

2001 and 2015, extension of the timeseries through 2017

indicates that dust has been decreasing since 2011.

In order to evaluate the performance of the τdu,MODIS

dataset over the Caribbean, we compared it with in-

dependent, ground-based dust measurements at Ragged

Point (Prospero and Nees 1986; Prospero et al. 1996).

These measurements are based on ash residue from ex-

tracted filters with an adjustment factor based on aver-

age crustal abundance of Aluminum in soil dust. These

data have a standard error that is approximately constant

at ±0.1µgm−3 for concentrations less than 1 µgm−3 and

about ±10% for higher concentrations. We found that

in addition to matching the seasonal cycle of dust at this

location with a peak in June (Figure 7b), monthly-mean

τdu,MODIS over Barbados is well correlated (r = 0.53, p <
0.01) with monthly-mean ground-based dust aerosol mea-

surements when the seasonal cycle is removed from both

time series (Figure 7a).

4. Discussion

a. Trends in τdu,MODIS

Figure 8 presents decadal trends in monthly mean

τdu,MODIS globally between 2001 and 2017, with the sea-

sonal cycle removed. A trend of increasing τdu,MODIS of

0.1 units per decade exists over parts of the Arabic penin-

sula for the MODIS period, consistent with what has been

documented in the previous literature (Hsu et al. 2012).

Parts of the Saharan desert appear to be getting dustier.

However, coastal Northern Africa and the edges of the

Sahara display decreasing trends in τdu,MODIS (Figure 8).

Hsu et al. (2012) presented indications that total AOD

over northern China was decreasing over the period from

1998 to 2010. However, the decrease was not statisti-

cally significant. Our results show a statistically signifi-

cant decrease in dust aerosol over Northern China and over

Southwest Asia indicating that the insignificance of the

previously discovered trend may have been due to com-

peting effects of increasing anthropogenic aerosol while

dust aerosol was decreasing. Our results are in agree-

ment with recent findings by Pandey et al. (2017) that pre-

monsoon dust loading decreased between 2000 and 2015,

though this study only analyzed the pre-monsoon months

from March through May. The decrease has been linked

to increased rainfall, leading to wet scavenging and in-

creased soil moisture, and, to a lesser extent, decreased

wind strength over the region for that period. The decrease

in τdu,MODIS over northeast Asia may also be the continua-

tion of a documented decreasing trend from the late 1950s

through the 1980s in the region due to reduced cyclone

frequency (Qian et al. 2002).

Interestingly, the greatest increase in τdu,MODIS (1.04

units/decade) is seen over the Aral Sea at the intersection

of Kazakhstan and Uzbekistan (44.5◦N, 59.5◦E). This was

once the location of one of the worlds largest lakes, span-

ning over 66,000 km2 (Izhitskiy et al. 2016). However, the

lake has been drying up since the early 1960s, when irriga-

tion projects diverted the rivers that fed it leaving behind

a highly emissive exposed playa. The eastern basin of the

lake dried up completely in 2014, but the northern parts
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FIG. 7. a) Time series of monthly mean ground based dust aerosol measurements on Barbados (red) compared with τdu,MODIS over Barbados

(blue), each with the seasonal cycle removed. b) Climatological monthly mean, with long-term mean removed, of measurements on Barbados (red)

and of τdu,MODIS over Barbados (blue)

FIG. 8. Trend in τdu,MODIS over the period 2001-2017 with the seasonal cycle removed. Stippled areas indicate significance at the 95% confidence

level.

of the sea remain filled and have largely stabilized. A dra-

matic increase in τdu,MODIS is also seen over Razzaza Lake

in Iraq, where the shoreline is receding due to diverted ir-

rigation water. The northern-most region of the Caspian

Sea, which is also the shallowest portion of the sea, shows

a smaller but significant increase in τdu,MODIS potentially

due to the recession of this body of water over the past two

decades (Chen et al. 2017).

τdu derived from MODIS Aqua displays the same trends

of decreasing dust over northeast China and southwest

Asia and increasing trends over the Arabic Peninsula and

Central Sahara (Figure 9). However, there are some re-

gional changes that are more clear in this record, includ-

ing a statistically significant increase in τdu over Southern

California. There is also an increase in dust over Oman

that is not present in the τdu,MODIS derived from Terra and

a greater increase over Iran than is present in the τdu,MODIS

derived from Terra. Differences in regional trends between

these two datasets are likely to due the differences in over-

pass time for the two satellites from which the dataset are

derived as it relates to the daily cycle of dust emission.

Terra has a morning orbit while Aqua has an afternoon or-

bit (Ichoku 2005).

The decadal trend in τdu from 1981 to 2017 over water

was also calculated using monthly mean τdu,AV HRR with

the seasonal cycle removed (not shown). This yielded an

increasing trend in τdu,AV HRR near to the Arabian Penin-

sula, consistent with τdu,MODIS and with the published lit-

erature. This analysis also yielded a decreasing trend in

τdu,AV HRR in the tropical North Atlantic near to the African

coast, consistent with the time series of dust at Cape Verde

created using a similar method (Evan and Mukhopadhyay

2010). No other trends appeared in the τdu,AV HRR dataset

from 1981 to 2017.
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FIG. 9. Same as figure 8 but for τdu,MODIS derived from Aqua.

b. Comparison with a modern reanalysis dust product

In order to understand how this observational dataset

compares with a modern reanalysis dust product,

we compared τdu,MODIS to MERRA-2 dust extinc-

tion aerosol optical thickness at 550nm (accessed at

https://giovanni.gsfc.nasa.gov/giovanni/) over two of the

regions, Barbados and the southwestern U.S., used previ-

ously in our comparisons with ground observations (Fig-

ure 6). Our monthly mean τdu,MODIS, with the seasonal

cycle removed, was comparable to the monthly mean

MERRA-2 dust extinction aerosol optical thickness over

Barbados and to the ground observations from that loca-

tion (Figure 10a). However, the annual mean τdu,MODIS

displays greater inter-annual variability and was much

more similar to the ground observational record than the

MERRA-2 dust extinction aerosol optical thickness over

the southwestern U.S. (Figure 10b). The similarity of

the τdu,MODIS to the MERRA-2 dust product over barba-

dos likely occurs because the MERRA-2 dust extinction

aerosol optical thickness assimilates MODIS Dark Target

radiances, which our τdu,MODIS is based upon, and assimi-

lates data from AERONET stations including one located

at Ragged Point, the location where the ground based dust

measurements from Prospero et al. (1996) were made. The

MERRA-2 product does not assimilate MODIS Deep Blue

products over land, instead relying upon a combination of

MODIS Dark Target retrievals, Multi-angle Imaging Spec-

troRadiometer (MISR) AOD retrievals over bright sur-

faces, and AERONET stations (Randles et al. 2017) which

may be sparse in the southwestern U.S. Our τdu,MODIS

dataset appears more representative of observations over

land than this reanalysis product, and may be a more ap-

propriate choice for identification and monitoring of dust

source regions, particularly those that do not have many

AERONET stations.

5. Conclusion

These global, daily observationally-based datasets of

dust aerosol optical depth will enable a more complete

understanding of the complex interactions of dust with

weather, climate, and the human system. They are rooted

in observations of optical characteristics of the aerosol col-

umn from Terra MODIS and from AVHRR, but incorpo-

rate observations of characteristic fine mode fraction in

dusty, clean marine, and anthropogenically dominated re-

gions from AERONET as well as surface wind speed from

MERRA-2 reanalysis. τdu,MODIS and τdu,AV HRR are pro-

vided at 1◦ x 1◦ resolution within the latitude range from

50◦S to 60◦N. The long-term mean global τdu,MODIS over

the ocean was found to be 0.03± 0.06. While there are

few measurements of dust aerosol for comparison, it com-

pares well with ground-based measurements of dust from

the IMPROVE network in the western United States.

While we hoped to create a reliable dataset of τdu,AV HRR

extending from 1981 to 2017 using AVHRR AOT from

the CDR AOT dataset, we found that the AVHRR AOT

had limited coverage in dusty regions. This limited cov-

erage results in a low bias in seasonal and monthly mean

τdu,AV HRR when compared with τdu,MODIS. However, this

was mitigated through the use of a correction factor. We

found that τdu,MODIS increased in the central Sahara and

the Middle East, and decreased over northern China and

southwestern Asia between 2001 and 2017. The largest

increase in dust aerosol optical depth occurred over the

Aral Sea which has receded, leaving emissive playa sur-

faces exposed. We found decreasing decadal trends in

τdu,AV HRR near to Africa in the equatorial Atlantic, and in-

creasing trends near to the Arabian Peninsula from 1981

to 2017. To our knowledge, this work represents the first

daily, near-global observational dataset of τdu. As such, it
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FIG. 10. a) Monthly MERRA-2 dust extinction aerosol optical thickness at 550nm and monthly mean τdu,MODIS over Ragged Point, Barbados

between 2001 and 2013 with the seasonal cycle removed. b) Annual mean MERRA-2 dust extinction aerosol optical thickness at 500nm and annual

mean τdu,MODIS over the southwestern U.S. from 2001 to 2016.

may be useful for validation of modeled dust aerosol opti-

cal depth as well as for physical process studies.
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