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A NEW SCALING FOR NEWTON’S ITERATION FOR THE POLAR
DECOMPOSITION AND ITS BACKWARD STABILITY∗
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Abstract. We propose a scaling scheme for Newton’s iteration for calculating the polar decom-
position. The scaling factors are generated by a simple scalar iteration in which the initial value
depends only on estimates of the extreme singular values of the original matrix, which can, for ex-
ample, be the Frobenius norms of the matrix and its inverse. In exact arithmetic, for matrices with
condition number no greater than 1016, with this scaling scheme no more than 9 iterations are needed
for convergence to the unitary polar factor with a convergence tolerance roughly equal to 10−16. It
is proved that if matrix inverses computed in finite precision arithmetic satisfy a backward-forward
error model, then the numerical method is backward stable. It is also proved that Newton’s method
with Higham’s scaling or with Frobenius norm scaling is backward stable.
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Newton’s method, numerical stability, scaling
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1. Introduction. Every matrix A ∈ Cn×n has a polar decomposition A = QH,
where H = H∗ ∈ Cn×n is Hermitian positive semidefinite and Q ∈ Cn×n is unitary,
i.e., Q∗Q = I. The polar decomposition is unique with positive definite symmetric
factor H iff A is nonsingular. Its applications include unitary approximation and
distance calculations [8, 9, 12]. The polar decomposition generalizes to rectangular
matrices; see, for example, [15]. We consider only the square matrix case here, because
numerical methods for computing the polar decomposition typically begin by reducing
the problem down to the square matrix case using, for example, a QR factorization
[5, 8]. (An algorithm that works directly with rectangular matrices appears in [6].)

The polar decomposition may be easily constructed from a singular value decom-
position (SVD) of A. However, the SVD is a substantial calculation that displays
much more of the structure of A than does the polar decomposition. Constructing
the polar decomposition from the SVD destroys this extra information and wastes the
arithmetic work used to compute it. It is intuitively more appealing to use the polar
decomposition as a preliminary step in the computation of the SVD as in [12].

When A is nonsingular, one way to compute the polar decomposition is through
Newton’s iteration:

Qk+1 =
1

2

(
ζkQk + (ζkQk)

−∗) , Q0 = A,(1.1)

where ζk = ζ(Qk) > 0 is a positive scalar function of Qk chosen to accelerate con-
vergence [8]. Each iterate Qk has polar decomposition Qk = QHk, where Q is
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NEWTON’S ITERATION FOR POLAR DECOMPOSITION 823

the unitary polar factor of A, H0 = H is the Hermitian polar factor of A, and
Hk+1 = (ζkHk + (ζkHk)

−1)/2, k ≥ 0. For appropriately chosen acceleration parame-
ters ζk, limk→∞ Hk = I. Hence, the unitary polar factor is Q = limk→∞ Qk, and the
Hermitian polar factor is H = limk→∞ Q∗

kA.
Iteration (1.1) was first proposed in [8] and studied further in [5, 6, 14]. It is

called “Newton’s iteration” because it can be derived from Newton’s method applied
to the equation X∗X = I. It is closely related to Newton’s iteration for the matrix
sign function [17, 22].

Simplicity is an attractive feature of (1.1). Apart from the computation of ζk,
each iteration needs only one matrix inversion and one matrix-matrix addition. The
simplicity allows implementations of (1.1) to take advantage of the hierarchical mem-
ory and parallelism [1, 2, 13]. Many authors have studied choices of the acceleration
parameters ζk [3, 4, 8, 16, 17, 22]. If ζk ≡ 1, then the iterates Qk converge quadrati-
cally to the unitary polar factor Q [8]. Convergence is also quadratic if ζ = ζ(U) is a
smooth function of U ∈ Cn×n and ζ(U) = 1 whenever U is unitary.

The choice

ζ
(2)
k =

√
||Q−1

k ||2
||Qk||2

,(1.2)

where || · ||2 is the spectral norm is proposed in [8]. This scale factor is optimal in the
sense that, given Qk, (1.2) minimizes the next error ||Qk+1 − Q||2. With this scale
factor, for the matrices Qk generated by (1.1), the error sequence ||Qk−Q||2 converges
monotonically to zero. Unfortunately, to determine the scale factor (1.2), one needs
to compute two extreme singular values of Qk at each iteration. In order to preserve
the rapid convergence of (1.1) with scaling (1.2), the highly accurate values of these

extreme singular values are required to guarantee ζ
(2)
k → 1. This is expensive enough

to make scale factor (1.2) unattractive.
To save the cost of computing the extreme singular values, one might approximate

(1.2). A commonly used scale factor is the (1,∞)-scaling

ζ
(1,∞)
k =

(
||Q−1

k ||1||Q−1
k ||∞

||Qk||1||Qk||∞

) 1
4

,(1.3)

(where || · ||1 and || · ||∞ are the 1-norm and ∞-norm, respectively) which was proposed

by Higham in [8]. The factor ζ
(1,∞)
k is within a constant factor of ζ

(2)
k . It adds a

negligible amount of arithmetic work compared to the cost of Q−1
k , which is needed

at each iteration anyway.
The scale factor

ζ
(F )
k = ||Q−1

k ||1/2F ||Qk||−1/2
F ,(1.4)

(where || · ||F is the Frobenius norm) is discussed in [5, 8, 16]. It can also be computed
at a negligible cost. It is optimal in the sense that, given Qk, it minimizes ||Qk+1||F
and causes the sequence ||Qk||F to converge monotonically [5].

Another relatively inexpensive scale factor is [4]

ζ
(d)
k = |det(Qk)|−1/n.(1.5)

The complex modulus of the determinant is very inexpensively obtained from the
same matrix factorization used to calculate Q−1

k . This scaling is optimal in the sense
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824 RALPH BYERS AND HONGGUO XU

that, for a given iterate Qk, it minimizes D(Qk+1) =
∑n

j=1(ln(σ
(k+1)
j ))2, where σ

(k+1)
j

is the jth singular value of Qk+1. The function D(Qk+1) is a measure of the departure
of Qk+1 from the unitary matrices.

This paper considers the suboptimal scaling strategy

ζ0 = 1/
√
ab, ζ1 =

√
2
√
ab

a + b
, ζk = 1/

√
ρ(ζk−1), k = 2, 3, . . . ,(1.6)

where ρ(x) = (x+x−1)/2 and a and b are any numbers such that 0 < a ≤ ||A−1||−1
2 ≤

||A||2 ≤ b. Apart from estimating the extreme singular values of the initial matrix
Q0 = A, the scale factor costs only several floating point operations per iteration.
Moreover, only the rough estimates of ||A||2 and ||A−1||−1

2 are needed. One may simply
choose a = ||A−1||−1

F and b = ||A||F . From Table 2.1 with such choices for any matrices
with condition number no greater than 1016 and size no greater than 1011, at most
nine iterations of (1.1) with scaling (1.6) are necessary to approximate the unitary
polar factor Q to within 2-norm distance less than 10−16.

We show below that, in the presence of rounding error, (1.1) with (1.6) is numeri-
cally stable assuming that matrix inverses are calculated with small forward-backward
error. This is the case, for example, when matrix inverses are computed using the
bidiagonal reduction [7, p. 252]. We also prove the numerical stability of Newton’s
iteration with any of the scalings (1.2)–(1.4).

Commenting on an early draft of this paper, Ziȩtak pointed out that the subopti-
mal (quasi-optimal) scaling parameters were discovered independently by Kie�lbasiński
but not published in the open literature. They were presented by Ziȩtak at the 1999
Householder meeting at Whistler and the 1999 ILAS conference at Barcelona. In
section 5 of their recent paper [19], Kie�lbasiński, Zieliński, and Ziȩtak mention the
quasi-optimal scaling parameters. In [18], these authors gave an error analysis of
Higham’s method [8] with the same mixed backward-forward stability assumption for
matrix inversion. They gave numerical experiments in [23].

In the following A ∈ Cn×n is always nonsingular. A = UΣV ∗ is the SVD of A,
where U and V are unitary, Σ = diag(σ1, · · · , σn) is diagonal, and σ1 ≥ · · · ≥ σn ≥ 0
are the singular values of A. The set of the singular values is denoted by σ(A). The
condition number with respect to the spectral norm of A is denoted by κ2(A) = σ1/σn.
Following [7, p. 18], a flop is the computational work of a floating point addition,
subtraction, multiplication, or division together with the associated subscripting and
indexing overhead. It takes two flops to execute the Fortran statement A(I,J) =

A(I,J) + C*A(K,J).

2. Scaling and convergence. Let A ∈ Cn×n be nonsingular, with the SVD
A = UΣV ∗, with Σ = diag(σ1, σ2, . . . , σn). Each Newton iterate Qk in (1.1) has the
SVD Qk = UΣkV

∗, where

Σk+1 =
(
ζkΣk + (ζkΣk)

−1
)
/2, Σ0 = Σ.(2.1)

In particular, Qk has singular values σ
(k)
1 , σ

(k)
2 , . . .σ

(k)
n (in no particular order when

k > 0) that obey

σ
(0)
j = σj , σ

(k+1)
j =

1

2

(
ζkσ

(k)
j +

1

ζkσ
(k)
j

)
= ρ(ζkσ

(k)
j ), k = 0, 1, 2, . . . ,(2.2)
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NEWTON’S ITERATION FOR POLAR DECOMPOSITION 825

where ρ(x) = (x + x−1)/2. For appropriately chosen ζk, limk→∞ σ
(k)
j = 1, and

limk→∞ Qk = UV ∗ = Q. Consequently, the convergence properties of (1.1) derive

directly from the n scalar sequences σ
(k)
j determined by (2.2). To attain good con-

vergence behavior in (1.1), the acceleration parameters ζk must interact well with
ρ(x) = (x + x−1)/2.

The following two lemmas list some easily verified elementary properties of ρ(x) =
(x + x−1)/2.

Lemma 2.1. If x > 0, then
1. ρ( 1

x ) = ρ(x).
2. 1 ≤ ρ(x) ≤ max(x, x−1), with either equality iff x = 1.
3. ρ(x) is decreasing on x ∈ (0, 1] and increasing on x ∈ [1,∞).

Lemma 2.2. Suppose that 0 < a ≤ b. Define αζ = max{(ζa)−1, ζb}, and
ζopt = (ab)−1/2. Then we have the following properties.

1. For any ζ > 0, 1 ≤ maxa<x<b ρ(ζx) = ρ(αζ), and 1 = maxa<x<b ρ(ζx) iff
αζ = 1.

2. For any ζ > 0, 1 ≤ mina<x<b ρ(ζx), and 1 = min
a<x<b

ρ(ζx) iff ζa ≤ 1 ≤ ζb.

3. minζ>0 αζ = αζopt =
√
b/a, and ζ = ζopt is the only minimizer.

4. minζ>0 maxa≤x≤b ρ(ζx) = minζ>0 ρ(αζ) = ρ(αζopt) = ρ(
√

b/a).
In the following, for ease of notation let τ(x) be the function

τ(x) = ρ(
√
x) =

1

2

(√
x +

1√
x

)
.(2.3)

The k-fold composition of τ(x) with itself is written τk(x), i.e., τ0(x) = x, τ1(x) =
τ(x), and for k > 1, τk+1(x) = τ(τk(x)). Similarly ρk(x) is the k-fold composition of
ρ(x) = (x + x−1)/2 with itself.

Suppose that 0 < a ≤ σn ≤ σ1 ≤ b. Consider the sequence of intervals generated
by Newton’s iteration: [a0, b0] = [a, b], [a1, b1] = ρ(ζ0[a0, b0]), [a2, b2] = ρ(ζ1[a1, b1]),

. . . . It follows from (2.2) that σ
(k)
j ∈ [ak, bk], j = 1, 2, . . . , n, k = 0, 1, . . .. Note that

minx>0 ρ(x) = 1, so for k ≥ 1, [ak, bk] ⊆ [1, bk] and

1 ≤ σ
(k)
j ≤ bk.(2.4)

It is intuitively satisfying to choose the sequence of acceleration parameters ζk in (1.1)
to minimize the sequence bk.

From Lemma 2.2, the initial optimal scaling factor is ζ0 = (ab)−1/2. The initial
interval is scaled to be ζ0[a, b] = [

√
a/b,

√
b/a] which contains 1. The next interval

is

[a1, b1] = ρ(ζ0[a, b]) = [1, ρ(
√
b/a)] = [1, τ(b/a)],

where τ(x) is given by (2.3). The left endpoint is a1 = 1, so the optimal scaling factor

for the next iteration is ζ1 = b
−1/2
1 = 1/

√
τ(b/a). The next interval is

[a2, b2] = ρ(ζ1[a1, b1]) = [1, ρ(
√

τ(b/a))] = [1, τ2(b/a)].

An easy induction shows that the sequence of intervals is [a0, b0] = [a, b] and for
k ≥ 1, [ak, bk] = [1, τk(b/a)], and the sequence of optimal scaling factors is

ζ0 = 1/
√
ab, ζk = 1/

√
τk(b/a), k = 1, 2, 3, . . . ,(2.5)

which is equivalent to (1.6).
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826 RALPH BYERS AND HONGGUO XU

Since τ(x) = ρ(
√
x) ≤ ρ(x) for x ≥ 1,

τ(b/a) ≤ ρ(b/a).

By induction we have

τk(b/a) ≤ ρk(b/a)

for all k ≥ 1. The sequence b/a, ρ(b/a), ρ2(b/a), . . . , is generated by Newton’s iteration
xk+1 = ρ(xk), with x0 = b/a. It converges to 1 quadratically. Obviously τk(b/a) ≥ 1
for k ≥ 0. So b/a, τ(b/a), τ2(b/a), . . . also converges to 1 at least quadratically. It is
not difficult to show that 1 ≤ τ(x) ≤ x for any x ≥ 1. We have

bk = τk(b/a) = τ(τk−1(b/a)) ≤ τk−1(b/a) = bk−1.

Hence, after the first step, the sequence of intervals satisfies

[a1, b1] ⊇ [a2, b2] ⊇ · · · ⊇ [ak, bk] ⊇ . . . ,

and it converges to the single point 1 quadratically. (Note ak = 1 for all k ≥ 1.) The
initial interval, [a0, b0] = [a, b] is an exception, because, in general, [a, b] � [1, τ(b/a)].

Based on this fact and (2.4), the convergence properties of (1.1) with (1.6) are
clear, and we summarize them in the following theorem.

Theorem 2.3. If

0 < a ≤ ||A−1||−1
2 ≤ ||A||2 ≤ b(2.6)

and Qk is obtained from the Newton iteration (1.1) with scaling (1.6), then

||Qk −Q|| ≤ τk(b/a) − 1 ≤ ρk(b/a) − 1, k = 1, 2, . . . .(2.7)

In fact the convergence properties are highly satisfactory even when b/a is large.
Table 2.1 uses Theorem 2.3 to list the number of Newton’s iteration (1.1) with
scaling (1.6) (and exact arithmetic) required to guarantee selected absolute errors
δ > ||Qk − Q||2 and values of b/a. The table demonstrates that Newton’s iteration
(1.1) with scaling (1.6) typically needs no more than nine iterations to attain typi-
cal floating point precision accuracy. The table also demonstrates that convergence
is insensitive to the choice of a and b—widely differing values of b/a need similar
numbers of iterations to attain similar accuracy. In particular the easy-to-compute
choices a = ||A−1||−1

F and b = ||A||F satisfy (2.6) and are unlikely to lead to even one
more iteration than the optimum choices of a = ||A−1||−1

2 and b = ||A||2, particularly
for ill-conditioned matrices. For instance, for any A ∈ Cn×n with κ2(A) = 1016, for
a = ||A−1||−1

F and b = ||A||F , we have b/a ≤ nκ(A) = n1016. Then b/a ≤ 1027 for any
n ≤ 1011, and the number of iterations is 9, the same as with the optimum choices.

In Theorem 2.3, smaller values of b/a give smaller values of τk(b/a) and hence
better error bounds. Inequality (2.6) implies that b/a ≥ κ2(A) = ||A−1||2 ||A||2, and
equality can be achieved only with a = ||A−1||−1

2 = σn and b = ||A||2 = σ1. With
a = σn and b = σ1, the scaling factors (1.6) are

ζ0 = 1/
√
σ1σn, ζk = 1/

√
τk(κ2(A)), (k ≥ 1),(2.8)

and the corresponding intervals are [σn, σ1], and [1, τk(κ2(A))] for k ≥ 1. Let Σk be
the matrices generated by (2.1), with a = σn and b = σ1. It is easy to verify that in
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Table 2.1

The number of Newton iterations (1.1) with scaling (1.6) (and exact arithmetic) required to
guarantee absolute error ||Qk−Q||2 < δ for selected values of δ and b/a such that 0 < a ≤ ||A−1||−1

2 ≤
||A||2 ≤ b. See Theorem 2.3.

δ \ b/a 10 105 1010 1015 1020 1025 1027

10−1 2 4 5 6 6 6 6

10−4 4 5 6 7 7 8 8

10−7 4 6 7 8 8 8 8

10−10 5 7 7 8 8 9 9

10−13 5 7 8 8 9 9 9

10−16 5 7 8 9 9 9 9

10−19 6 7 8 9 9 10 10

this case, the right endpoint of the kth interval is a singular value of Σk. This in turn
implies that inequality (2.7) is an equality, i.e.,

||Qk −Q||2 = ||Σk − I||2 = τk(κ2(A)) − 1.

The number sequence bk was also derived in [16] in order to show the convergence
behavior of Newton’s method with the optimal scale factors. It is shown that when

a = σn and b = σ1, for Qk generated with ζ
(2)
k−1 defined in (1.2), one has ||Qk||2 ≤ bk

[16, 11]. Due to this fact we call ζk defined in (2.5) suboptimal scale factors. Note
that bk is derived based on different interpretations here. It is the right endpoint of
the kth interval generated by applying Newton’s iteration to the initial interval [a, b].
For this interval iteration, ζk is the scale factor that minimizes bk+1 −1 (i.e., it makes
[ak+1, bk+1] as close to 1 as possible).

3. The algorithm. The Newton’s method (1.1) with scaling scheme (1.6) is
implemented by the following algorithm.

Algorithm 3.1 (Newton’s method (1.1) with scaling (1.6)).
Input: Nonsingular matrix A ∈ Cn×n and a stopping criterion δ > 0.
Output: The polar decomposition A = QH.

Step 0: a. Set Q0 = A; Compute Q−∗
0

b. Choose a ≤ ||Q−1
0 ||−1

2 and b ≥ ||Q0||2; ζ0 = 1/
√
ab

c. Set k = 0
Step 1: While ||Qk −Q−∗

k ||F ≥ δ
a. Qk+1 = (ζkQk + ζ−1

k Q−∗
k )/2

b.
If k = 0, ζ1 =

√
2√

b/a+
√

a/b

Else ζk+1 =
√

2
ζ−1
k +ζk

End if
c. Compute Q−∗

k+1

d. k = k + 1
End while

Step 2: Q = (Qk + Q−∗
k )/2; H = 1

2 (Q∗A + (Q∗A)∗)
Here are some remarks.

1. The matrix A−1 = Q−1
0 needs to be computed in the first iteration anyway.

Hence, power iterations on A and A−1 may be used evaluate the extreme singular
values σ1 and σ−1

n , respectively, using only O(n2) extra flops per iteration. These
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828 RALPH BYERS AND HONGGUO XU

estimates may then serve as the suboptimal scaling factors b and a−1, respectively.
Since highly accurate estimates of σ1 and σn are unnecessary, a few power iterations
should suffice. Alternatively, ||A||F and ||A−1||−1

F may be used for b and a.
2. The stopping criterion ||Qk −Q−∗

k ||F < δ is essentially equivalent to ||Qk+1 −
Qk||F < δ, which is used in [11, section 8.9]. This follows from the fact that when
ζk ≈ 1 (which is usually the case for a small δ),

Qk+1 −Qk =
1

2
(ζ−1

k Q−∗
k − (2 − ζk)Qk) ≈

1

2
(Q−∗

k −Qk).

In practice, in order for the computed Qk to be within O(ε) of a unitary matrix,
where ε is the machine epsilon, it is sufficient to choose δ = O(

√
ε). See (4.16).

3. Commonly the matrix inversion method used in the algorithm is an LU
factorization-based method such as the Gaussian elimination with partial pivoting
or complete pivoting [8]. Such an inversion method usually works well in practice
[18]. In order to guarantee the algorithm to be numerically backward stable, one may
use the more expensive bidiagonal reduction-based matrix inversion method provided
in Appendix A.1. So the computed matrix inverses satisfy the backward-forward error
model. See Assumption 4.1 in section 4 below.

4. Estimating σ1 and σn usually uses O(n2) flops. Each iteration uses 2n3 flops
for the matrix inverse by an LU factorization-based method and O(n2) flops for matrix
addition. Computing H uses 2n3 flops. If p is the number of iterations for convergence,
then the algorithm uses a total of roughly 2(p+1)n3 flops [8]. When p = 9 it is about
20n3 flops, which is less than the QR-like SVD method (which takes 22n3 to 26n3

flops for the SVD and 4n3 for Q and H). If the bidiagonal reduction-based matrix
inversion method is used, the total cost will be 2(3p + 1)n3 flops.

5. In order to reduce the cost while maintaining numerical stability, one may
first use the bidiagonal reduction-based method for a few iterations. When κ2(Qk) is
not too large, say 100, one shifts to an LU factorization-based inversion method for the
subsequent iterations. The matrix inverses essentially satisfy the backward-forward
error model in the latter case [10, section 14]. Also, it takes only a few iterations
for the condition number to drop below 100. In the case when κ2(A) = 10−16, with
a = σn and b = σ1, then ||Q3||2 = τ3(10−16) ≈ 42. Since this is usually the worst
case in practice, the bidiagonal reduction-based method is required in no more than
3 iterations. With this strategy, the maximum cost (with p = 9) is 3 · 6n3 + (9 − 3) ·
2n3 + 2n3 = 32n3 flops.

6. Although the cost for computing the scale factors (1.3)–(1.5) is negligible
in Newton’s iteration, computing the suboptimal scale factors is essentially costless.
Also, the use of suboptimal scaling simplifies the algorithm, since the “shifting scale
factor to 1” strategy, which is used for the (1,∞)-scaling ([8]), is not needed. Finally,
with suboptimal scaling, in general, the number of iterations is no greater than 9, and
it can be obtained by simply computing τk(b/a)−1. It is still not clear how to predict
the number of iterations with other scalings, although in practice it is observed that
the (1,∞)-scaling and the suboptimal scaling essentially have the same convergence
rate.

4. Stability and rounding error analysis. In this section, a first order error
analysis establishes that Newton’s method (1.1) with scaling (1.6) can be implemented
in a backward stable way. The same conclusion is drawn for the scalings (1.2), (1.3),

and (1.4). In outline, the approach is to estimate the residual ||A − Q̂Ĥ||2 for the

rounding-error-perturbed unitary factor Q̂ and Hermitian factor Ĥ produced by finite
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NEWTON’S ITERATION FOR POLAR DECOMPOSITION 829

precision arithmetic in the algorithm in section 3. The method here is to first estimate
the forward errors Q̂−Q and Ĥ −H and then use them to estimate the residual.

For the error analysis, we employ the standard model of floating point arithmetic
with machine epsilon ε [10, section 2.2].

We also need the following assumptions.
Assumption 4.1. If a nonsingular matrix A ∈ Cn×n is inverted using finite

precision arithmetic with machine epsilon ε to obtain a “computed inverse” X, then

X = (A + E)−1 + F,

where E, F ∈ Cn×n are perturbation matrices satisfying

||E||2 ≤ c1(n)ε||A||2, ||F ||2 ≤ c2(n)ε||A−1||2,

and ci(n) (i = 1, 2) are some low-degree polynomials of n.
In Newton’s method it is typical to use Gaussian elimination with partial or

complete pivoting for computing matrix inverses. Although it works well in practice,
the computed matrix inverses may not satisfy Assumption 4.1 [10, section 14.1]. We
show in Appendix A.1 that Assumption 4.1 is satisfied by a matrix inversion algorithm
that uses the bidiagonal reduction method.

Assumption 4.2.

c3(n)κ2(A)ε < 1,

where c3(n) is a low-degree polynomial of n.
Note that 1/κ2(A) is the measure of the relative distance of a nonsingular A to

the nearest singular matrices [7, p. 73], i.e.,

1

κ2(A)
= min

det(A+E)=0

||E||2
||A||2

.

If such a condition doesn’t hold, then matrices like A + E in Assumption 4.1 can be
singular. So this is a condition about the numerical nonsingularity of A. It is essential
in the subsequent first order error analysis, although it won’t be explicitly stated.

We now begin the error analysis. In practice, rounding errors perturb Newton’s
method recurrence (1.1). Under Assumptions 4.1, if Q̂k is the computed version of
Qk, then

Q̂k+1 =
ζk
2
Q̂k + Fk,1 +

1

2ζk

(
(Q̂k + Fk,2)

−∗ + Fk,3

)
=

ζk
2

(Q̂k + Fk,2) +
1

2ζk
(Q̂k + Fk,2)

−∗ +

(
Fk,1 +

1

2ζk
Fk,3 −

ζk
2
Fk,2

)
=:

ζk
2

(Q̂k + Fkb) +
1

2ζk
(Q̂k + Fkb)

−∗ + Fkf ,(4.1)

where Fkb = Fk,2 and Fkf = (Fk,1 + 1
2ζk

Fk,3 − ζk
2 Fk,2). The perturbation matrix Fk,1

represents rounding errors introduced by floating point matrix addition and scalar
multiplication, and the perturbation matrices Fk,2 and Fk,3 represent rounding errors
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830 RALPH BYERS AND HONGGUO XU

introduced by matrix inversion under Assumption 4.1. The F ’s obey the bounds

||Fk,1||2 ≤ d1εmax
(
||ζkQ̂k||2, ||ζ−1

k Q̂−∗
k ||2

)
||Fk,2||2 ≤ d2ε||Q̂k||2
||Fk,3||2 ≤ d3ε||Q̂−∗

k ||2
||Fkb||2 ≤ dbε||Q̂k||2
||Fkf ||2 ≤ df

ε

2
max

(
||ζkQ̂k||2, ||ζ−1

k Q̂−∗
k ||2

)
,

where ε is the machine epsilon and d1, d2 = db, d3, and df are some modest constants
that may depend on n, the details of the arithmetic and the inversion algorithm but
depend neither on Qk nor Q̂k. Each Qk is a smooth function of Qk−1 and each
Fk,j = O(ε), so, by induction,

Q̂k = Qk + O(ε).(4.2)

Hence, the bounds above may be loosely expressed in terms of Qk as

||Fkb||2 ≤ dbε||Qk||2 + O(ε2)(4.3)

||Fkf ||2 ≤ df
ε

2
max

(
||ζkQk||2, ||ζ−1

k Q−∗
k ||2

)
+ O(ε2)

≤ dfε||Qk+1||2 + O(ε2).(4.4)

Inequality (4.4) is a consequence of (2.2).
We need the following lemma for continuing our analysis.
Lemma 4.3. Let A ∈ Cn×n be a nonsingular matrix with polar decomposition

A = QH, with Q ∈ Cn×n unitary and H ∈ Cn×n Hermitian positive definite. If
F ∈ Cn×n with ||F ||2 = 1 and t ≥ 0, then when t is sufficiently small, A + tF has the
polar decomposition

A + tF = Q
(
(I + tE) + O(t2)

) (
H + tG + O(t2)

)
,

where G ∈ Cn×n is the unique Hermitian solution to

F ∗A + A∗F = GH + HG,(4.5)

and E ∈ Cn×n is the unique skew-Hermitian solution to

Q∗F − F ∗Q = EH + HE.(4.6)

Also, E is given by

E = (Q∗F −G)H−1.(4.7)

Proof. See proof in Appendix A.2.
At each of the perturbed Newton iteration (4.1) rounding errors are equivalent to

perturbing Q̂k to Q̂k + Fkb, taking one Newton step (1.1), then perturbing the result

by adding Fkf . Let Q̂k = WkĤk and Q̂k + Fkb = W̃kH̃k be the polar decompositions

of Q̂k and Q̂k + Fkb, respectively. By Lemma 4.3,

W̃k = Wk(I + Ekb) + O(ε2),(4.8)
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NEWTON’S ITERATION FOR POLAR DECOMPOSITION 831

where Ekb satisfies

EkbĤk + ĤkEkb = W ∗
kFkb − F ∗

kbWk + O(ε2).(4.9)

From (4.1),

ζk
2

(Q̂k + Fkb) +
1

2ζk
(Q̂k + Fkb)

−∗ = Q̂k+1 − Fkf .

Since the unitary factor in the polar decomposition of the left-hand side matrix is W̃k,
applying Lemma 4.3 to Q̂k+1, we have

W̃k = Wk+1(I − Ekf ) + O(ε2),

or equivalently,

Wk+1 = W̃k(I + Ekf ) + O(ε2),(4.10)

where Ekf satisfies

Ekf Ĥk+1 + Ĥk+1Ekf = W ∗
k+1Fkf − F ∗

kfWk+1 + O(ε2).(4.11)

Since Qk has the polar decomposition Qk = QHk and Q̂k satisfies (4.2), by Lemma 4.3

one also has Ĥk = Hk+O(ε), Wk = Q+O(ε). Based on these first order error results,
(4.9) and (4.11) can be expressed as

EkbHk + HkEkb = Q∗Fkb − F ∗
kbQ + O(ε2),(4.12)

EkfHk+1 + Hk+1Ekf = Q∗Fkf − F ∗
kfQ + O(ε2).(4.13)

Combining (4.8) and (4.10), one has

Wk+1 = Wk(I + Ekb + Ekf ) + O(ε2).

It follows by induction (with W0 = Q) that

Wj = Q(I + Ej) + O(ε2), j > 0,

where

Ej =

j−1∑
k=0

(Ekb + Ekf ).(4.14)

Suppose that Algorithm 3.1 applied to a nonsingular matrix A ∈ Cn×n, with polar
decomposition A = QH completes after p iterations in Step 1. We obtain Q̂p that

satisfies ||Q̂p− Q̂−∗
p ||2 ≤ ||Q̂p− Q̂−∗

p ||F < δ. With the polar decomposition Q̂p = WpĤp

and (2.2), we have (see the proof in Appendix A.3)

1

2
(Q̂p + Q̂−∗

p ) = Wp + ΔQ̂p,(4.15)

where

||ΔQ̂p||2 < δ2/8.
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832 RALPH BYERS AND HONGGUO XU

Suppose δ is small. Step 2 of the algorithm produces approximate polar factors

Q̂ =
1

2
(Q̂p + Q̂−∗

p ) + F, Ĥ =
1

2

(
Q̂∗A + A∗Q̂ + K

)
,

where F accounts for rounding error forming Q̂ from Q̂p and K for rounding error

forming Ĥ from A and Q̂ obeying

||F || ≤ dF ε, ||K|| ≤ dKε||A||2,

with modest constants dF and dK . So we have

||Q̂−Wp||2 ≤ dF ε + δ2/8.(4.16)

Since Wp = Q(I + E) with E := Ep defined in (4.14), by (4.15),

Q̂ = Q(I + E) + ΔQ̂p + F = Q(I + E + L),(4.17)

where L = Q∗(ΔQ̂p + F ) satisfies

||L||2 ≤ dL max(ε, δ2)

for some modest constant dL, which combines the rounding error F and the effect of
stopping criterion. Both dL and dK may depend on n and the details of the finite
precision arithmetic and computational algorithm, but not on A, Q̂, or Ĥ. With
(4.17) and the fact that E is skew-Hermitian,

Ĥ =
1

2
((I + E + L)∗Q∗A + A∗Q(I + E + L) + K)

=
1

2
(1 − E + L∗)H + H(I + E + L) + K)

=
1

2
(2H − EH + HE + L∗H + HL + K).(4.18)

So by (4.17) and (4.18), to the first order,

Q̂Ĥ −A =
1

2
Q(I + E + L)(2H − EH + HE + L∗H + HL + K) −A

=
1

2
Q (2H − EH + HE + L∗H + HL + 2EH + 2LH + K) −A

+ O(||L||22) + O(ε||L||2) + O(ε2)

=
1

2
Q (EH + HE + L∗H + HL + 2LH + K) + O(max(ε2, εδ2, δ4)).

From (4.14) this expression can be written

Q̂Ĥ −A =
1

2
Q

p−1∑
k=0

(EkbH + HEkb + EkfH + HEkf )

+
1

2
Q(L∗H + HL + 2LH + K) + O(max(ε2, εδ2, δ4)).(4.19)

Note that so far the suboptimal scale factors have not played a role. In order
to continue the analysis, we need the following lemma which involves the suboptimal
scaling.
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Lemma 4.4. Let A ∈ Cn×n be a nonsingular matrix with singular value decompo-
sition UΣV ∗, Σ = diag(σ1, σ2, . . . , σn), and σ1 ≥ σ2 ≥ · · · ≥ σn. Consider Newton’s

iteration (2.1) with scaling (1.6) and initial iterate Σ0 = Σ. Let σ
(k)
j be the jth diago-

nal entry of Σk, and let σ
(k)
max = max1≤j≤n σ

(k)
j . If a, b satisfy 0 < a ≤ σn and b ≥ σ1,

then, for all k ≥ 0 and 1 ≤ i, j ≤ n,

σ
(k)
max

σ
(k)
i + σ

(k)
j

≤ b

σi + σj
.

Proof. See Appendix A.4.
Recall that Ekb, Ekf satisfy (4.12) and (4.13), respectively. Let

Hk = V ΣkV
∗

be an eigen-decomposition, where V is unitary and Σk is diagonal obeying (2.1).
(Recall that throughout the algorithm the singular vectors of the Qk’s are the singular
vectors of A. In particular, for all k, the unitary matrix of the right singular vectors
of A is also a unitary matrix of the eigenvectors of Hk.) In this notation, (4.12) and
(4.13) can be written

ẼkbΣk + ΣkẼkb = F̃kb − F̃ ∗
kb + O(ε2),

ẼkfΣk+1 + Σk+1Ẽkf = F̃kf − F̃ ∗
kf + O(ε2),

where

Ẽkb = V ∗EkbV, Ẽkf = V ∗EkfV, F̃kb = V ∗Q∗FkbV, F̃kf = V ∗Q∗FkfV.(4.20)

So, the (i, j)th entries of Ẽkb and Ẽkf are

ẽij,kb =
f̃ij,kb − f̃ji,kb

σ
(k)
i + σ

(k)
j

+ O(ε2), ẽij,kf =
f̃ij,kf − f̃ji,kf

σ
(k+1)
i + σ

(k+1)
j

+ O(ε2).(4.21)

Note that ||Ẽkj ||2 = ||Ekj ||2 and ||F̃kj ||2 = ||Fkj ||2 for j = b, f , because V and Q are
unitary.

Multiplying (4.19) on the left by V ∗ and on the right by V gives

V ∗(Q̂Ĥ −A)V =
1

2
V ∗QV

p−1∑
k=0

(
ẼkbΣ + ΣẼkb + ẼkfΣ + ΣẼkf

)
+

1

2
V ∗ (L∗H + HL + 2LH + K)V + O(max(ε2, εδ2, δ4)),

where Ẽkb and Ẽkf are given by (4.20). From (4.21), the (i, j)th entry of the sum∑p−1
k=0(ẼkbΣ + ΣẼkb + ẼkfΣ + ΣẼkf ) is

p−1∑
k=0

(ẽij,kb + ẽij,kf )(σi + σj)

=

p−1∑
k=0

(
f̃ij,kb − f̃ji,kb

σ
(k)
i + σ

(k)
j

+
f̃ij,kf − f̃ji,kf

σ
(k+1)
i + σ

(k+1)
j

)
(σi + σj) + O(ε2)

=

p−1∑
k=0

(
f̃ij,kb − f̃ji,kb

σ
(k)
max

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

+
f̃ij,kf − f̃ji,kf

σ
(k+1)
max

(σi + σj)σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

)
+ O(ε2).
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834 RALPH BYERS AND HONGGUO XU

Inequalities (4.3) and (4.4) and Lemma 4.4 imply∣∣∣∣∣
p−1∑
k=0

(ẽij,kb + ẽij,kf )(σi + σj)

∣∣∣∣∣
≤ 2ε

p−1∑
k=0

(
db

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

+ df
(σi + σj)σ

(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

)
+ O(ε2)

≤ 2pε(db + df )b + O(ε2).

Hence, the residual is bounded as

||Q̂Ĥ −A||2 ≤ ||Q
p−1∑
k=0

(EkbH + HEkb + EkfH + HEkf ) /2||2

+ ||Q(L∗H + HL + 2LH + K)/2||2 + O(max(ε2, εδ2, δ4))

≤ npε(db + df )b + (2dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4)).

In the same way, from (4.18) we can obtain

||Ĥ −H||2 ≤ ||(−EH + HE)/2||2 + ||(L∗H + HL + K)/2||2 + O(δ4)

≤ npε(db + df )b + (dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4)).

By applying Lemma 4.4 to (4.21) to estimate ||E||2, then from (4.17) we can derive

||Q̂−Q||2 ≤ ||QE||2 + ||QL||2 ≤ θnpε(db + df )b + dL max(ε, δ2),

where

θ =

{ 1
σn

A is complex,
2

σn−1+σn
A is real.

(4.22)

(The formula in the real case is based on the fact that ẽii,kb = ẽii,kf = 0 from (4.21).)
We present the above error analysis results as well as (4.16) in the following

theorem.
Theorem 4.5. Suppose that A ∈ Cn×n satisfies Assumption 4.2 and has the polar

decomposition A = QH. Let Q̂ and Ĥ be the matrices computed by Algorithm 3.1
after p iterations with a matrix inversion method that satisfies the error model in
Assumption 4.1. Then

||Q̂Ĥ −A||2 ≤ npε(db + df )b + (2dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4))

||Ĥ −H||2 ≤ npε(db + df )b + (dL + dK/2) max(ε, δ2)||A||2 + O(max(ε2, εδ2, δ4))

||Q̂−Q||2 ≤ θnpε(db + df )b + dL max(ε, δ2)

||Q̂−Wp||2 ≤ dF ε + δ2/8,

where db, df , dL, dK , dF are some modest constants, Wp is a unitary matrix, and θ is
defined in (4.22).

As noted in Table 2.1, in most practical situations p ≤ 9. Therefore, if b is not too
much greater than ||A||2 and the algorithm uses a stopping criterion δ not too much
greater than

√
ε, then the algorithm is backward stable.
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Corollary 4.6. If b = ||A||2 and δ = n
1
4
√
ε, then

||Q̂Ĥ −A||2 ≤ (np(db + df ) +
√
n(2dL + dK/2))ε||A||2 + O(ε2)

||Ĥ −H||2 ≤ (np(db + df ) +
√
n(dL + dK/2))ε||A||2 + O(ε2)

||Q̂−Q||2 ≤ np(db + df )ε(θ||A||2) +
√
ndLε

||Q̂−Wp||2 ≤ (dF +
√
n/8)ε.

Note that the error bounds for ||Ĥ−H||2 and ||Q̂−Q||2 coincide with the perturbation
results; see, for example, [8, 21, 20] and [11, section 8.2]. The quantity θ||A||2 serves
as the condition number for the perturbation of Q.

Remark 1. The same procedure can be used to give an error analysis for Newton’s
method with other scalings. Note that the backward stability depends on whether

(σi + σj)σ
(k)
max

σ
(k)
i + σ

(k)
j

= O(||A||2),(4.23)

which depends on scaling factors. From Remark 2 in Appendix A.4, (4.23) holds for
the optimal scaling (1.2). Lemma A.3 in Appendix A.5 shows that (4.23) also holds
for the (1,∞)-scaling (1.3) and the scaling (1.4). Therefore, Newton’s method with
these three scalings is also backward stable under the same conditions of Theorem 4.5
and an appropriate stopping criterion, when the number of iterations is not too large.
(See Remark 3 in Appendix A.5.)

We also observed that the numerical stability doesn’t necessarily depend on how
fast the method converges. In fact, one can show that when ||A||2 ≥ ||A−1||2, Newton’s
method without scaling (a = b = 1) computes a polar decomposition satisfying the
same error bounds given in Theorem 4.5.

5. Numerical examples. We did some numerical experiments with Newton’s
method (1.1) with scaling (1.6) using a = ||A−1||−1

F , b = ||A||F , and also with the
(1,∞)-scaling (1.3). The main purpose is to test the numerical stability results and
convergence rate and to compare the suboptimal scaling and (1,∞)-scaling. For this
reason we used the bidiagonal reduction matrix inversion method Algorithm BR for
computing matrix inverses.

All numerical experiments were done on a Dell personal computer with a Pentium-
IV processor, in Matlab version 7.2 with machine epsilon ε ≈ 2.22 × 10−16.

In the numerical experiments we use stopping criterion δ = n
1
4
√
ε, where n is

the size of matrices. For Newton’s method with the (1,∞)-scaling, the scale factor
is shifted to 1 when ||Xk+1 −Xk||F /||Xk+1||F < 10−2. Based on the results in Corol-

lary 4.6, if Q̂ and Ĥ are the computed unitary and Hermitian polar factors produced
by Algorithm 3.1, then we expect to observe that ||A− Q̂Ĥ||2/||A||2, ||H − Ĥ||2/||H||2,
and ||Q− Q̂||2/(θ||A||2) are not much larger than ε.

In the tables we will use the following notations:

eQ =
||Q− Q̂||2
θ||A||2

, eH =
||H − Ĥ||2

||H||2
, res =

||A− Q̂Ĥ||2
||A||2

, ror = ||Q̂∗Q̂− I||2,

where the “exact” factors Q and H for the matrices in the first example are obtained
from the SVD of A using Matlab’s variable precision arithmetic vpa with 24 signi-
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836 RALPH BYERS AND HONGGUO XU

Table 5.1

The extreme values of errors, residuals, and iteration counts from Example 1.

kappa 102 108 1015

Min Max Min Max Min Max
p SUB 6 6 8 8 8 9

HSF 6 7 8 8 8 9
eQ SUB 2.6e−17 7.2e−17 7.4e−19 1.7e−17 6.9e−19 2.3e−17

HSF 2.2e−17 7.7e−17 7.4e−19 1.7e−17 6.9e−19 2.3e−17
eH SUB 2.2e−16 4.1e−16 2.5e−16 4.1e−16 1.9e−16 4.4e−16

HSF 1.7e−16 3.9e−16 1.9e−16 3.9e−16 2.2e−16 4.0e−16
res SUB 4.1e−16 8.9e−16 4.0e−16 7.5e−16 3.5e−16 6.3e−16

HSF 3.5e−16 8.2e−16 2.7e−16 5.9e−16 3.9e−16 7.2e−16
ror SUB 7.9e−16 1.1e−15 8.0e−16 1.1e−15 7.8e−16 1.3e−15

HSF 7.0e−16 1.2e−15 7.9e−16 1.2e−15 8.2e−16 1.1e−15

Table 5.2

Errors, residuals, and iteration counts for Hilbert matrices from Example 2.

n 6 8 10 12 14
p SUB 8 8 9 9 9

HSF 7 8 8 9 9
eQ SUB 1.2e−18 1.6e−19 2.7e−19 4.1e−19 2.0e−17

HSF 1.2e−18 1.6e−19 2.7e−19 4.1e−19 2.0e−17
eH SUB 2.3e−16 1.9e−16 8.7e−17 1.4e−16 2.3e−16

HSF 1.9e−16 1.4e−16 8.7e−17 1.6e−16 2.7e−16
res SUB 2.6e−16 2.4e−16 1.8e−16 3.0e−16 3.8e−16

HSF 2.5e−16 2.5e−16 1.8e−16 3.3e−16 6.3e−16
ror SUB 2.6e−16 3.9e−16 6.2e−16 6.3e−16 6.5e−16

HSF 2.8e−16 5.3e−16 6.8e−16 8.5e−16 1.0e−15

ficant decimal digits. p is the number of iterations, and n is the dimension of matrices.
The symbol “HSF” refers to Newton’s method (1.1) with Higham’s (1,∞)-scaling.
The symbol “SUB” refers to (1.1) with scaling (1.6) using the Frobenius norms for
the initial interval, i.e., a = ||A−1||−1

F and b = ||A||F .
Example 1. Three groups of twenty real matrices were constructed with dimen-

sion 20 by using Matlab’s gallery(’randsvd’,20,kappa,5), with kappa equal to
102, 108, 1015, respectively. The singular values of the generated matrices are ran-
dom values with uniformly distributed logarithm. For each group the ranges of the
condition numbers κ2(A) and θ||A||2 are listed below:
kappa = 102 : κ2(A) ∈ [37.7, 90.6], θ||A||2 ∈ [33.5, 83.7],
kappa = 108 : κ2(A) ∈ [1.13, 6.75] × 107, θ||A||2 ∈ [0.2, 5.44] × 107,
kappa = 1015 : κ2(A) ∈ [6.35× 1010, 7.53× 1014], θ||A||2 ∈ [1.78× 1010, 5.22× 1014].

The test results are summarized in Table 5.1, where, for each group, the minimum
and maximum values of the errors, residuals, and numbers of iterations are listed.

Example 2. In this example the test matrices are the Hilbert matrices, which are
n× n matrices with entries aij = 1/(i + j − 1). The example uses dimensions n = 6,
n = 8, n = 10, n = 12, and n = 14. For every Hilbert matrix, the polar decomposition
is An = InAn.

The condition number κ2(An) ranges from 1.5 × 107 to 5.1 × 1017, and θ||An||2
ranges from 2.6 × 105 to 1.0 × 1017. The test results are reported in Table 5.2.

Newton’s method with the suboptimal scaling performed well in both examples
calculating the polar factors to nearly full precision. As predicted it takes at most 9
iterations. Newton’s method with the (1,∞)-scaling performs equally well.

D
ow

nl
oa

de
d 

09
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

NEWTON’S ITERATION FOR POLAR DECOMPOSITION 837

6. Conclusion. The suboptimal scaling scheme (1.6) is essentially costless and
simplifies the algorithm of Newton’s iteration (1.1) for computing polar factors. In a
typical floating point system, with this scaling scheme, for matrices with κ2(A) < 1016,
no more than 9 iterations are needed for convergence to the unitary polar factor
with a convergence tolerance roughly equal to the machine epsilon. By employing
the bidiagonal factorization for matrix inversion, (1.1) with (1.6) forms a provably
backward stable algorithm. Newton’s method with (1,∞)-scaling and scaling (1.4) is
also proved to be backward stable, provided the number of iterations is not too large.

Appendix A.

A.1. Bidiagonal reduction-based matrix inversion algorithm.
Algorithm BR.
Input: Nonsingular matrix A ∈ Cn×n

Output: G = A−1

Step 1: Compute A = UBV ∗, with U, V unitary and B upper bidiagonal.
Step 2: Solve BY = U∗ for Y by back substitution.
Step 3: Compute G = V Y .

In Step 1 one may use the Householder reflectors to perform the reduction. The
reduction needs 8

3n
3 flops and computing U needs 4

3n
3 flops. The matrix V is stored

in factorized form. The cost for solving the matrix equation is O(n2) flops. With the
factorized form of V , it needs 2n3 flops to compute G. So the total cost is 6n3 flops.

In order to show that a matrix inverse computed by Algorithm BR follows As-
sumption 4.1, we need the following lemma.

Lemma A.1. Consider the system Bx = z, where z ∈ Cn and B is nonsingular
and upper bidiagonal denoted by

B =

⎡⎢⎢⎢⎢⎣
α1 β1 0

. . .
. . .

. . . βn−1

0 αn

⎤⎥⎥⎥⎥⎦ .

Let x̂ be the numerical solution with back substitution. Then x̂ satisfies

x̂ = B−1(z + δz) + δx,

where

|δz| ≤ 3nε|z| + O(ε2), |δx| ≤ 3nε|x̂| + O(ε2).

Proof. The components of the computed vector x̂ can be formulated as

x̂n =
zn

αn(1 + εn)
, x̂k =

zk(1 + δk) − βkx̂k+1

αk(1 + εk)
, 1 ≤ k ≤ n− 1,

where |εn|, |δk| < ε, |εk| < 3ε, k ≤ n− 1. So we have

αnx̂n(1 + εn) = zn

αn−1x̂n−1(1 + εn−1) + βn−1x̂n = zn−1(1 + δn−1)

...(A.1)

α1x̂1(1 + ε1) + β1x̂2 = z1(1 + δ1).
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838 RALPH BYERS AND HONGGUO XU

Define x̃ = [x̃1, . . . , x̃n]T , z̃ = [z̃1, . . . , z̃n]T , with

x̃n = x̂n(1 + εn), x̃n−1 = x̂n−1(1 + εn−1)(1 + εn), . . . , x̃1 = x̂1

n∏
k=1

(1 + εk),

z̃n = zn, z̃n−1 = zn−1(1 + δn−1)(1 + εn), . . . , z̃1 = z1(1 + δ1)

n∏
k=2

(1 + εk).

By multiplying (1+εn) to the second equation, (1+εn)(1+εn−1) to the third equation,
and so on in (A.1), we obtain that x̃ and z̃ satisfy

Bx̃ = z̃.

Let δz = z̃ − z, and δx = x̂− x̃. Then from x̃ = B−1z̃ we have

x̂ = B−1(z + δz) + δx.

The error bounds for |δx| and |δz| follow simply from the definitions.
Theorem A.2. Let X be the inverse of A computed by Algorithm BR. Then X

satisfies Assumption 4.1.
Proof. We only consider the first order errors.
Let Û B̂V̂ ∗ be the computed bidiagonal factorization of A. Then Û = U + ΔU1,

V̂ = V + ΔV1, where U, V are unitary and ||ΔU1||2 ≤ d1ε, ||ΔV1||2 ≤ d2ε, and

UB̂V ∗ = A + E,

where ||E||2 ≤ d3ε||A||2 for some modest constants d1, d2, d3. Let Ŷ be the numerical
solution of B̂Y = Û∗ computed by back substitution. By Lemma A.1,

Ŷ = B̂−1(Û∗ + ΔU2) + ΔY,

where

||ΔU2||2 ≤ 3n
3
2 ε, ||ΔY ||2 ≤ 3n

3
2 ε||Ŷ ||2.

Let X be the computed matrix product V̂ Ŷ . We have

X = V̂ Ŷ + ΔX,

where ||ΔX||2 ≤ d4ε||Ŷ ||2 for some modest constant d4. Now

X = V̂ B̂−1(Û∗ + ΔU2) + V̂ ΔY + ΔX = V̂ B̂−1Û∗ + V̂ B̂−1ΔU2 + V̂ ΔY + ΔX

=: V B̂−1U∗ + F = (A + E)−1 + F,

where

F = ΔV1B̂
−1U∗ + V B̂−1(ΔU1)

∗ + V̂ B̂−1ΔU2 + V̂ ΔY + ΔX.

It is easily verified that ||F ||F ≤ (6n
3
2 + d1 + d2 + d4)ε||A−1||2.
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A.2. Proof of Lemma 4.3. Equations (4.5) and (4.7) are established in the
proof of Theorem 2.5 in [8]. Here we slightly modify that proof to establish (4.6).

Let A(t) = A + tF have polar decompositions Q(t)H(t). Note that H(t) =
(A(t)∗A(t))1/2 (positive definite square root) and Q(t) = A(t)H(t)−1 are sums, dif-
ferences, products, quotients, and compositions with C∞ functions of the entries of
A(t), which is trivially a C∞ function. Hence, Q(t) and H(t) are also C∞. (Here we
use the fact that A is nonsingular to observe that H(t) = (A(t)∗A(t))1/2 avoids the
singularity of the square root at zero.) Using Q̇ and Ḣ to denote differentiation by t,
Taylor’s theorem implies that

Q(t) = Q(0) + tQ̇(0) + O(t2) = Q(I + tQ∗Q̇(0)) + O(t2)

H(t) = H(0) + tḢ(0) + O(t2).

The proof of Theorem 2.5 in [8] shows Ḣ(0) = G = G∗, with G given by (4.5) and
Q∗(0)Q̇(0) = E = −E∗, with E given by (4.7).

Differentiate A + tF = Q(t)H(t) to get F = Q̇H + QḢ. Evaluating at t = 0,
letting E = Q∗(0)Q̇(0), G = Ḣ(0) gives Q∗F = EH + G. Using the facts that E is
skew-Hermitian and G is Hermitian while subtracting this equation to its Hermitian
transpose gives (4.6). The Lyapunov operator on the right is nonsingular, because A
nonsingular implies that the eigenvalues of the Hermitian polar factor H are real and
positive. Hence, the solution E is unique.

A.3. Proof for (4.15). Let Q̂p = UpΣpV
∗
p be the SVD. Recall that the singular

values satisfy σ
(p)
i ≥ 1. Then ||Q̂p − Q̂−∗

p ||2 < δ implies that

σ
(p)
i − 1

σ
(p)
i

< δ, i = 1, 2, . . . , n.

Because

σ
(p)
i − 1

σ
(p)
i

=
(σ

(p)
i + 1)(σ

(p)
i − 1)

σ
(p)
i

,

we have

σ
(p)
i − 1 <

δσ
(p)
i

σ
(p)
i + 1

.

Then

1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1 =

(σ
(p)
i − 1)2

2σ
(p)
i

<
σ

(p)
i

2(σ
(p)
i + 1)2

δ2.

Since the function x/(x+1)2 is decreasing when x ≥ 1, we have σ
(p)
i /(σ

(p)
i +1)2 ≤ 1/4.

Hence

1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1 < δ2/8

and using Wp = UpV
∗
p ,

||ΔQ̂p||2 = ||(Q̂p + Q̂−∗
p )/2 −Wp||2 = ||Up((Σp + Σ−1

p )/2 − I)V ∗
p ||2

= max
i

(
1

2

(
σ

(p)
i +

1

σ
(p)
i

)
− 1

)
< δ2/8.
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A.4. Proof of Lemma 4.4. By (2.4), σ
(k)
max ≤ bk for k ≥ 0.

So we only need to show that

bk

σ
(k)
i + σ

(k)
j

≤ b

σi + σj
, k ≥ 0.

An easy calculation shows, for all i and j,

σ
(k)
i + σ

(k)
j =

ζk−1

2
(σ

(k−1)
i + σ

(k−1)
j )

(
1 +

1

ζ2
k−1σ

(k−1)
i σ

(k−1)
j

)
.

Recall bk satisfies

bk =
1

2

(
ζk−1bk−1 +

1

ζk−1bk−1

)
=

ζk−1

2
bk−1

(
1 +

1

ζ2
k−1b

2
k−1

)
.

Because σ
(k−1)
i σ

(k−1)
j ≤ b2k−1,

bk

σ
(k)
i + σ

(k)
j

=

ζk−1

2 bk−1

(
1 + 1

ζ2
k−1b

2
k−1

)
ζk−1

2 (σ
(k−1)
i + σ

(k−1)
j )

(
1 + 1

ζ2
k−1σ

(k−1)
i σ

(k−1)
j

)
≤ bk−1

σ
(k−1)
i + σ

(k−1)
j

.

An easy induction on k now implies that

bk

σ
(k)
i + σ

(k)
j

≤ b0

σ
(0)
i + σ

(0)
j

=
b

σi + σj
, k ≥ 0.

Remark 2.

1. The condition a ≤ ||A−1||−1
2 is essential for proving Lemma 4.4. Without it

one may not have the inequality σ
(k)
j ≤ bk, and the result cannot be proved.

2. In the case that the optimal scaling is employed, bk = σ
(k)
max, and one has the

same result.

A.5. Relation (4.23) for the scalings (1.3) and (1.4).
Lemma A.3. Suppose that the matrix sequence Qk is generated by Newton’s

iteration with scaling ζk that is either ζ
(1,∞)
k in (1.3) or ζ

(F )
k in (1.4). The singular

values of Qk satisfy

σ
(k)
max

σ
(k)
i + σ

(k)
j

≤
(

k−1∏
�=0

ψ�

)
||A||2

σi + σj
≤ n

k
2

||A||2
σi + σj

, k ≥ 0, 1 ≤ i, j ≤ n,(A.2)

where ψ� = max{1, 1

ζ2
�σ

(�)
maxσ

(�)
min

} ≤
√
n.

Proof. Let

wk =
1

ζ2
kσ

(k)
minσ

(k)
max

, k ≥ 0.
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If

ζk = ζ
(1,∞)
k =

4

√
||Q−1

k ||1||Q−1
k ||∞

||Qk||1||Qk||∞
,

using the inequalities ||A||2 ≤
√
||A||1||A||∞ ≤

√
n||A||2, we have ([11, p. 208])

1
4
√
n
ζk ≤ 1√

σ
(k)
minσ

(k)
max

≤ 4
√
n ζk.(A.3)

If

ζk = ζ
(F )
k =

√
||Q−1

k ||F
||Qk||F

,

using the inequalities ||A||2 ≤ ||A||F ≤
√
n ||A||2, we also have (A.3).

So in both cases we have

1√
n
≤ wk ≤

√
n.

Construct an interval [ak, bk] according to the rule

ak = σ
(k)
minwk, bk = σ

(k)
max, wk ≤ 1,

ak = σ
(k)
min, bk = σ

(k)
maxwk, wk ≥ 1.

Because ak ≤ σ
(k)
min and bk ≥ σ

(k)
max, we have σ

(k)
1 , . . . , σ

(k)
n ∈ [ak, bk]. Also, in both

cases we have (ζkak)
−1 = ζkbk. So ρ(ζkak) = ρ(ζkbk) and

σ
(k+1)
j = ρ(ζkσ

(k)
j ) ∈ ρ(ζk[ak, bk]) = [1, ρ(ζkbk)], j = 1, 2, . . . , n.

Since

ρ(ζkbk) =
1

2

(
ζkbk +

1

ζkbk

)
=

ζkbk
2

(
1 +

1

(ζkbk)2

)
,

we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ ρ(ζkbk)

σ
(k+1)
i + σ

(k+1)
j

=

ζkbk
2

(
1 + 1

(ζkbk)2

)
ζk
2 (σ

(k)
i + σ

(k)
j )

(
1 + 1

ζ2
kσ

(k)
i σ

(k)
j

)

=
bk

(
1 + 1

(ζkbk)2

)
(σ

(k)
i + σ

(k)
j )

(
1 + 1

ζ2
kσ

(k)
i σ

(k)
j

) .

If wk ≤ 1, then bk = σ
(k)
max. Because σ

(k)
i σ

(k)
j ≤

(
σ

(k)
max

)2

= b2k, we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ bk

σ
(k)
i + σ

(k)
j

=
σ

(k)
max

σ
(k)
i + σ

(k)
j

.
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If wk ≥ 1, then bk = σ
(k)
maxwk. Because σ

(k)
i σ

(k)
j ≤

(
σ

(k)
max

)2

≤ b2k, we have

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ bk

σ
(k)
i + σ

(k)
j

= wk
σ

(k)
max

σ
(k)
i + σ

(k)
j

.

Hence

σ
(k+1)
max

σ
(k+1)
i + σ

(k+1)
j

≤ ψk
σ

(k)
max

σ
(k)
i + σ

(k)
j

, ψk = max{1, wk} ≤
√
n.

Then the inequalities in (A.2) can be easily derived.

Remark 3. Suppose that Newton’s method with scaling ζ
(1,∞)
k or ζ

(F )
k terminates

after p iterations. We have the same error bounds as in Theorem 4.5 but with a factor
n

p
2 in the first term of the bounds for ||Q̂Ĥ −A||2, ||Ĥ −H||2, and ||Q̂−Q||2. When n

and p are both large, this factor is notably large, and one may not be able to use the
bounds to claim backward stability. Unfortunately, we are unable to provide an upper
bound for p, although it is observed that p is usually moderate in practice (p ≤ 9 for
the (1,∞)-scaling for all examples in section 5).

However, we argue that the factor n
p
2 is an overestimate. The point is that, when

Qk is getting close to a unitary matrix, ζ
(1,∞)
k and ζ

(F )
k are getting close to 1. Then

wk as well as ψk will be close to 1. So in practice wk will be around 1 after a couple
of iterations.
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[23] P. Zieliński and K. Ziȩtak, Polar decomposition—properties, applications and algorithms,
Appl. Math., An. Polish Math. Soc., 38 (1995), pp. 23–49.

D
ow

nl
oa

de
d 

09
/3

0/
14

 to
 1

29
.2

37
.4

6.
10

0.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p


