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Summary 
Logarithmic moment generating functions play important role in 
network performance evaluation, especially in the application of 
large deviation type statistical inequalities for bounding and 
approximating quality of service measures (like transmission 
link saturation, buffer overflow rate, or traffic loss ratio due to 
these resource saturations). In this paper we present a new 
scalable method for upper bounding the logarithmic moment 
generating functions, primarily based on conditional zero order 
and first order statistics of the underlying traffic flows. The 
power of this new method compared to previously known ones 
from the literature is also demonstrated through numerical 
examples. 
. 
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1. Introduction 

Some applications require an estimate on the frequency of 
the occurrence of rare events such as packet loss in 
telecommunications and accidents covered by insurance 
in finance. The theory of large deviations is the most 
powerful mathematical technique for estimating the 
probability of such rare events. Though less apparent, 
network design and resource management processes in 
telecommunications or transport networks also rely on 
this theory when the bandwidth (throughput) requirement 
of network traffic has to be determined. 
 
Large deviations based techniques all involve the 
computation of the logarithmic moment generating 
function of the some random quantity (e.g. traffic load). 
Even other techniques used to estimate the frequency of 
rare events, such as those based on the Chernoff and 
Hoeffding bounds employ this function. For an 

}0),({ >ttX  stochastic process ( )(tX  is a random 

variable describing a stochastic process, e.g. packet 
arrivals, at the time instant t ), the logarithmic moment 
generating function is defined as 

[ ] 0t0,s  ,log),( )(
def

>>= tsXeEtsLM  .  (1) 

Here [.]E  is the (probabilistic) expectation: 

[ ] ò
¥

¥-

<= ))(()())((
def

xtXdPxftXfE  for an arbitrary 

function (.)f . The general form of the logarithmic 

moment generating function has a broad range of special 
forms and applications as seen in the. 
In practical implementations the logarithmic moment-
generating function (1) has to be replaced by a statistical 
estimator that computes the value of the function from the 
available samples of the random variable )(tX : 

)(,),(),( 21 tXtXtX NK . 

When it comes to implementation, techniques based on 
the logarithmic moment-generating function raise a range 
of difficulties. One of these difficulties lies in selecting an 
appropriate estimator of the logarithmic moment 
generating function. The key factor determining the 
appropriateness of a particular estimator is its distance 
from the abstract (exact) logarithmic moment generating 
function. An optimal estimator must meet the two 
requirements settled below: 
Req. 1: The estimator should consistently overestimate 
the theoretical function in a conservative manner. This is 
important as an underestimated packet loss probability or 
accident rate results in compromised service levels in 
telecom networks and inaccurate insurance risk factors in 
finance. Thus the overestimation of the original function 
is a mandatory requirement. 
Req. 2: The optimal estimator should provide a tight 
overestimate of the abstract logarithmic moment 
generating function. Thus the unnecessarily conservative 
estimation of the exact function has to be avoided. An 
excessive overestimation leads to overly cautious 
predictions for the bandwidth requirement, packet loss or 
accident rate, leading to underutilised network resources 
or to an overpriced insurance policy. 

2. State-of-the-art 

As of today, there are three published methods used for 
the estimation of the logarithmic moment generating 
function (1). 
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2.1 Classical Empirical Mean 

The first common solution to the statistical estimation of 
the logarithmic moment generating function is the 
replacement of the expectation with the empirical mean of 
the exponential powers of the available samples: 

å
=

=
N

n

tsX
N

ne
N

tsLM
1

)(
def

1log),( .   (2) 

This approach was proposed in a number of papers in the 
literature, e.g. in [1] and [2]. 
The classical empirical mean type estimator ),( tsLM N

 

from (2) fails to comply to Req. 1 , as in practice it 
underestimates the theoretical value of ),( tsLM  (0). 

The reason for this is that underestimation holds even in 
the statistical sense: the estimator is biased, that is, the 
expected value of the estimator is below the correct value: 

[ ] ),(),( tsLMtsLME N £  .   (3) 

Although the estimator converges to the theoretical value 
in the number of the samples 
( ),(),(lim tsLMtsLM NN =¥®

 with probability 1), for a 

fixed number of samples it is an underestimator. In 
practice, the underestimation is usually extensive because 
the empirical mean needs an extremely high number of 
samples in order to approach the expectation of the 
exponential function of the random variable. This is 
because the exponential function increases the sensitivity 
of the empirical mean estimator to the values and to the 
number of samples. 
 

2.2 Linear Approximation 

Alternatively, as a second solution, a special simplified 
statistical estimation is sometimes used [3], [4] for the 
logarithmic moment generating function. This estimator, 
hereafter referred to as the linear approximation, treats 
the exponential function inside the expectation as a linear 
curve and thus only needs the empirical mean of the 
samples (instead of the empirical mean of the exponential 
powers of the samples): 
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where )(tp  is an upper bound for the random variable 

)(tX : )()(0 tptX ££  and å
=

=
N

n
n tXtM

1

def

)()(  is the sum 

of the samples )(tX n
. 

The linear approximation ),( tsLM N  from (4) on the 

other hand is a coarse overestimator of the theoretical 
value ),( tsLM , which is in contradiction to Req. 2 (0). 

 

The reason for this is that it stems from a very 
conservative theoretical overestimation of the abstract 
logarithmic moment generating function (1): 

[ ] ),()(
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11log),(
def)(

tsLMtXE
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etsLM
tsp
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ø
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è

æ -+£  . (5) 

This estimation technique is based on the conservative 
overestimation of the exponential function by a linear 

function on a finite interval: 1
)(

1)(

+-£ x
tp

ee
tsp

sx , if 

)(0 tpx ££ . The linear approximation ),( tsLM N  (4) is 

closer to the correct value than the upper bound (5). This 
is due to the nature of the statistical estimation of the 
expectation from a finite set of samples. Formally, the 

expected value of the linear approximation ),( tsLM N  is 

below the theoretical conservative bound ),( tsLM : 

[ ] ),(),( tsLMtsLME N £  .   (6) 

Yet in practice (4) typically remains an upper bound of 
(1). This is because the overestimation in (5) is overly 
conservative. 

2.3 Tangent Linear Approximation 

A third type of estimator for the computation of the 
logarithmic moment generating function [3] is closely 
related to the linear approximation type estimator in (4) 
and can be written as a function of m for any fixed 

)(0 tpm ££ : 

group of estimators of the  

( ) ÷
ø

ö
ç
è

æ -++-
-+

-= m
tp

emtm
metp

etsLM
tsp

tsp

tsp

m
)(

11log)(
)1()(

1),(
)(

)(

)(def

 ,      (7) 

where 
N

tM
tm

)(
)(

def

= . It is attained by a tangent type 

overestimation of the linear approximation as a function 
of )(tm  at any arbitrary point )(0 tpm ££ . In fact, this 

type represents a whole group of estimators, as m  is a 

free variable in the formula. 
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The third type of estimator ),( tsLM m  from (7) also 

overestimates the abstract function ),( tsLM (1) 

excessively (0), defying the requisite on the tightness of 
the estimator set forth in Req. 2. 

The reason for this is that, by its mathematical 

construction, ),( tsLM m  is a conservative upper bound of 

the linear approximation ),( tsLM N : 

),(),( tsLMtsLM mN £  ,    (8) 

and thus overestimating the linear approximation, which 
is already behaving as an upper bound. Formally, the 

function ),( tsLM m  is obtained as a tangent of ),( tsLM N  

as a function of 
N

tM
tm

)(
)( =  taken at an arbitrary point m. 

 

 

Fig. 1. Comparison of logarithmic moment generating function 
estimators to the abstract function 

2.4. Summary of the Known Solutions 

The classical empirical mean estimator (2) violates Req. 1, 
since it consistently underestimates the abstract function 
(1) because of the finite number of samples. 

The linear approximation (4) on the other hand 
overestimates the theoretical value (1) as it is derived 
from the highly conservative linear upper bound of the 
exponential function. Because of this property it is non-
conformant to Req. 2. 

Likewise, the tangent linear approximation (7) fails to 
meet Req. 2, as it provides an even more conservative 
upper bound of the theoretical value (1) than the linear 
approximation (4). 

The deviation of the three published estimators, (2) (4) 
and (7) from the abstract logarithmic moment generating 
function (1) is depicted in 0. All estimators are computed 

for the same set of input data, originating from the 
sampling of traffic made up by 10 on-off type flows. An 
individual sample represents the amount of traffic 
generated by the aggregate traffic in a time interval of 1 s. 
The constituent flows on average stay in the on state for a 
period of 0.067 s and remain silent for 0.2 s. The data 
transmission rate in the on state is 5 Mbit/s per flow. 

3. A New Polygonal Approximation of LM(s,t) 

A good estimator of the logarithmic moment generating 
function has to be a conservative upper bound, in order to 
stay on the safe side, but it also has to be as close to the 
theoretical value as possible, in order to avoid overly 
cautious predictions. 

The core of the method is the classification of the input 
data into non-overlapping, but adjacent intervals set up 
based on the possible values of the samples. The 
exponential function inside the logarithmic moment 
generating function can be approximated by a polygon 
with linear sections in the variable )(tX  over the 

individual intervals. 

If the random variable describing the input process is 
bounded: )()( tptX £ , the division of the samples into 

groups leads to the invented estimator, termed as the 
polygonal logmoment generator with interval breakpoints 
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Here, { })()()()()( 1
1

def

tptXtpItXtM knk

N

n
nk +

=

£<=å  is the 

sum of the samples whose values are in the interval 

( ])(),( 1 tptp kk +
, { }å
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)()()()(  is 

the number of samples whose values are in the 

( ])(),( 1 tptp kk +
 interval and 
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This approximation can be interpreted as a generalisation 
to the linear approximation (4) because for 0=K  the two 
estimators are equivalent: ),(),())(( 1 tsLMtsLM Ntp = . 
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The estimator overcomes the drawbacks of the other three 
types of approximations, the underestimation of (2) and 
the overestimation of (4) and (7). With an appropriate 
choice of the breakpoints (9) the polygonal logmoment 
generator (10) exhibits the desired behaviour defined by 
Req. 1 and Req. 2 (conservative but tight estimator). 

The mathematical construction of the novel estimator 
builds on the fact that the logarithmic moment generating 
function can be written in the following form by 
assembling the original expectation from K conditional 
expectations computed over the intervals created by the 
breakpoints: 
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      (11) 

Now, using the linear bound of the exponential function 
on the finite intervals ( ])(),( 1 tptp kk +

 for the 

corresponding conditional expectations: 
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the next theoretical upper bound can be deduced for the 
logarithmic moment generating function: 
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For any number of breakpoints ( 0>K ) this theoretical 
upper bound ),())(,),(( 11

tsLM tptp K+K
 is by definition tighter 

than the linear type upper bound ),( tsLM  from (5): 

),(),())(,),(( 11
tsLMtsLM tptp K

£
+K

 .   (13) 

The replacement of the conditional expectations in (12) to 
the corresponding empirical conditional means results in 
the polygonal logmoment generator (10), whose expected 
value is below the theoretical upper bound similarly to (3) 
and (6): 

[ ] ),(),( ))(,),(())(,),((
1111 tsLMtsLME tptptptp

KK ++ £ KK  . (14) 

The presence of the breakpoints empowers the invented 

estimator ),())(,),(( 11 tsLM tptp K+K  (10) with the right amount 

of flexibility to deliver an arbitrarily tight upper bound for 
the logarithmic moment generating function ),( tsLM  

from (1). 

The polygonal logmoment generator (10) is a conservative 
but tight estimator of the logarithmic moment generating 
function (1), which makes it fully conformant to both Req. 
1 and Req. 2. These properties are essential when 
deploying the solution in real-life applications. In all 
conceivable applications (network resource requirement 
estimation in telecommunications and transport systems, 
insurance risk calculation in finance, etc.) the resource 
estimation from the logarithmic moment generating 
function is sensitive to both underestimation and 
overestimation. The underestimation brings about the 
violation of the most important requirement, the 
sustenance of contracted service levels in 
telecommunications and profitable operations in the 
insurance. Too cautious overestimation, on the other hand, 
results in underutilised network resources and overpriced 
insurance rates resulting in lost profit for telecom 
operators and insurance companies alike. 

The invented estimator (10) attains a very high precision 
from simple to obtain input data: it needs the empirical 
conditional probabilities and empirical conditional 
averages of the samples classified by the breakpoints (9). 
These two simple quantities are easily estimated even 
from a very low number of samples. Such precision in the 
approximation could only be reached with other methods 
at a price of complex input requirements such as the 
knowledge of quantities like the second and all higher 
moments of the samples. Furthermore these alternative 
methods raise intractable numerical difficulties in the 
computations they require. 

The invented polygonal logmoment generator (10) 
delivers an overwhelming improvement in the tightness of 
the estimator (0) when compared to the method of the 
linear approximation (4), yet the computations involved 
are only slightly more complex (empirical conditional 
probabilities and averages instead of only the empirical 
average). 

The invented polygonal logmoment generator (10) 
inherits the safe conservative nature from the linear 
approximation (Req. 1) as they are derived from the same 
type of upper bound, yet the invented estimator is by its 
mathematical construction tighter. Unlike its ancestor, the 
invented method allows the control of the tightness of the 
estimation through the use of the breakpoints (9). 
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The assumption made on the bounded nature of the input 
data does not restrict the applicability of the method, since 
in practice the estimator use a finite number of samples, 
therefore there exists a maximal sample value, which can 
be used as the theoretical upper bound. This means that 
the estimator can be used for arbitrary, not necessarily 
bounded, random variables. 

 

 

Fig. 2. Comparison of the invented and existing estimators to the 
abstract logarithmic moment generation function 
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Appendix 
There are some special well-known logarithmic moment 
generating functions which are included in the general 
definition (1): 

Rate type Logarithmic Moment Generating Function 

If the time dependence is omitted, the stochastic process is 

reduced to a random variable: XtX
def

)( =  and therefore the 

logarithmic moment generating function of the random 
variable X  is attained: 

the rate type logarithmic moment generating function: 

[ ] 0  ,log)(
def

>= seEsLM sX  (15) 

and the rate type effective bandwidth function used for 
bufferless multiplexing for example as in [3] and [4]: 

[ ] )(1log1)(
def

sLM
s

eE
s

s sX ==a  .   (16) 

In case of rate type input quantities, 
NXXX ,,, 21 K  

(samples of the random variable X ), the rate type 
logarithmic moment generating function can be computed 
using the following form of the invented estimator: 
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Here { }1
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samples whose values fall into the interval ],( 1+kk pp , 
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values are in the interval ],( 1+kk pp . 

Input Process type Logarithmic Moment Generating 
Function 

If the random variable )(tX  of the stochastic process 

describes the amount of arrivals in the time interval ),0[ t : 

),0[)(
def

tXtX = , the logarithmic moment generating 

function can be used to arrive at the well-known effective 
bandwidth function defined by Kelly [5]: 

[ ] ),(1log1),( ),0[
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ts tsX ==a , or (18) 

the scaled cumulant generating function used by Duffield 
et al. [1]: 
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The invented estimator for the input process type 
logarithmic moment generating function from the 
available samples ),0[,),,0[),,0[ 21 tXtXtX NK  (instances 

of the random variable tptptX
def

)(),0[ =£ ) takes the form 

of 
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