
A N e w Scheduling M e t h o d for Parallel
Discrete-Event Simulat ion

Edwin Naroska and Uwe Schwiegelshohn

University of Dortmund, Computer Engineering Institute, 44221 Dortmund, Germany
{edwinluwe} @ds.e-technik.uni-dortmund.de

Abst rac t . In this paper we introduce a new conservative and non block-
ing algorithm for discrete event simulation on parallel computers with
distributed memory. The new approach, called critical process first (CPF)
algorithm, is especially well suited for simulating complex VLSI designs
consisting of many logical processes. The algorithm avoids deadlocks
by repeatedly sending lookahead information about critical processes to
other computation nodes. Processes are called critical if they may directly
influence processes of another computation node. To hide the communi-
cation latency of the parallel computer the CPF method gives priority
to the execution of events which may affect critical processes. Simula-
tion results show the superiority of the CPF algorithm over approaches
without priority handling.

1 I n t r o d u c t i o n

Discrete-event simulation (DES) is an important part in the validation of large
digital systems. With growing complexity, many uniprocessor simulation plat-
forms reach their performance limits. The limiting factors are both computation
power and memory constraints of the simulation computer.

To overcome these restrictions parallel discrete-event simulation (PDES) has
been suggested. Typically, the numerous components of large designs are mostly
connected with local links. This structure inherently supports the use of a parallel
computer and PDES.

In our work we consider the simulation of VLSI models with a large number
of logical processes on a parallel computer with distributed memory. Moreover,
we assume that the sizes of the designs allow each simulation node to keep only
a fraction of the whole design in its memory. While these machines have the
advantage of better scalability over a shared memory multiprocessor, they have
a relatively high communication latency compared to their computing power.
Consequently, latency hiding becomes an important topic in PDES [9]. The
huge memory demand also requires the distribution of the logical processes of
the simulation task onto the various nodes of the computer in a step called
partitioning.

As each node contains a set of logical processes the execution order of these
processes is determined, that is the processes are scheduled. This step is subject
to causality constraints. Although partitioning precedes scheduling both tasks

583

are not independent from each other. In this paper we concentrate on the schedul-
ing problem. For the partitioning we only assume that the distribution of the
logical processes is characterized by a small number of links between processes
on different nodes.

Previous research in this area has resulted in two different classes of sim-
ulation approaches: conservative and optimistic algorithms [4]. In conservative
methods all events of a process P are executed in the order given by their time-
stamps [7]. It is further possible to distinguish between blocking and non-blocking
conservative algorithms. For instance a blocking method has been introduced by
Chandy and Misra [3]. Soule and Gupta [9] reported that these algorithms tend
to spend a lot of computation time for deadlock detection, deadlock recovery
and additional process computation when applied to simulation of digital cir-
cuits. Non-blocking algorithms prevent deadlocks but often require additional
computation and communication overhead [9, 10].

Optimistic methods allow the processing of an event at a process without
guaranteeing that no other event with a smaller time-stamp may arrive at the
same process [5]. If the chronological order is not preserved, the simulation must
be rolled back in time to a safe state. Therefore, an optimistic simulation algo-
r i thm requires a strategy for backing up the simulation. This results in additional
memory requirements and may be unacceptable for large VLSI simulation tasks.

Our concept is conservative and non-blocking and suggests a tradeoff between
the computation overhead and the memory required for node synchronization.
As in [1, 2, 6, 8] we also base our approach on distances between processes.
However, in order to adapt to parallel computers with message passing we avoid
all barrier synchronization. Instead, we use a special kind of state messages for
node synchronization similar to [8].

Most previous approaches [1, 2, 6, 7, 8] use a simple scheduling method where
the execution order of ready events is arbitrary. Our method however is based on
an algorithm which optimizes the order in which the events are executed by the
nodes in respect to effective node synchronization. This effort supports hiding
communication latency effects of the parallel computer.

The rest of this paper is organized as follows. First, a brief introduction to
the problem is given in Section 2. In the next section we informally introduce
our method. Then, node scheduling based on critical process lookahead is dis-
cussed and synchronizing algorithms with full and limited process lookahead are
introduced in Section 4. For the proposed node scheduling schemes we give a sim-
ple and an improved algorithm called critical process first (CPF) in Section 5.
Finally, in Section 6 some simulation results are presented.

2 P r o b l e m D e s c r i p t i o n

A discrete-event simulation is represented by a weighted di-graph G(P, W, l) with
W C P • P and l : W --+ IR +. Intuitively, p E P and w = (p~, pj) E W denote
a logical process and a link between two logical processes, respectively. During
the simulation a message e, called an event, may be sent across a link (p~,pj).

584

Each event e consists of a t ime s tamp t(e) and a value. However, this value is of
no relevance for the scheduling problem addressed in this paper.

Upon receiving an event e on link (Pi,Pj) the destination process p(e) = pj
may change its internal s tate and may also send events on its output links. The
virtual t ime of t(p(e)) is set to t(e). The t ime s tamp t(e') of any outgoing event
e' on link (Pj,Pk) is at least t(pj) + l((pj ,pk)) . Thus, the weight l(w) of a link
w = (Pi,Pj) denotes the lower bound of the event delay on this link.

Consequently, the earliest t ime a process Pi may influence the state of a
process pj is given by the t(pi) + dp~pj where dp~pj is the shortest path in G from
pi to pj. Note that dp~p~ > 0 as l(w) > 0 V w E W.

As the simulation is causal t(pi) is not allowed to decrease. Hence, an appro-
priate scheduling method must guarantee that no event e= may arrive at Pl with
t(ex) < t(p~).

From the above we can conclude that two events ei and ej with p(ei) = Pi
and p(ej) = pj can be evaluated in parallel when the following condition holds

t(eD < t(~) + 4,~, A t(~) < t(~j) + d~,,,. (1)

Using these inequations either requires repeatedly solving an all pairs shortest
pa th problem or saving the whole distance matr ix in memory. The first approach
is computat ional intensive [1] while the second one requires storing a table of
size IPI 2.

In this paper we address simulation tasks with a large number of logical pro-
cesses by proposing a tradeoff between memory and computat ion requirements.

3 The N e w Simulat ion Strategy

Our simulation algorithm is characterized as follows:

1. Processes are assigned to computer nodes. There they are handled by a sin-
gle sequential node-simulator. This node-simulator determines the execution
order of all local events.

2. Each node is required to keep only par t of the whole distance matrix D =
[dp~pj]. In typical cases this reduces the memory complexity to far less than
O(I/~

3. Different node-simulators are synchronized by state messages which include
bounds on future event arrivals.

A dynamic imbalance of work distribution may cause an inefficient simulation
as some nodes may have to wait for a (potential) event from another busy node.
On the other side, the local events on a node are only subject to a partial order
based on event and process t ime stamps. Usually, this leaves a multitude of
permissible execution sequences in each node. This degree of freedom can be
exploited to reduce the above mentioned inefficiencies.

Therefore, each node-simulator repeatedly estimates the earliest virtual t ime
at which an internal event may affect processes located on other nodes. This

585

lookahead information is derived from the minimal process distances dpipj and
sent to the appropriate node-simulators. Then these node-simulator determine
which of their internal events can be evaluated without violating the causality
condition.

As all weights of the graph T are positive, our algorithm is free from deadlock.

4 C r i t i c a l P r o c e s s L o o k a h e a d

We first introduce some definitions with respect to a computing node n.

D e f i n i t i o n 1 The process set Ln o] node n is the set of all processes allocated
to this node.

Cn = {pi I P~ C Ln A 3(pi,pj) E W wi th pj r Ln}.
En = {Pi I P~ r Ln A 3(pi,Pj) E W with pj C Ln}.
cln(p~) = min{dp, p~ I P= e Ca}]or p, C P.

The critical process set Cn contains all source processes of outgoing external
links from n, while all the source processes with external incoming links to n are
in the process set E,~. Note, that all elements of E,~ are not par t of the process
set Ln. Finally, the critical distance d-n (Pi) is the minimum distance from process
p~ to any critical processes of n.

We also say that t(p~) is a lower bound for the t ime-s tamp of all unprocessed
events at process Pi. Note that t(p~) does not only take into account all existing
events which are not yet processed but also potential events which have not yet
been initiated.

/
c r i t i c a l

c r i t i c a l b

Fig. 1. A network with Ca = {p2}, Cb = {p4,ps}, E~ = {p4,ps}, Eb = {p2}

Fig. 1 shows an example network consisting of two nodes and seven pro-
cesses. The critical and external process sets are given by Ca = {P2}, Cb =

{P4, P5 }, Ea = {P4, P5 }, and Eb = {P2 }.
I t is the main objective of the scheduling algorithm to find a suitable looka-

head t(pi) for every critical process Pi. This lookahead information is then sent

586

to the other affected nodes, that is those nodes m with Pi C Era. Then it can be
decided which events to process safely without violating the causality condition.

D e f i n i t i o n 2 Let e be an event with destination process p(e) E Ln. The event e
is called ready when

t(e) < dp~p(e) + {(px) V px e En. (2)

Otherwise, the event is called blocked.

A blocked event e cannot be processed by the associated node as an event
on another node may result in an event with a smaller t ime-s tamp than t(e) at
process p(e). Note, that a ready event may not be processed immediately due to
constraints between processes of Ln.

Apar t from identifying the blocked events it is therefore also necessary to
determine the processing order of ready events by respecting the local causality
of the simulation. This causality is reflected in the definition of an event schedule:

D e f i n i t i o n 3 A tuple S = (el,e2, ...em) with p(e~) E L,~ Y e~ C S is called an
event-schedule of node n if

t(e~) < t(ej) + dp(ej)p(e,) Y l < i < j < m. (3)

The events can now be legally executed in the order given by S until

1. the next event in S is blocked or
2. a new event has been internally generated.

Note, tha t internal events of n must be introduced into the event schedule imme-
diately. This is not necessary for external events due to the blocking property. I t
is sufficient to introduce these external events into the event schedule whenever
a blocked event in S is encountered or when the schedule is modified by using
new lookahead information. After the introduction of new events into the event
schedule S the processing restarts with the first event of the modified tuple S.

Due to the positivity of the distances an event e~ C S cannot create events
which may affect any predecessor of ei. Therefore, this scheduling scheme guar-
antees correct simulation with respect to causality.

In the case of encountering a blocked event however, evaluation must stop
until new lookahead information is obtained from other nodes. As this may result
in a loss of efficiency the scheduling scheme is extended.

L e m m a l . Let S = (el,e2,.. .ey,ey+l...em) bean event-schedule of node n. I f
event e u is the blocked and ey+ l is ready then schedule Snew = (el, e2, ...ey+l, ey...em)
is an event-schedule as well.

Proo]. As S is an event-schedule it meets Inequation 3. The only difference be-
tween S and S,~ew is the exchange of ey+l and ey. Therefore, it is sufficient to
prove

t(ey+l) < t(ey) + dp(e~)p(~+~).

587

As event ey+l is ready we have

t(ey+l) < dp~p(e~+l) + i(p~) Y p= e En.

However, there is a p~ E En with

t(ey) > dp, p(e~) + t(p,)

as event ey is blocked. With shortest path property of dp~pj we then obtain

t(ey+l) < i(p.)+dp.p(~+l) ~_ i(p.)+dp.p(~)+dp(~)p(e~+,) <_ t(%)+dp(~)p(e~+~)

Consequently all events with status ready can be executed in the order given
by S while blocked events are skipped.

determine status of events;
determine a schedule S;
determine and dispatch lookahead information;
REPEAT

insert new events into S if necessary;
determine status of events;
determine and dispatch lookahead information if necessary;
e = first event of S with status ready;
IF e ~ 0 THEN

execute(e);
remove e from S;

END IF;
UNTIL (end of simulation);

Fig. 2. Synchronizing algorithm based on external process lookahead

For each new event the status must be determined. Moreover, the status of
blocked events is checked when new lookahead information arrives as this may
result in changing the status from blocked to ready.

The simulation algorithm based on the external process lookahead informa-
tion is given in Fig. 2. At the beginning of a simulation an initial event-schedule
must be created. Thereafter, a new event-schedule is determined only when new
events or new lookahead information arrives. A new event may either appear as
the result of the evaluation of another event or it may be received from another
node.

Note, that there are no explicit synchronization points in the simulation
algorithm. New events or lookahead information from other nodes can arrive at
any time and will be processed whenever a new event-schedule S is determined
or new lookahead information is evaluated.

588

4.1 Full L o o k a h e a d

When either an event is removed from the event schedule of node n or new
lookahead information arrives from other nodes, the lookahead information for
the critical processes of node n can be recomputed. This is done by evaluating
the expression

t(pc) -- min{{t(px) + dp~pr [Px E En}, {t(e) + dp(c)pr [e E S}} (4)

for every critical process Pc E Ca. This way the time bound t(Pc) is determined
as precisely as presently possible.

Unfortunately, computing the full lookahead information may lead to a sig-
nificant computation overhead for large event schedules S. This overhead can be
reduced by recalculating only parts of Expression 4.

A reduction of the computation overhead can also be achieved by saving the
cause of the lookahead limitation, i.e. by preserving which tookahead informa-
tion or which event restricts the lookahead time. Then Expression 4 must be
recalculated only if the appropriate event has been deleted or the appropriate
lookahead time has been changed.

To determine the lookahead a distance table of size O([CnI[Ln[) is required
for each simulation node n.

4.2 L i m i t e d L o o k a h e a d

As already mentioned, Expression 4 may require a significant computation over-
head if a growing number of events must be checked for their influence. This
overhead can be reduced by relaxing the bound of the lookahead of a critical
process Pc E Cn as follows:

t(pc) = max{t(pc), min{{t(px) + d-n(p=) [p~ E En}, {t(e) + C[n(p(e)) [e E S} }.
(5)

This way the lookahead of every critical process Pc is set to the minimum time-
stamp of any unprocessed event at the critical process p= E C,~ or to the virtual
time of Pc if it is greater.

The term min{t(e)+c[n(p(e)) I e E S} can be reused while computing t fo r all
Pc E Cn as it is independent of all critical processes of node n. We will show later
that this term is also used in the critical process first algorithm. Therefore, no
additional computation is necessary. To hold the necessary part of the distance
table only O([LnD memory is required.

However, this approach limits the lookahead of all critical processes to the
lookahead of the most critical one.

5 M e t h o d s f o r E v e n t - S c h e d u l i n g

Next, we address the problem of finding or modifying an event-schedule S. As
this task must be executed whenever a new event appears, it is important that
the computational complexity is low.

589

In a simple approach events ei can be arranged in ascending order of their
time-stamps t(ei) . This will obviously guarantee the validity of Condition 1.

To process the event-schedule only simple insert and delete operations are
necessary.

�9 e2~4
~ O(p6) "l" 10 = 210 (~

"~k ~ 8 ~.----"~"~ s ~ = (e2 ~1 , ~3)
10 10 80 '

*e3~10
a) t ~ + 1~ = 21~ b)

~~ o) +_I.1o = 2~..~,'k[.~ s 2 = (~3)
10 10 80

I0 I0 m 10 l*-
_ _ ~ I0 ~ 2 ~ 2 0

*e3@lO
C) t 0(ps) "{" 10 = 210 d)

{ 0(p6) + 10 = 210 (~
�9 ~ el~t8 ~ ' V k ~ el~t8 1

j o ~ . ~ 6 ~s ~ s = (~,~3)

,e3"~lO $ l (p4) = 20

0(ps) + i0 : 210

O(p6) "4- 10 = 210....~P3~

lo Lf-~ lo 7o~J~
- - P'iF_3) ~ ~3(p4) = 3o

~ 0(p5) + 10 = 210 ~
3(p4) = 30

Fig. 3. Example simulation with a simple scheduling method

Figure 3 shows 4 steps of an example simulation using this simple scheduling
method. The process links and their weights are also given in the figure.

In the figure events are written next to the corresponding processes. The
notation e3@25 denotes an event with number 3 and a time stamp 25. Filled
and empty dots mark ready, respectively blocked, events.

For the sake of simplicity, only the processes located on node La are shown
in the example. Connections to processes located on other nodes are indicated
by dashed arcs.

In Figure 3a the lookahead information of process P4 is determined to be

t~ = min{t~ § dp6p4, t~ + dpsp4, t (e l) § dp2p4, t(e2) + dp3p4, t(e3) +

dplp4 } = rain{260,220, 58, 84, 20} = 20. The new value {~ is sent to the other
node as indicated by the flash. The three events el to e3 arranged in ascending
order of their t ime stamps form the schedule S o = (e2, el , e3).

Evaluating the first event of S O results in a new lookahead value t l (pa) =

min { t ~ (p6) W dp6p4 , t ~ (p5) W dpsp4 , t(el) W dp2p4 , t(e3) W dplp4 } -= 20 as shown in

Figure 3b. As t l(p4) = t~ no update is sent. The new Schedule S 1 is given
by S 1 = (el, e3).

Now el is the next event to be evaluated. As no new event is initiated by el

the lookahead t2(pa) is defined by t2(pa) = 20. Figure 3c presents the state of
the simulated network after evaluating el.

590

Finally, the event e3 is evaluated in Figure 3d. As a result a new event e4

with t(e4) = 30 arrives at process p4 increasing the lookahead of P4 to t3(p4) =
^0

min{t~ + dp6p4 , t (Ph)+ dpsp4, t(e4)} = 30. Afterwards, t3(p4) is sent to the
other node.

Unfortunately, a new lookahead value for process p4 is sent in step d at the
earliest. Consequently, a node may become idle if it is dependent on this looka-
head. However, by using a different scheduling method some of these situations
can be avoided. In our example event e3 determines the lookahead information
of process P4 in phase a to c. Unfortunately, it also has the biggest t ime-s tamp
of all events. Therefore, e3 is put at the end of schedule resulting in a delayed
processing of the event. It is easy to see that any order of the events in Figure 3a
forms a valid schedule.

I t is the goal of our event-scheduling method to evaluate the events and the
lookahead information of critical processes as soon as possible. Hence, corre-
sponding synchronization information can be sent sooner to other nodes. This
approach is especially advantageous when a node must evaluate events which can
neither directly nor indirectly initiate new events at critical processes (d-n --+ co).
These events can be processed whenever the node is waiting for new lookahead
information.

D e f i n i t i o n 4 In the critical process first (CPF) method events ei located on
node n are primarily ordered by t(ei) + dn(p(ei)) and secondarily by t(ei).

Consequently, ready events are evaluated first if they could result in the
earliest possible effect on a critical process of this node.

L e m m a 2 . A tuple of events S = (el,e2...em) ordered by the critical process
first method is an event-schedule.

Proof. We must show tha t the CPF method guarantees the validity of Inequa-
tion 3. If t(ei) + dn(p(ei)) = t(ej) + dn(p(ej)) then t(ei) 4_ t(ej) and we are done.
Otherwise, assume that the critical process Pc is destination of C[n(p(ej)). With
the shortest pa th property and the definition of d-~ we have

dp(e,)p(cj) + c[,~(p(ej)) >_ dp(~,)po > (~n(p(ei))
for any 1 < i, j <_ m. Next we get

t(ei) + c[n(p(ei)) < t(ej) + d~(p(ej)) <_ t(ej) + dp(~)p(~,) + d~(p(ei)).

Inequation 3 follows immediately by subtracting C[n(p(ei)) on both sides.

Figure 4 shows an example simulation using the CPF scheduling method.
The initial s tate is the same as in Figure 3. To determine the execution order of
the events we first have to calculate t(ei)+da(p(ei)) for every ready event ei. The
appropriate values for el, e2 and e3 are 8+50 = 58, 4+80 = 84 and 10+10 = 20.
Sorting the events by these values forms the schedule S O = (e3, el, e2) as shown
in Figure 4a.

591

Due to this order, event e3 is evaluated first in the next simulation step. As a
result, the event e4 arrives at process p4 determining the lookahead value to be

t l (p4) _-min{t~ ~~ , t(el)Wdp2p4 , t(e2)+dp3p4, t(e4)} =
min{220,260, 58,84, 30} = 30. This new lookahead is sent to the other node.
Afterwards, the new event e4 is inserted into the schedule S o leading to S 1 --
(ea, el, e2). Figure 4b presents the situation after evaluating e3.

In the next step shown in Figure 4c the event e4 is evaluated resulting in a

new lookahead value ~2 (p4) = min{220,260, 58, 84} = 58.
Finally, in Figure 4d evaluating event el results in the new lookahead value

t 3 (p4) = min{220,260, 84} = 84.
Comparing Figure 4 with Figure 3 shows that the CPF scheduling method

increases the lookahead faster than the simple scheduling scheme. In this example
the simple scheme achieved a lookahead of 20 after 2 simulation steps whereas
the CPF scheme increased the lookahead up to a value of 58 at the same time.

Additionally, only O (IE~IIL-I) memory on each simulation node is required
to hold the necessary part of the distance table. Compared to algorithms which
operate with the entire distance table this will lead to significantly less memory
consumption if levi << IL].

�9 e 204 �9 e204
~'~ + I~ = 21~ (~ ~'~ + I~ = 21~

�9 e 1 0 8 / ~ A , ' X ~ " sO = (e3, e l , e 2)
1o 4 h.Jlo50 \8o jo_'~ = o4,o1,

~ - ~ t v(p4) = 20 �9 e4~30
oe3~10 tO(ph) + 10 = 210 t l (p 4) = 30

a) iOcoh) + lO = 21o b)

�9 e2(~4
s + 10 ~ 210 (~

_ 1 0 . _ ~ . / ~ 0 k ~ 8 0 S2 = (e l ' e 2)

- - ' t , P1) ~ ~ ' ~ D ' ~ 2(~4) = 33
~ ~(P4) = 58 ~ 0(ph) + lo = 21o

C) d)

ae2~4

o(~6) +1o-- 217.~Q

lo f :~ I ~ W p A ~ ~ ~ ~"
{ O (p h) ~ l O = 210 ~ (P4) = 84

Fig. 4. Example simulation with CPF scheduling

6 S i m u l a t i o n R e s u l t s

The performance of the various algorithms have been tested with several simu-
lation runs. We used VHDL to model a parallel discrete-event simulator. This

592

model contains a simple process model and a simple delay scheme for the com-
munication delay between virtual simulation nodes. The virtual execution times
of the processes and the events generated by the processes are randomly chosen.
However, the execution t ime of our scheduling algorithms has been neglected in
our model.

Figure 5 shows the impact of the communication latency between the nodes
on the efficiency of the simulation. The workload consist of 12000 logical pro-
cesses equally distributed on 20 nodes. The figure outlines the superiority of the
C P F algorithm over the simple approach. Additionally the CPF algorithm with
limited lookahead performs almost identically compared to the CPF approach
with full lookahead. Note that this is achieved with the least computat ion over-
head of the analyzed algorithms.

E
f
f
i
C
i
e
n
C
y

1.0

0.9

0.8

0 .7 -

0.6

0 .5 -

0 .4 -

0 .3 -

0 .2 -

0.1

0.0

H

O O

[] D

CPF + full lookahead
CPF + limited lookahead
simple + full lookahead

I I I I I I I I I

0 50 100 150 200 250 300 350 400 450 500

Communication latency in its

Fig. 5. Impact of the communication latency on the efficiency (symmetrical workload)

7 C o n c l u s i o n

With the CPF algorithm we have introduced a conservative and non blocking
approach to PDES for a parallel computer with distributed memory. Our analysis
and our experimental simulations have shown that the algorithm is well suited
for the simulation of systems with a large number of logical processes which
are mostly locally connected. This kind of systems are typically found in large

593

VLSI designs. Our approach is especially advantageous if the large memory of a
parallel computer is needed to meet the requirements of the simulation model.

The algorithm avoids deadlocks by determining lookahead information for
critical processes which directly can produce events at a process of another node.
Based on this lookahead every node independently decides which events can be
processed safely without violating the causality of the simulation. To improve the
synchronization mechanism between the nodes, evaluations of events which may
lead to an event at a critical process are given priority. Due to this mechanism
new lookahead information can be calculated and dispatched as soon as possible.
Simulation results have shown the superiority of the CPF algorithms over the
simple approach.

R e f e r e n c e s

1. R. Ayani and H. Rajaei, Parallel Simulation Based on Conservative Time Windows:
a Performance Study, Concurrency: Practice and Experience, vol.6(2), pp.119-142,
April 1994

2. L.J. Barriga, A Enhanced Parallel Simulation Algorithm Based on Distances be-
tween Threaded Objects, Fourth Swedish Workshop on Computer System Archi-
tecture (DSA-92) LinkSping, January 1992

3. K.M. Chandy and J. Misra, Asynchronous Distributed Simulation via a Sequence
of Parallel Computations, Communications of the ACM, vol.24, no.ll , pp.198-206,
April 1981

4. R.M. Fujimoto, Parallel Discrete Event Simulation, Communication of the ACM,
vol.33, no.10, pp.30-53, October 1990

5. D.R. Jefferson, Virtual Time, ACM Transaction on Programming Languages and
Systems, vol.7, no.3, pp.404-425, July 1985

6. B.D. Lubachevsky, Efficient Distributed Event-Driven Simulations of Multiple-
Loop Networks, Communication of the ACM, vol.32, no.l, pp.111-123, January
1989

7. J. Misra, Distributed Discrete-Event Simulation, Computing Surveys, vol.18, no.l,
pp.39-65, March 1986

8. D. Nicol, Parallel Discrete-Event Simulation of FCFS Stochastic Queuing Net-
works, SIGPLAN Not., pp.124-137, September 1988

9. L. Soul@ and A. Gupta, An Evaluation of the Chandy-Misra-Bryant Algorithm for
Digital Logic Simulation, ACM Transaction on Modeling and Computer Simula-
tion, vol.1, no.4, pp.308-347, October 1991

10. R.C. de Vries, Reducing Null Messages in Misra's Distributed Discrete Event Simu-
lation Method, IEEE Transaction on Software Engineering, vol.16, no.l, pp.82-91,
January 1990

