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Abstract

In this paper we discuss the resource–constrained project scheduling problem with discounted
cash flows (RCPSPDC). We introduce a new schedule construction technique which moves sets
of activities to improve the project net present value (NPV) and consists of two steps. In
particular the inclusion of individual activities into sets, which are then moved together, is
crucial in both steps. The first step groups activities based on the predecessors and successors
in the project network, and adds these activities to a set based on their finish time and cash flow.
The second step on the contrary does so based on the neighbouring activities in the schedule,
which may but need not include precedence related activities. The proposed scheduling method
is implemented in a genetic algorithm (GA) metaheuristic and we employ a penalty function to
improve the algorithm’s feasibility with respect to a tight deadline. All steps of the proposed
solution methodology are tested in detail and an extensive computational experiment shows
that our results are competitive with existing work.

Keywords: Net present value; resource–constrained project scheduling; metaheuristics

1 Introduction

The resource–constrained project scheduling problem (RCPSP) has been extensively discussed in
literature in the past few decades. Subsequently, the problem has been covered in a multitude of
extensions and variations (Hartmann and Briskorn, 2010). Whereas the basic RCPSP and most its
extensions focus on total project duration minimization, other variations aim to minimize resource
idle time, minimize project costs or maximize the project net present value (NPV).

In this paper, we focus on the RCPSP with discounted cash flows (RCPSPDC) and aim to
maximize a project’s total NPV. The RCPSPDC can be seen as a variant to the RCPSP in which
each activity has a cash flow, which can be either positive or negative. Furthermore, since the
focus is on maximizing the NPV, a deadline is imposed on the project to avoid that activities with
negative cash flows may be delayed indefinitely.

The remainder of this paper is organized as follows. Section 2 start with a literature overview of
the existing papers on the RCPSPDC. In section 3 we discuss the mathematical problem formula-
tion, whereas in section 4 we go into detail about our schedule generation procedure and illustrate

1



all of its steps on a problem example. Section 5 gives an overview of our proposed metaheuristic
and results of a computational experiment are shown in section 6. We finish with a conclusion in
section 7.

2 Literature overview

Overviews of the existing literature on the RCPSPDC and its extensions have been given by Her-
roelen et al. (1997) and Mika et al. (2005). In this manuscript we briefly discuss all papers to–date
which handle the RCPSPDC as formulated in section 3. We first discuss the existing exact methods,
then the multi–pass heuristics, and finally the metaheuristic procedures.

Exact procedures: Yang et al. (1995) employ a branch–and–bound procedure to solve the
RCPSPDC and make use of a depth–first search. The authors apply node fathoming rules to reduce
the size of the tree and show that these rules significantly reduce computation times. Icmeli and
Erengüç (1996) also propose a branch–and–bound procedure which introduces additional prece-
dence relations to avoid resource conflicts. Branching is done according to the minimal delaying
alternatives concept proposed by Demeulemeester and Herroelen (1992) and their results outper-
form other existing procedures. Another branch–and–bound procedure is used by Baroum and
Patterson (1996) and tested on instances from Patterson’s dataset, with networks consisting of up
to 51 activities. Vanhoucke et al. (2001) propose a branch–and–bound procedure for the RCPSPDC
based on an exact recursive method for the resource–unconstrained case. The procedure can solve
relatively small problems to optimality within a limited computation time. Schutt et al. (2012)
use lazy clause generation for the RCPSPDC and come up with three appropriate propagators
for maximizing the NPV. These propagators are tested using a branch–and–bound algorithm and
several binary search heuristics. The authors compare their results with those of Vanhoucke et al.
(2001) and conclude that their proposed method finds both better and a higher number of feasible
solutions than those of the benchmark.

Multi–pass heuristics: Russell (1986) proposed the first heuristic for the RCPSPDC and
uses six rules to solve the problem. The work has shown that heuristics which perform well for
duration minimization do not necessarily provide good results for NPV maximization. A backward
scheduling method is used by Smith-Daniels and Aquilano (1987), with a lump–sum payment at
activity completion and cash outflows occurring at the start of each activity.

Metaheuristics: Zhu and Padman (1999) apply a tabu search procedure to the RCPSPDC
and show considerably better results than any single–pass heuristic available. Kimms (2001) em-
ploys Lagragian relaxation and derives tight upper bounds. Based on these upper bounds feasible
solutions are constructed, which are shown to be very close to the optimal solutions. Selle and
Zimmermann (2003) schedule large–scale projects subject to resource constraints and temporal
constraints. A new bi–directional scheduling approach is proposed which simultaneously schedules
activities forward and backward. The new approach manages to outperform existing scheduling
approaches. Vanhoucke (2010) employs a scatter search metaheuristic and makes use of a bi–
directional schedule generation scheme and a recursive search method to improve the project NPV.
The results are compared with both the exact procedure of Vanhoucke et al. (2001) and several
different metaheuristics coded by the author, including the genetic algorithm of Vanhoucke (2009).
It is concluded that the proposed method outperforms all others. Next, Gu et al. (2012) discuss
the RCPSPDC for large project instances. The authors apply Lagrangian relaxation to projects
with up to 11,000 activities and employ three improvements to ensure scalability of their algorithm.
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These steps involve the relaxation of precedence constraints, parallel implementation and a hier-
archical subgradient algorithm. The results produced are highly competitive given a reasonable
computation time. Gu et al. (2013) improve on the results of Schutt et al. (2012) by making use of
a Lagrangian relaxation based forward–backward improvement heuristic, to ensure tight deadlines
are met. The authors’ forward–backward method used is that of Li and Willis (1992), who use the
activity start (finish) times of the previously generated forward (backward) schedule to construct
the current schedule. The authors compare their procedure with the algorithm of Vanhoucke (2010)
based on a 5 minutes time limit and find that their method performs best. It is however important
to note that the results of Vanhoucke (2010) are based on a 5,000 schedule limit instead of a run
time restriction and have an average computation time of 2.2 seconds.

Based on this overview, we conclude that the papers of Vanhoucke (2010) and of Gu et al. (2013)
are the most recent ones which discuss a metaheuritic solution methodology for the RCPSPDC.
Thus, we will compare the results of our algorithm with the procedures of these papers in section
6.

3 Problem formulation

A project can be represented as an activity–on–the–node (AoN) network G(N,A) with N repre-
senting the nodes or project activities, and A the network arcs or precedence relations between the
activities. For the precedence relations a time–lag of zero is assumed. Each activity, numbered from
start dummy 0 to end dummy n + 1, has a duration di, renewable resource demand rik and cash
flow ci. The latter is composed by discounting the pre-specified cash flow cfit of an activity at time
t to its finish time and can be mathematically formulated as follows: ci =

∑di
t=1 cfite

α(di−t). Each
renewable resource k has a limited constant availability of ak. The decision variables fi contain the
finish time for each activity i. Finally, the project has a deadline δn+1.

The RCPSPDC was proven to be NP–hard by Blazewicz et al. (1983) and can be represented
as m, 1|cpm, δn, ci|npv according to the classification scheme of Herroelen et al. (1999), and as
PS|prec|

∑
CFi β

Ci according to Brucker et al. (1999).
Mathematically, the problem is formulated as follows:

Maximize

n∑
i=1

ci · e−αfi (1)

Subject to:

fi ≤ fj − dj , ∀(i, j) ∈ A, (2)∑
i∈S(t)

rik ≤ ak, k = 1, . . . , R; t = 1, . . . , δn+1, (3)

fn+1 ≤ δn+1, (4)

fi integer, ∀i ∈ N (5)

The objective function (1) aims to optimize the project NPV, whereas constraints (2) ensure
precedence feasibility. Constraints (3) impose the renewable resource limits with S(t) the set of
activities in progress at time t. Constraint (4) enforces deadline feasibility and finally constraints
(5) ensure the decision variables are integer.
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4 Schedule generation

In this section, we discuss the schedule generation employed by the metaheuristic (see section 5)
and all of the included steps. A distinction is made between two variants of the scheduling approach
based on the percentage of activities with a negative cash flow. If this percentage is lower than or
equal to 50%, we start with a forward schedule generation scheme (SGS) and subsequently delay
activities. If more than 50% of the activities have a negative cash flow, a backward SGS is first
applied followed by the advancing of activities. The overall flow of the schedule generation can
be seen in figure 1. The subsequent subsections go into detail about each individual step of the
scheduling process.
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Schedule 
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Figure 1: Schedule generation flow

4.1 Initial schedule and deadline feasibility

The first step in the scheduling process is the construction of an initial deadline–feasible schedule.
To construct this schedule we use the well–known forward serial schedule generation scheme (SSGS)
(Kolisch, 1996) if no more than half of the activities have a negative cash flow. If the result is
feasible with respect to the project deadline, we continue with the first set of activity move rules
as described in section 4.2. If however, the schedule is infeasible (D–Infeas) we apply the forward–
backward improvement method of Li and Willis (1992) to reduce the project duration, until no
further improvement is possible. If the resulting schedule after applying Li and Willis (1992) is
feasible, we proceed with the activity move rules. If even after the schedule improvement method
the schedule is still infeasible, we add the following penalty function to the project NPV:NPV = −Y1 +NPVinfeas · Y

fn+1−δn+1

2 if NPVinfeas ≥ 0

NPV = −Y1 +
NPVinfeas

Y
fn+1−δn+1
2

otherwise
(6)

with Y1 and Y2 variables to be tested in section 6.1, and NPVInfeas the NPV of the D–Infeas
schedule.

• Y1 represents a large fixed value which is subtracted from the project NPV to ensure that the
infeasible solution’s NPV is considerably worse than that of any feasible solution.
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• Y2 aims to penalize the NPV based on the difference between the solution’s project duration
and the project deadline. As such this parameter has a fractional value in order to expo-
nentially reduce the project’s NPV. The value of the parameter furthermore depends on the
absolute value of the NPV, with a higher absolute NPV requiring a parameter value closer
to 1 than a lower absolute NPV.

As an example, assume a project with a total duration of 19, a project NPV of 800 and a
deadline of 17. If Y2 = 0.9 we first adjust the NPV by multiplying 800 with 0.919−17 and the
remaining NPV is 648. We then subtract Y1 from this value, assume Y1 = 1, 000, and receive -352.
This way the NPV of the D–Infeas project has been reduced from 800 to -352. If by comparison
the project duration is 18 instead of 19, the adjusted NPV would be -280. As such, a schedule
with a lower deadline violation is penalized less than one with a higher deadline violation. Both
are however reduced to a value well below that of NPVInfeas.

If the project NPV is on the contrary relatively small, assume 80, and the deadline is again
17, the corrected NPV would be -935.20 for a project duration of 19 and -928 for a duration of
18. In this case the absolute difference between both corrected values is much smaller than it was
for a larger project NPV (7.2 versus 72). If we however apply a lower value for Y2, e.g. 0.50,
the corrected NPV becomes -980 and -960 respectively. As a result, the difference between both
corrected NPV has increased (20 versus 7.2), more clearly distinguishing both schedules from one
another.

In case more than half of the activities have a negative cash flow, the backward instead of the
forward scheduling approach is selected. If the resulting schedule proves to be infeasible with respect
to the project deadline, we again apply the method of Li and Willis (1992) until no improvement
can be found. The schedule is then once more evaluated. If it is still D–Infeas we use the penalty
function, otherwise we move on to the activity move rules.

4.2 Activity move rules

This subsection gives an overview of the rules applied to delay (advance) activities, starting from
the initial forward (backward) schedule constructed by the SSGS. In order to illustrate these rules,
we use an example which is shown at the top of figure 2. We assume a single renewable resource
with an availability of 5 and a project deadline of 22. The initial schedule, based on the forward
SSGS (≤50% negative cash flows), is shown at the bottom of figure 2 with the renewable resource
(RR) on the vertical axis and the time on the horizontal axis. The activities are scheduled according
to the priority list (PL) (1, 2, 3, 4, 6, 7, 5, 8, 9, 10). The initial NPV based on a discount rate of
1% is 25.72 (= 38.82 + 19.22 - 28.82 + 13.85 - 4.30 + 4.62 - 17.56 - 8.61 + 25.06 - 16.54). Note that
the schedule shown is deadline–feasible, and no schedule improvement is needed. Finally, since we
start from a forward schedule, we aim to delay sets of activities.
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Figure 2: Example 1: Network & initial schedule example

4.2.1 Network–based moves

The first set of rules delays or advances activities based on the precedence relations in the project
network. Depending on whether the initial schedule is an earliest finish (forward scheduling) or
latest finish (backward scheduling) schedule, the procedure aims to delay or advance activities.
First, we discuss the delay algorithm in detail and then we highlight the differences when activities
should be advanced.

With an initial forward schedule, we delay both individual activities with a negative cash flows
and sets of activities with a negative cumulative NPV. Starting from the last activity in the PL each
activity is evaluated with respect to its cash flow. If the activity cash flow is negative, the activity
finish time is not equal to its latest finish time and a delay is possible based on the successors, the
algorithm delays the activity as much is possible. If however a delay is impossible due to at least one
successor with a start time equal to the activity’s finish time, algorithm 1 is applied. This recursive
method includes all activities which should be delayed together in a set. Starting from the current
activity it adds all successors which start immediately after this activity and then recursively calls
the procedure again for each of these successors. For each of those, all predecessor activities with
both a negative cash flow and a finish time not smaller than the initial activity’s finish time are also
added to the activity set. Note that algorithm 1 does not take the predecessors of the start activity
into account, because these will be considered in a next iteration. Once this set is complete and
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algorithm 1 returns to the start activity, the cumulative NPV of the set is calculated and evaluated.
If it is negative, the minimum delay is calculated based on the earliest successor not in the set,
and this for all activities in the set. The global minimum of all these minima then constitutes the
maximum allowable delay and can be formulated as follows: δ = mini∈setAct,k∈Si,k /∈setActfk−dk−fi.
Then each activity in the set has its finish time increased by this δ. If the schedule is feasible with
respect to the renewable resources the current finish times are retained. If the schedule is infeasible
we decrease δ by 1 and continue until we find a feasible solution or until δ reaches 0. When the
search for a delay is complete, the procedure moves on the previous activity in the PL. Finally, the
algorithm is repeated until no more changes occur and the procedure reaches the first activity in
the PL without delaying any activity.

Algorithm 1 Get all successors

GetAllSuc (current activity i, start activity k, set[], cumNPV )

∀j ∈ Si
If j /∈ set ∧ fj − dj = fi

Add j to set
Add NPVj to cumNPV
GetAllSuc (j, k, set, cumNPV )

∀j ∈ Pi
If j /∈ set ∧ fj + dj = fi ∧ j 6= k ∧ fj ≥ fk ∧ fj < LFj ∧ CFj < 0

Add j to set
Add NPVj to cumNPV
GetAllSuc (j, k, set, cumNPV )

Return set

If the initial schedule is a backward one, the goal is to advance both individual activities with
a positive cash flow and sets of activities with a positive cumulative NPV. This states the first
major difference with the delay procedure, where we aimed to delay activities. As a consequence,
we now have to consider the finish time of predecessors instead of the start time of successors when
determining the potential change in activity finish time. Finally, algorithm 1 needs to be inverted
to a GetAllPred variant which finds all predecessors of an activity and any successors with both
a positive cash flow and a finish time no more than that of the start activity.

It is important to note that at most half of the activities are considered for a move. Recall
that we start from a forward (backward) schedule if at most (less than) half of the activities has
a negative cash flow meaning that at most half of the activities has to be considered for a delay
(advance).

To illustrate these rules we go back to the example. Recall that the PL of the example was (1,
2, 3, 4, 6, 7, 5, 8, 9, 10). Starting from the final activity, we first consider activity 10. Since it has
a negative cash flow and no successors it is delayed until time 22. Next is activity 9 which however
has a positive cash flow and is skipped. We move on to activity 8 which has a negative cash flow
but cannot be delayed due to its successor 9. Algorithm 1 is used and returns the set {8, 9} since
9 is the only successor of 8. No other activities are included since 9’s only other predecessor is 7,
but 7 finishes 2 time units before the start of 9. The cumulative NPV of both 8 and 9 is positive
so they are not considered for delay. To further illustrate why only 8 and 9 are in the set, consider
the top left of figure 3 which shows the project network but with only those precedence relations
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which constitute equalities in the mathematical model of section 3. In the figure activity 9 is only
connected to 8, which still has 4 as a predecessor, but this activity is not taken into account. This
way the set is limited to the activities 8 and 9. Next in the PL is activity 5 which has a negative
cash flow and whose only successor is 10. As such, activity 5 can be delayed beyond activity 9 to
time 21. Note that due to this delay, the ordering of the activities in the schedule is changed. After
5 also activity 7 can be delayed because its only successor is 9 which is scheduled later. Activities
6 and 4 are not delayed because they have a positive cash flow, whereas 3 cannot be delayed due to
the renewable resource constraint. Finally, activities 2 and 1 are also not eligible for delay because
of their positive cash flow.

Since at least one delay has occurred, the procedure starts again. Activities 10 and 9 can be
skipped because the former is scheduled at its latest finish time and the latter has a positive cash
flow. Next is activity 8 which cannot be delayed because of its successor 9. If algorithm 1 is applied
this time, it returns the set {7, 8, 9} because 7 as a predecessor of 9 now has a finish time equal
to its successor’s start time. The cumulative NPV of the three activities is negative and their
maximum allowable delay is 1. Since this delay is feasible with respect to the renewable resource,
the three activities are all delayed by 1 time unit. The top right graph of figure 3 illustrates that
activity 7 is now also added to the set because its finish time equals activity 9’s start time and
hence both are connected. No further delays are possible both in this iteration and the procedure’s
next, so it terminates. The resulting schedule can be found at the bottom of figure 3.
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Figure 3: Example 1: Network–based delays in the example

4.2.2 Schedule–based delays

The second set of rules delays or advances activities based on neighbouring activities in the project
schedule, which can but need not be precedence related. Whereas in section 4.2.1 activities were
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grouped together based on their precedence relations, we here group activities together based on
their neighbours, which means that one activity’s finish time equals another’s start time. These
neighbouring activities may be precedence related, but can also be scheduled one after another
because of the renewable resources. This way, the first set of rules is extended, because these
rules may not delay activities due to a resource conflict with other activities. In such cases, it
may however be possible that if all of these activities would be considered together, in spite of the
absence of any precedence relations between some of them, a delay would be beneficial. Algorithm
2 shows how to find all such neighbouring activities. The manner in which delays occur and with
what δ are the same as for the network–based delays in section 4.2.1.

Algorithm 2 Get all later neighbours

GetLaterNeighb (current activity i, start activity k, set[], cumNPV )

∀j ∈ N ∧ fi = fj − dj
If j /∈ set

Add j to set
Add NPVj to cumNPV
GetLaterNeighb (j, k, set, cumNPV )

∀j ∈ N ∧ fi − di = fj
If j /∈ set ∧ j 6= k ∧ fj ≥ fk ∧ fj < LFj ∧ CFj < 0

Add j to set
Add NPVj to cumNPV
GetLaterNeighb (j, k, set, cumNPV )

Return set

Just like for the first set of rules, we distinguish between a delay and an advance case. The
differences between a forward and backward approach are however the same as those discussed in
section 4.2.1 and are hence not repeated here. Obviously, in this case we also need a reverse version
of algorithm 2 to find an activity’s earlier neighbours.

Also, similar to the first set of rules, only at most half of the activities are considered for a
move.

Let us apply this second set of rules to the example. Starting from the back of the PL and the
schedule of figure 3 it should be clear that activities 10, 9, 8, 5 and 7 should not be considered
anymore since they cannot be delayed any further. The only remaining activity with a negative
cash flow is 3, but as stated in section 4.2.1 there are insufficient renewable resources available to
allow for a delay. This means that the first set of rules will never delay activity 3 because none of
its successors have a start time equal to activity 3’s finish time. If we however apply algorithm 2 we
notice that both activities 4 and 6 have a start time equal to 3’s finish time, hence both are added
to the activity set. This way, the resulting set is {3, 4, 6} and has a negative cumulative NPV. The
maximum allowable delay is 1, because of activity 8 as a successor of 4, and is feasible with respect
to the renewable resource. To further illustrate why exactly these activities are included in the set,
consider both graphs at the top of figure 4 which show the neighbours of each activity both before
and after the delay.

Although the procedure for this second set of rules is repeated because a change has occurred,
no further improvements are possible. The bottom of figure 4 shows the example schedule after
the second set of rules has been applied, which is also the optimal one.
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Figure 4: Example 1: Schedule–based delays in the example

Note that for both sets of activity move rules, the activities are considered starting from the
last activity in the PL. This is done to allow the enveloping metaheuristic (see section 5) to fully
exploit its potential. Let us illustrate the potential problems of not using the discussed approach,
but for instance start with the activities which have the smallest cumulative NPV, based on the
example network in figure 5. The project deadline is 15, the renewable resource availability is 5
and the discount rate is again 1%. If we start from an initial schedule with finish times {0, 1, 5,
9, 10, 10} then it should be clear that improvement is possible, as both activities 4 and 5 have
a negative cash flow and are only succeeded by the dummy end activity. The optimal solution
in this case is to delay activity 5 to time 15, and delay 4 to 14, as can be seen from the bottom
left schedule in figure 5. If we would however employ a heuristic such as the smallest cumulative
NPV first rule, activity 4 will always be delayed first, as can be seen in the bottom right schedule
in figure 5. What is worse is that regardless of the activity ordering, meaning that regardless of
which one of both activities has the highest priority and occurs after the other in the PL, activity
4 will be moved first. This means that not only will our solution always be suboptimal, it will also
always be the same independent of the PL provided by the metaheuristic. Thus, we have chosen to
consider activities for delay in the backward order of the PL, rather than a static heuristic like the
one discussed here. Initial tests with heuristics such as smallest cumulative NPV first and largest
finish time first confirmed this reasoning.
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5 Genetic algorithm

Whereas in the previous section the focus was on the schedule generation of a solution, we here
discuss the proposed metaheuristic, namely a genetic algorithm (GA).

The GA was first proposed by Holland (1975) and is inspired by evolutionary biology. The tech-
nique makes use of such operators as selection, crossover and mutation to combine existing solution
into new ones, and has already extensively been used in existing project scheduling literature. A
GA typically has a selection operator which selects parent elements to be combined in new offspring
using a crossover operator and which constitutes the intensification step of the algorithm. A small
percentage of these children are then mutated to diversify the population. Finally, a population
update is applied to reduce the population size by retaining the best parents and replacing the rest
by the best children.

We continue this section by going into detail about the selected solution representation, and
then discuss each part of our GA in more detail. The differences between two options of our GA
are discussed in detail in the following subsections.

5.1 Representation

In section 4.2.2 we emphasized the importance of delaying activities in the order of the solution’s
PL. We can further improve upon this by using the topological order (TO) instead of the PL
representation (Valls et al., 2003, 2004). The TO representation as used by Debels et al. (2006)
not only ensures the ordering of activities is precedence feasible, but also takes the actual activity
start or finish time into account. Once all activity move rules have been applied to a schedule, its
corresponding PL is transformed into a finish time ordered activity list. Finally, if two activities
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have the same finish time, we break ties by randomly selecting one of them to go first in the TO
representation.

To illustrate the TO we take another look at the first example. Recall that there, we started with
the PL (1, 2, 3, 4, 6, 7, 5, 8, 9, 10). Based on the final schedule of figure 4 the TO representation
becomes (1, 2, 3, 6, 4, 7, 8, 9, 5, 10), with 6 randomly chosen from {4, 6} as tie–breaker to go
earlier in the list since both have the same finish time, and 7 randomly chosen from {7, 8}.

5.2 Initial population

The initial population is generated by creating random precedence feasible PLs for each element
in the population. Whereas typically the initial population is larger than the actual population,
our tests indicated that better results are achieved by simply copying the initial population as the
start population of the metaheuristic. This initial population generation is the same for both GA1
and GA2.

5.3 Selection

For the selection operator of our GA we have chosen to implement two alternatives. Selection 1
for GA1 constitutes a four–tournament selection for both parents. This implies that for both the
father and mother four elements are randomly selected from the population, of which in both cases
the best one is retained.

In the case of GA2 we employ an elite selection, which means that the father is always selected
out the pool of best X2 elements. This does however not mean that the set of best X2 elements is
always the same. Once the population as a whole has been updated, the set with size X2 is updated
as well since the new elements may contain better solutions. Each element in the population is
evaluated with respect to its NPV and the best X2 elements are stored as an elite set. This way
this subset always contains the best X2 elements once a population update has been done. The
mother on the contrary is still chosen using a four–tournament selection.

Other selection operators for both parents in GA1 and the mother in GA2, such as a roulette
wheel and rank selection were tested, but the selection discussed earlier performed best.

5.4 Crossover

Our crossover operator is a one–point crossover as typically used in a GA, for both GA1 and GA2.
We also tested the two–point crossover, the MCUOX (Ulusoy et al., 2001), and the partially–
mapped crossover, but they were all outperformed by the one–point crossover.

5.5 Mutation

For both GA1 and GA2 we use the same mutation operator, namely a two–activity swap. The
difference between both algorithms however is the employed mutation rates R1 and R2. For GA1
we expect that a relatively low mutation rate is sufficient since its methods correspond with those
typically used in literature. GA2 on the other hand requires a higher rate to serve as counterweight
to the elite selection of section 5.3 to ensure the population is diverse enough. Our results of section
6.1 confirm these assumptions.

Alternatively, the mutation operators scramble, inversion and insertion were tested, but they
performed worse than the proposed swap operator.
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5.6 Evaluation and population update

For updating the population we retain the best X1 parents for GA1 and best X2 for GA2. The
rest of the parents are replaced by the best newly generated children. Note that the X2 parameter
also determines the size of the pool out of which the father is always selected in GA2.

6 Computational results

In this section we show and discuss our computational results by first configuring both GAs, and
then by comparing with the best known results from literature.

In terms of test data, we have chosen to use the same projects as employed by Vanhoucke
(2010), downloaded from www.projectmanagement.ugent.be. On this site the author’s solutions,
computation times and employed upper bounds are also available for each datafile. The dataset
itself consists of 720 networks with 25, 50, 75 or 100 activities. Each datafile can be executed
with 6 different cash flow files, with the percentage of negative cash flows (%Neg) ranging from
0% to 100%, in steps of 20%. Furthermore, a deadline is imposed based on the optimal RCPSP
project duration of the procedure by Demeulemeester and Herroelen (1992) for the projects with
25 activities and on the best known heuristic solutions of Debels and Vanhoucke (2007) for a higher
number of activities. This minimum project duration is then increased by a specific percentage
(D–Incr), ranging from 5% to 20% in steps of 5%, and constitutes the project deadline. As such,
the problem set contains 720 * 6 * 4 = 17,280 problem instances. The order strength (OS ) and
resource constraindness (RC ) of the networks are both either 0.25, 0.50 or 0.75. The resource usage
(RU ) is 2 or 4. Finally, we employ a discount rate (DiscRate) of 1%. A summary of the parameters
of the dataset is given in table 1.

Parameter Values

#Act 25, 50, 75, 100
%Neg 0, 20, 40, 60, 80, 100
D–Incr 5, 10, 15, 20

OS 0.25, 0.50, 0.75
RC 0.25, 0.50, 0.75
RU 2, 4

DiscRate 1%

Table 1: Parameters dataset

6.1 Configuration of the algorithm

In this subsection we configure both our GAs. We first give an overview of the values of the
parameters of both algorithms and of the penalty function. Then we show that the proposed order
in which the two sets of activity move rules are applied is the best and illustrate the relevance of
both steps. Finally, we compare both GAs and also show the results if 5,000 random schedules had
been generated instead of making use of the proposed metaheuristic. This way the added value of
our GA approaches is also emphasized. Each time we make use of the 5,000 schedules termination
criterion.
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The parameters that were tested are the population sizes P1 and P2, the number of retained
elements X1 and X2 and the mutation rates R1 and R2. Computational experiments showed an
optimal P1 and P2 equal to 50, X1 equal to 10 and X2 equal to 5, and a mutation rate R1 of 20%
and R2 of 95%. Note that the assumption of GA2 needing a higher mutation rate R2 than R1 of
GA1 as stated in section 5.5 is confirmed. The tested population sizes range from 25 to 100 in
steps of 5, whereas the number of retained elements R1 and R2 tested range from 1 to 15 in steps
of 1. Finally, the mutation rates were tested in steps of 5%, from 5% to 95%.

The Y1 and Y2 parameters of the penalty function have also been tested.

• The tested values for Y1 range from 15, 000 to 25, 000 in steps of 1, 000 and its optimal value
equals 20, 000, much larger than that of any feasible solution’s NPV.

• Y2 was initially tested with values between 0.50 and 0.95 in steps of 0.05. Additional finetuning
of the latter was done to further improve the performance of the penalty function. The
parameter’s optimal value was found to depend on the absolute value of the average NPV
(AvNPV ) of all test instances with a fixed percentage of negative cash flows. The values for
Y2 are found in table 3. It should be clear based on the table that the suggested relation does
indeed exist. As the absolute value of AvNPV decreases, so does the factor Y2. Observe in
table 3 that starting from 0% negative cash flows Y2 decreases along with the absolute average
NPV until 60%, whereas from 80% on both increase together. This way, our results confirmed
what we already suspected in section 4.1, namely that a lower Y2 value is required for a lower
absolute project NPV, to more clearly distinguish solutions with a different deadline violation
from one another.

%Neg 0% 20% 40% 60% 80% 100%
AvNPV 7,930.42 4,763.23 1,436.95 263.86 -1,369.12 -5,736.01
Y2 0.995 0.95 0.85 0.70 0.92 0.97

Table 2: Parameters of the penalty function

Next, we compare different combinations of the activity move rules of section 4 and use GA2 to
make this comparison. The reason that GA2 and not GA1 is used for the comparison, is because
GA2 not only performs better, but also because it more clearly illustrates the value of each step.
To validate both distinct steps, each step is first excluded from the method. These results are
displayed in the table under NoStep1 (the network–based moves are excluded) and NoStep2 (the
schedule–based moves are excluded). Finally, we also tested a switch in the order in which the
network– and schedule–based moves are applied (Switch1&2 ). Recall that otherwise we first apply
step 1 and then step 2, hence for the Switch1&2 case we first apply step 2 and then step 1. As a
benchmark, we use the case in which only single activity moves are applied (OnlySingle).

The results of this analysis are shown in table ?? and are based on their deviations from the
best known solutions for the resource–unconstrained max–NPV problem, as discussed by Vanhoucke
(2006). The table displays the relative average deviation (%AvDev) which stands for the percent-
age average deviation of the solutions of this manuscript in comparison with the results for the
resource–unconstrained case. A lower value corresponds with a better solution. The results from
the comparison with the max–NPV in the table only take those data files into account for which
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all alternatives are able to find deadline feasible solutions, this to ensure a correct comparison.
The table also compares all options based on the percentage average difference (%AvDiff ), which
shows the performance of the proposed method in comparison with the scatter search of Vanhoucke
(2010). A positive value corresponds with a better performance of the proposed option, whereas a
negative value means that the scatter search has better results. Finally, the percentage of better
solutions (%Better) found by each combination in comparison with the scatter search is shown.

Based on the results in the table it can be seen that BothSteps does better than all other
options on all three performance criteria, which means that the proposed scheduling steps and
their ordering are justified.

%Neg 0% 20% 40% 60% 80% 100%
AvNPV 7,930.42 4,763.23 1,436.95 263.86 -1,369.12 -5,736.01
Y2 0.995 0.95 0.85 0.70 0.92 0.97

Table 3: Parameters of the penalty function

Finally, table 4 compares GA1 and GA2 with 5,000 random schedules, only problem instances
for which all three methods could find a deadline feasible solution are taken into account. The
percentage feasible (%Feas) shows the number of deadline feasible solutions found.

Based on the table the following can be concluded:

• GA2 performs best both overall and for all values of the six parameters of the dataset. Hence,
in section 6.2 where we compare with existing methods, we only show the results of GA2.

• GA2 furthermore reports the largest percentage of feasible solutions found. Additionally,
the percentage of feasible solutions found between on the one hand both GAs and the 5,000
random schedules on the other hand illustrates the added value of the proposed penalty
function as part of our metaheuristic.

• The difference in performance between GA2 and GA1 in terms of %Neg is larger when %Neg>
50% compared to the cases with %Neg≤ 50%.

• The larger the OS the better GA2 performs in comparison with GA1.

• The smaller the RC the better GA2 performs in comparison with GA1.

6.2 Comparison with literature

To the best of our knowledge, the scatter search of Vanhoucke (2010) and the Lagrangian–based
heuristic of Gu et al. (2013) are the best known algorithms for the RCPSPDC. Both however report
their results based on a different termination criterion. Whereas Vanhoucke (2010) uses the 5,000
schedules criterion, Gu et al. (2013) terminate after 5 minutes. As such we compare with both
algorithms separately.

First, in table 5 we compare our GA with Vanhoucke (2010). The percentage of instances for
which the best known solution is found (%Best) constitutes the number of instances for which
either method found the best known solutions. Note that the sum of both percentages is larger
than 100% because of the cases in which both algorithms have the same result are included twice.
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GA1 GA2 5,000 randoms
%AvDev %Feas %AvDev %Feas %AvDev %Feas

%Neg 0% 30.77 98.33 30.53 98.85 32.87 91.98
20% 28.49 98.75 28.02 99.34 32.60 92.22
40% 73.57 98.99 72.53 98.85 92.47 93.36
60% 572.16 97.36 551.35 97.40 743.61 78.72
80% 402.13 97.60 388.02 98.33 518.50 79.10
100% 277.84 97.12 270.08 98.44 329.13 78.82

D–Incr 5% 251.73 92.78 248.68 94.21 306.27 61.13
10% 124.45 99.81 114.68 99.93 154.02 84.19
15% 344.50 99.51 335.10 100.00 441.55 96.97
20% 147.74 100.00 143.43 100.00 189.31 99.84

#Act 25 198.93 99.44 194.41 99.51 235.53 98.56
50 319.23 98.84 305.53 99.03 412.73 89.77
75 151.73 97.18 148.71 98.06 200.35 79.70
100 183.76 96.64 177.89 97.55 230.93 74.10

OS 0.25 147.94 96.82 143.68 98.00 201.63 83.07
0.50 213.97 97.66 208.39 97.95 265.62 83.02
0.75 280.69 99.60 270.24 99.65 344.55 90.50

RC 0.25 368.35 97.38 357.92 98.13 468.72 84.55
0.50 137.72 98.28 132.20 98.75 172.02 85.07
0.75 145.22 98.42 140.48 98.73 181.19 86.98

RU 2 271.19 97.36 263.06 98.38 344.73 81.16
4 166.71 98.69 160.97 98.69 208.10 89.91

Overall 216.21 98.03 209.34 98.54 272.84 85.53

Table 4: Comparison between GA1, GA2 and 5,000 randoms

The following conclusions can be drawn from the table:

• Overall our results outperform those of Vanhoucke (2010).

• Our proposed method performs better comparatively with a decreasing value of the OS, and
an increasing value of the RC and RU.

• A similar trend can be observed as #Act increases, but it is less pronounced.

• For the instances with %Neg equal to 40% or 60% the %AvDev of GA2 is worse than that of
Vanhoucke (2010), but this is offset by a larger %Best.

Table 6 shows a more detailed overview of the comparative performance of both algorithms.
In this table both algorithms are compared based on the percentage average difference (%AvDiff )
between them, which shows the performance of the proposed method in comparison with the scatter
search of Vanhoucke (2010). A positive value corresponds with a better performance of our GA2,
whereas a negative value means that the scatter search has better results. The percentages of
better, equal and worse (%Better, %Equal and %Worse) solutions by GA2 in comparison with the
scatter search are also shown. Again, only problem instances for which both methods could find
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a deadline feasible solution are taken into account in both tables. Based on both table 5 and 6, it
can be seen that GA2 outperforms the algorithm of Vanhoucke (2010). The only case for which a
slightly worse performance can be observed based on all comparative factors is when #Act is set
to 25.

This paper Vanhoucke (2010)
AvDev %AvDev %Feas AvDev %AvDev %Feas

%Neg 0% 4,480.55 30.84 98.85 4,535.76 31.16 99.79
20% 2,569.39 28.59 99.34 2,626.96 29.17 99.79
40% 1,022.16 71.21 98.85 1,064,49 69.78 99.79
60% 703.17 487.85 97.40 758.32 482.66 99.79
80% 933.29 415.22 98.33 1,023.84 442.50 99.79
100% 2,011.40 240.45 98.44 2,048.43 252.93 99.79

D–Incr 5% 2,119.16 228.94 94.21 2,192.98 234.86 99.17
10% 1,970.61 133.91 99.93 2,052.91 152.41 100.00
15% 1,919.04 337.93 100.00 1,945.71 332.34 100.00
20% 1,830.39 145.83 100.00 1,873.86 149.71 100.00

#Act 25 371.41 192.59 99.51 370.89 192.46 100.00
50 1,295.24 294.05 99.03 1,327.73 291.75 99.86
75 2,458.97 153.97 98.06 2,540.08 160.30 99.72
100 3,744.92 204.38 97.55 3,858.48 223.42 99.58

OS 0.25 2,254.87 166.00 98.00 2,356.44 179.67 99.69
0.50 2,046.98 203.56 97.95 2,098.45 210.55 99.69
0.75 1,577.06 263.71 99.65 1,593.62 260.23 100.00

RC 0.25 1,887.70 342.07 98.13 1,942.33 342.11 99.58
0.50 1,983.81 141.25 98.75 2,039.25 149.67 99.90
0.75 2,000.15 151.81 98.73 2,058.96 160.33 99.90

RU 2 1,696.00 251.76 98.38 1,746.26 252.45 99.79
4 2,217.88 171.18 98.69 2,280.20 181.82 99.79

Overall 1,957.38 211.40 98.54 2,013.68 217.08 99.79

Table 5: Comparative computational results part 1 (5,000 schedules)

As already stated the algorithm of Gu et al. (2013) compares with the results of Vanhoucke
(2010) based on a 5 minutes stopping criterion instead of the 5,000 schedules criterion. This means
that in order to properly compare our own method with the former we should also terminate after
5 minutes. We have however chosen the employ a stopping criterion of 12,500 schedules with a
maximum time limit of 5 minutes per instance. We furthermore use a 2.5GHz Dual Core processor,
whereas Gu et al. (2013) use a computing cluster where each node consists of two 2.8GHz 6–Core
processors.

The results of the comparison with the algorithm of Gu et al. (2013) can be found in table 7.
The results used of the latter are those of the CP–LR since the authors show this method clearly
performs best compared to others. This CP–LR is one of several alternatives tested by them and
constitutes a hybrid approach of constraint programming and Lagrangian relaxation.
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%AvDiff %Better %Equal %Worse

%Neg 0% 0.80 58.59 13.28 28.13
20% 1.18 66.41 9.47 24.12
40% 2.01 56.87 6.92 36.21
60% 37.07 60.11 5.85 34.04
80% 22.22 61.33 3.35 35.31
100% 1.15 59.54 12.80 27.65

D–Incr 5% 7.66 61.13 9.14 29.73
10% 21.19 64.70 7.67 27.63
15% 5.73 55.02 9.28 35.69
20% 7.92 61.11 8.43 30.46

#Act 25 -1.35 30.03 32.43 37.54
50 14.52 66.99 1.50 31.51
75 16.97 73.68 0.24 26.09
100 12.69 71.67 0.00 28.33

OS 0.25 12.90 70.01 3.29 26.70
0.50 9.49 60.85 7.44 31.71
0.75 9.63 50.75 15.02 34.23

RC 0.25 12.96 59.52 8.09 32.40
0.50 10.29 61.41 8.23 30.36
0.75 8.76 60.51 9.55 29.95

RU 2 10.27 55.68 10.26 34.06
4 11.06 65.26 6.99 27.75

Overall 10.67 60.48 8.62 30.90

Table 6: Comparative computational results part 2 (5,000 schedules)

Table 7 is constructed similarly to table 5, of which the latter compares our GA2 with the
scatter search of Vanhoucke (2010). This way, a similar analysis can be made and the following
conclusions can be drawn:

• The overall results show a better performance of our GA2 than the CP–LR of Gu et al. (2013).

• In particular our %Best is larger in nearly all cases.

• Comparatively our method performs better as #Act increases meaning that it is more robust
as the project size increases. This can be seen by an increasing %Best of our method as
the number of activities increases, whereas the results of Gu et al. (2013) show alternating
decreases and increases. The gap between both methods in terms of %AvDev furthermore
becomes larger in favour of GA2 with an increasing number of activities.

In table 8 we show the average computation times of our own algorithm (AvTime) and the
percentage of instances for which the 5 minutes limit was actually reached (%Limit). Only for a
very small number of instances is the 5 minutes limit actually reached.
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This paper Gu et al. (2013)
%AvDev %Best %Feas %AvDev %Best %Feas

%Neg 0% 30.55 84.36 99.48 30.64 74.31 99.90
20% 28.13 87.26 99.51 28.42 73.20 99.90
40% 63.69 80.68 99.41 67.03 64.60 99.90
60% 476.10 75.93 98.68 460.68 66.95 99.93
80% 422.20 70.95 99.20 422.21 65.39 99.93
100% 234.78 84.38 99.17 247.07 63.52 99.93

D–Incr 5% 228.47 82.49 97.04 222.64 74.16 99.65
10% 138.93 83.74 99.93 142.94 69.68 100.00
15% 328.22 77.27 100.00 323.67 65.32 100.00
20% 140.15 78.98 100.00 146.57 62.78 100.00

#Act 25 194.05 67.13 99.58 190.05 85.83 100.00
50 289.57 79.53 99.54 285.36 54.28 100.00
75 149.66 89.46 99.07 153.51 70.69 99.98
100 201.62 89.81 98.77 208.08 61.13 99.68

OS 0.25 161.83 84.35 98.75 161.09 76.40 99.91
0.50 203.33 81.43 99.11 207.53 68.26 99.83
0.75 260.60 76.08 99.86 257.26 59.31 100.00

RC 0.25 333.43 79.35 99.03 65.50 82.83 100.00
0.50 139.87 81.02 99.15 338.33 62.09 99.74
0.75 153.61 81.44 99.55 224.44 59.06 100.00

RU 2 248.57 78.34 99.06 248.18 73.44 99.83
4 169.16 82.86 99.42 169.18 62.55 100.00

Overall 208.71 71.97 99.24 209.33 67.99 99.91

Table 7: Comparative computational results 12,500 schedules

#Act AvTime (s) %Limit

25 1.48 0.00
50 5.05 0.00
75 11.58 0.00
100 23.42 0.47

Overall 10.28 0.12

Table 8: Computation times 12,500 schedules

Although the improvement of our method in table 7 is smaller than the one in tables 5 and 6,
it is important to take into account that our algorithm on average only takes 10.28 seconds, see
table 8, whereas Gu et al. (2013) always use 5 minutes. We furthermore employ a computer with
a slower processor to test our method. As such, based on both tables 7 and 8 it can be concluded
that our proposed scheduling method and GA2 are not only faster but also provide better results
than the methodology of Gu et al. (2013). In particular, the number of generated schedules is set
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to 12,500 since this can be seen as the cut–off point in terms of number of schedules where our
GA2 outperforms the CP–LR of Gu et al. (2013).

7 Conclusions

In this paper we discussed the RCPSPDC with payments at activities’ completion times. We
proposed a new scheduling technique which makes use of rules to move activities. These rules
focus on maximizing project NPV by delaying sets of activities with a negative cumulative NPV or
advancing those with a positive NPV. An important part of our methodology is the construction
of sets of activities which have to be moved together and can be built in two ways. A first method
evaluates the predecessors and successors of an activity and determines whether they should be
included in the set or not. A second method focusses on the neighbouring activities in the project
schedule which means the activities under consideration need not be precedence related. A penalty
function was also included for the schedules infeasible with respect to the project deadline. Each
step of our algorithm has been extensively tested and two variants of a genetic algorithm were
proposed. Our final procedure was compared with the best known results from literature and was
shown to perform considerably better.
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Ulusoy, G., Sivrikaya-Şerifoğlu, F., and Şahin, S. (2001). Four payment models for the multi-mode
resource constrained project scheduling problem with discounted cash flows. Annals of Operations
Research, 102:237–261.

Valls, V., Ballest́ın, F., and Quintanilla, S. (2004). A population–based approach to the resource–
constrained project scheduling problem. Annals of Operations Research, 131:305–324.

Valls, V., Quintanilla, S., and Ballest́ın, F. (2003). Resource–constrained project scheduling: A
critical activity reordering heuristic. European Journal of Operational Research, 149:282–301.

Vanhoucke, M. (2006). An efficient hybrid search procedure for various optimization problems.
Lecture Notes in Computer Science, 5482:13–24.

Vanhoucke, M. (2009). A genetic algorithm for net present value maximization for resource con-
strained projects. Lecture Notes in Computer Science, 5482:13–24.

Vanhoucke, M. (2010). A scatter search procedure for maximizing the net present value of a
resource-constrained project with fixed activity cash flow. International Journal of Production
Research, 48(7):1983–2001.

Vanhoucke, M., Demeulemeester, E., and Herroelen, W. (2001). On maximizing the net present
value of a project under renewable resource constraints. Management Science, 47(8):1113–1121.

Yang, K., Tay, L., and Sum, C. (1995). A comparison of stochastic scheduling rules for maximizing
project net present value. European Journal of Operational Research, 85:327–339.

Zhu, D. and Padman, R. (1999). A metaheuristic scheduling procedure for resource-constrained
projects with cash flows. Naval Research Logistics, 46:912–927.

22


