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A New Search Algorithm for Feature Selection in
Hyperspectral Remote Sensing Images

Sebastiano B. Serpic&enior Member, IEEENd Lorenzo Bruzzonélember, IEEE

Abstract—A new suboptimal search strategy suitable for fea- addition, it may also provide an improvement in classification
ture selection in very high-dimensional remote sensing images (e.g..accuracy. In particular, when a supervised classifier is applied
those acquired by hyperspectral sensors) is proposed. Each solu—to problems in high-dimensional feature spaces, the Hughes

tion of the feature selection problem is represented as a binary ffect I3 be ob d that i d in classificati
string that indicates which features are selected and which are dis- effect [3] can be observed, that is, a decrease in classification

regarded. In tumn, each binary string corresponds to a point of a accuracy Wh(‘?‘n. the number.of features gxce_eds a given limit,
multidimensional binary space. Given a criterion function to eval- for a fixed training-sample size. A reduction in the number of

uate the effectiveness of a selected solution, the proposed strategy iseatures overcomes this problem, thus improving classification
based on the search for constrained local extremes of such a func'accuracy

tion in the above-defined binary space. In particular, two different Feat lection techni Ilv involve both h
algorithms are presented that explore the space of solutions in dif- eature selection iechnigues generaily Invoive Doth a Searc

ferent ways. These algorithms are compared with the classicae- @lgorithm and a criterion function [2], [4], [5]. The search algo-

quential forward selectiorand sequential forward floating selection rithm generates and compares possible “solutions” of the fea-
suboptimal techniques, using hyperspectral remote sensing imagesture selection problem (i.e., subsets of features) by applying the
(acquired by the airbore visible/infrared imaging spectrometer  cijiarion function as a measure of the effectiveness of each con-

[AVIRIS] sensor) as a data set. Experimental results point out the . - .
effectiveness of both algorithms, which can be regarded as valid al- sidered feature subset. The best feature subset found in this way

ternatives to classical methods, as they allow interesting tradeoffs is the output of the feature selection algorithm. In this paper, at-
between the qualities of selected feature subsets and computationaltention is focused on search algorithms; we refer the reader to

cost. other papers [2], [4], [6], [7] for more details on criterion func-
Index Terms—Feature selection, hyperspectral data , remote tions.
sensing, search algorithms. In the literature, several optimal and suboptimal search al-

gorithms have been proposed [8]-[16]. Optimal search algo-
rithms identify the subset that contains a prefixed number of
features and is the best in terms of the adopted criterion func-
HE recent development of hyperspectral sensors hdsn, whereas suboptimal search algorithms select a good subset
opened new vistas for the monitoring of the earth’that contains a prefixed number of features but that is not neces-
surface by using remote sensing images. In particular, hypegrily the best one. Due to their combinatorial complexity, op-
spectral sensors provide a dense sampling of spectral signattifaal search algorithms cannot be used when the number of fea-
of land covers, thus allowing a better discrimination amongres is larger than a few tens. In these cases (which obviously
similar ground cover classes than traditional multispectraclude hyperspectral data), suboptimal algorithms are manda-
scanners [1]. However, at present, a major limitation on the ugsgy.
of hyperspectral images lies in the lack of reliable and effective In this paper, a new suboptimal search strategy suitable
techniques for processing the large amount of data involvedr hyperdimensional feature selection problems is proposed.
In this context, an important issue concerns the selection Tiiis strategy is based on the search for constrained local
the most informative spectral channels to be used for the clastremes in a discrete binary space. In particular, two different
sification of hyperspectral images. As hyperspectral senseigorithms are presented that allow different tradeoffs between
acquire images in very close spectral bands, the resultimg effectiveness of selected features and the computational
high-dimensional feature sets contain redundant informatiadime required to find a solution. Such algorithms have been
Consequently, the number of features given as input to a claggimpared with other suboptimal algorithms (described in the
fier can be reduced without a considerable loss of informatidigerature) by using hyperspectral remotely sensed images
[2]. Such reduction obviously leads to a sharp decrease doquired by the airborne visible/infrared imaging spectrometer
the processing time required by the classification process. (/IRIS). Results point out that the proposed algorithms
represent valid alternatives to classical algorithms as they allow
different tradeoffs between the qualities of selected feature
Manuscript received September 21, 2000; revised February 26, 2001. g\ bsets and computational cost.
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in Section VI, a discussion of the obtained results is provideshd by allowing the reconsideration of the features included or
and conclusions are drawn. removed at the previous steps.
The representation of the space of feature subsets as a graph
(“feature selection lattice”) allows the application of standard
II. PREVIOUS WORK graph-searching algorithms to solve the feature selection
problem [14]. Even though this way of facing the problem

The problem of developing effective search strategies for feseems to be interesting, it is not widespread in the literature.
ture selection algorithms has been extensively investigated inThe application of genetic algorithms was proposed in
pattern recognition literature [2], [S], [9], and several optimgi5]. In these algorithms, a solution (i.e., a feature subset)
and suboptimal strategies have been proposed. corresponds to a “chromosome” and is represented by a binary

When dealing with data acquired by hyperspectral sensossing whose length is equal to the number of starting features.
optimal strategies cannot be used due to the huge computathe binary string, a zero corresponds to a discarded feature
tion time they require. As is well known from the literature [2]and a one corresponds to a selected feature. Satisfactory perfor-
[5], an exhaustive search for the optimal solution is prohibitivmances were demonstrated on both a synthetic 24-dimensional
from a computational viewpoint, even for moderate values (#4-D) data set and a real 30-dimensional (30-D) data set.
the number of features. Not even the faster and widely useldwever, the comparative study in [16] showed that the perfor-
branch and boundhethod proposed by Narendra and Fukunagaances of genetic algorithms, though good for medium-sized
[2], [8] makes it feasible to search for the optimal solution wheproblems, degrade as the problem dimensionality increases.
high-dimensional data are considered. Hence, in the case of feaFinally, we recall that also the possibility of applying sim-
ture selection for hyperspectral data classification, only a sulfiated annealing to the feature selection problem has been ex-
optimal solution can be attained. plored [17].

In the literature, several suboptimal approaches for featureAccording to the comparisons made in the literature, the se-
selection have been proposed. The simplest suboptimal seayabntial floating search methods (SFFS and SBFS) can be re-
strategies are the sequential forward selection (SFS) and garded as being the most effective ones, when one deals with
quential backward selection (SBS) techniques [5], [9]. Thesery high-dimensional feature spaces [5]. In particular, these
technigues identify the best feature subset that can be obtainesthods are able to provide optimal or quasioptimal solutions,
by adding to, or removing from, the current feature subset ondnile requiring much less computation time than most of the
feature at a time. In particular, the SFS algorithm carries oubéher strategies considered [5], [13]. The investigation reported
“bottom-up” search strategy that, starting from an empty feax [16] for data sets with up to 360 features shows that these
ture subset and adding one feature at a time, achieves a featnethods are very suitable even for very high-dimensional prob-
subset with the desired cardinality. On the contrary, the SBS Bms.
gorithm exploits a “top-down” search strategy that starts from a
complete set of features and removes one feature at a time until
a feature subset with the desired cardinality is obtained. Unfor-
tunately, both algorithms exhibit a serious drawback. In the case_et us consider a classification problem in which a Xeof
of the SFS algorithm, once the features have been selected, thégatures is available to characterize each pattern
cannot be discarded. Analogously, in the case of the SBS search
technigue, once the features have been discarded, they cannot
be reselected.

The plusé-minus+ method [10] employs a more complex se-,

quential search approach to overcome this drawback. The mT|hne objective of feature selection is to reduce the number of

limitation of this technique is that there is no theoretical Crit%eatures utilized to characterize patterns by selecting, through

rion for selecting the values éfandr to obtain the best feature he opt|m|;§1t|qn ofa crlte.npn.fun_ctmm (e.g., maximization of
set a separability index or minimization of an error bound), a good

A computationally appealing method is the max-min algosilJbsetg of m features, withn < n

rithm [11]. It applies a sequential forward selection strategy
based on the computation of individual and pairwise merits of S={s1,...,sm:ss € X,i=1,...,m}. (2)
features. Unfortunately, the performances of such a method are
not satisfactory, as confirmed by the comparative study report€de criterion function is computed by using a preclassified ref-
in [5]. In addition, Pudilet al. [12] showed that the theoreticalerence set of patterns (i.e., a training set). The valug dé-
premise providing the basis for the max-min approach is npénds on the features included in the sulssgte., J = J(.5)).
necessarily valid. The entire set of all feature subsets can be represented by con-
The two most promising sequential search methods are thegdering a discrete binary spagke Each point in this space is
proposed by Pudiet al. [13], namely, the sequential forwarda vector withn binary components. The value 0 in theh po-
floating selection (SFFS) method and the sequential backwaition indicates that th&-th feature is not included in the cor-
floating selection (SBFS) method. They improve the standargsponding feature subset; the value 1 in ik position indi-
SFS and SBS techniques by dynamically changing the numisates that thg-th feature is included in the corresponding fea-
of features included (SFFS) or removed (SBFS) at each stepe subset. For example, in a simple case with- 4 features,

Ill. STEEPESFASCENT SEARCH STRATEGY

X ={z1,...,z.}. Q)
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the binary vectob = (0, 1, 0, 1) indicates the feature subset that/,,, ;. maximum value of/ found by the search algorithm
includes only the second and fourth features by exploring€2;_;.
Initialization
b=1(0,1,0,1) & S = {z2, 24} 3 An initial feature subses§,, composed ofn features se-

The criterion function/ can be regarded as a scalar function
defined in the aforesaid discrete binary space. Let us consider.
without loss of generality, the case in which the criterion func-

lected from the seX of n available features, is considered.
The corresponding starting vectgyin B can be easily ob-

' tained starting fron$,. The discarde@» —m) features are
included in the complementary sB:

tion has to be maximized. In this case, the optimal search for the

best solution to the problem of selectingout of . features cor- Do={s;i:s; € X, 5, ¢ So}. (4)
responds to the problem of finding the global constrained max-

imum of the criterion function, where the constraint is defined as The valueJ(Sy) of the criterion function is computed
the requirement that the number of selected features be exactly for the initial subsetS,.

m (in other words, the solution must correspond to a vegtor <-th Iteration

with m components equal to 1 arid — m) components equal At the i-th iteration of the algorithm, all possible ex-

to 0).

changes of one feature belonging $_; for another

With reference to the above description of the feature selec- feature belonging td;_, are considered and the corre-
tion problem, we propose to search for suboptimal solutions sponding values of are computed. This is equivalent to
that are constrained local maxima of the criterion function. Ac-  evaluating./ in the set of vector§2;_; corresponding to

cording to our method, we start from a polgtcorresponding the portion of the neighborhood éf_, that satisfies the
to an initial subset ofn features, then we move to other points ~ constraint. The maximum value obtained in this way is
that correspond to subsets of features which allow the considered:

value of the criterion function to be progressively increased.

This strategy differs from most search algorithms for feature Jmax = max{J(5)} S € Q1. (5)

selection, which usually progressively increase (e.g., SFS) or
decrease (e.g., SBS) the number of features, iwith possible

If the following relation holds:

backtracking (e.g., SFFS and SFBS). Jinae > J(Si_1) (6)
We now need to give a precise definition of local maxima in

the previously described discrete spdg¢eTo this end, let us then the feature exchange that resultgin,, is accepted

consider the neighborhood of a veckdhat includes all vectors and the subsets of featur@sand D; are updated accord-

that differ fromb in no more than two components. We say that  ingly.

a vectorb is a local maximum of the criterion functiosi in Stop Criterion

such a neighborhood if the value of the criterion functior in When the condition

is greater than or equal to the value the criterion function takes

on any other point of the neighborhood iofWe note that the Jmax < J(Si—1) (7)
neighborhood of any vectéris made up of: vectors that differ

only in one component, and afx (n—1) /2 vectors that differ in
two components. However,lifsatisfies the constraint, onty, x

holds, it means that a local maximum has been reached;
then the algorithm is stopped. Finally; is settoS;_;.

(n—m) vectors included in the neighborhooditill satisfy the
constraint. Constrained local maxima are defined with respecttoThe name “steepest ascent” (SA) search algorithm derives
this subset of the neighborhood. from the fact that, at each iteration, a step in the direction of

the steepest ascent &fin the sef?;_1, is taken. The algorithm

The Steepest Ascent Algorithm is iterated as long as it is possible to increase the value of the

Symbol definitions

J(S)

So

criterion function. Convergence to a local maximum in a finite
. o . number of iterations is guaranteed. At convergesgeontains
value of the feature selection criterion function com- ) .
the solution, that is, the selected subset«diatures. The algo-
puted for the feature subsgt . . : T .
- T rithm can be run several times with random initializations (i.e.,
feature subset utilized for the initialization; . .
o o starting from different randomly generated feature subSgks
best feature subset selected atdtle iteration(¢ > . .
0); in order to better explore the space of solutions (a different local

/ . . . maximum may be obtained at each run). An alternative strategy
discrete binary space representing the entire set Of . 7 . y : :
. lies in considering only one “good” starting poisiy generated
all feature subsets;

. . by another search algorithm (e.g., the b&&kStechnique); in
vector ofn binary components that represefitan . . . :
the spaceB; this case, only one run of the algorithm is carried out.

set of features discarded by the search algorithm at
the¢-th iteration;

set of vectors corresponding to the portion of the We have also investigated other algorithms aimed at a con-
neighborhood ob, that satisfies the constraint onstrained search for local maxima, in order to reduce the compu-
the number of features to be selected; tational load required by the proposed technique. For the sake

IV. FAST ALGORITHM FOR A CONSTRAINED SEARCH
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of brevity, we shall consider here only one of such search algo-
rithms. To get an idea of the computational load of SA, we note

that, at each iteration, the previously defined set of vedbgrs . =73
is explored to check if a local maximum has been reached and & . 34 }.
possibly, to update the current feature subset. As stated before .
such a set includes x (n — m) points; the value of is com- ‘t;h
puted for each of them. Globally, the number of times required Ji._*

to evaluate/ is

kxmx(n—m) (8)

wherek is the number of iterations required. The fastest search
algorithm among those we have experimented is the following
fast constrained search (FCS) algorithm. This algorithm is basec
on a loop whose number of iterations is deterministic. For sim-
plicity, we present it in the form of a pseudocode.

The Fast Constrained Search Algorithm
STARTrom an initial feature subsél, composed ofn features
selected fromX ,

Fig. 1. Band 12 (wavelength range between about 0.51 and@rB}2 of the
Set the current feature subsgtto Sy hyperspectral image utilized in the experiments.
Compute the complementary subd#t of Sy,
FOReach elemens; € S,

TABLE |
FOReach elememj € D_k . LAND COVER CLASSES AND RELATED NUMBERS OF PIXELS
Generates;; by exchanging; for s; in .Sy CONSIDERED IN THEEXPERIMENTS
Compute the valu€'(S;;) of the criterion function ____
CONTINUE Land-cove.:r classes Number of training pixels
. . . C1. Comn-no till 1434
SetJ; max to the maximum of/(S;;) obtained by exchanging C2. Cornmin i 334
s; for any possibles; C3. Grass/Pasture 497
IFJ; max > J(Sr), THENupdateS,, by the exchange; « s; C4. Grass/Trees 747
that provided/; max Cs. Hay-wmdrovx{ed 489
Compute the complementary subg of S ¢6. Soybean-no ll 068
k C7. Soybean-min till 2468
ELSEleaves;, UnChanged C8. Soybean-clean till 614
CONTINUE C9. Woods 1294
Overall 9345

FCS requires the computation #ffor m x (n — m) times.
Therefore, it involves a computational load equivalent to ththe effectivenesses of SA and FCS in the related high-dimen-
of one iteration of the SA algorithm. By contrast, the result isional space and we made comparisons with other suboptimal
not equivalent, as, in this case, the number of moveB tan techniques (i.e., SFS and SFFS).
range from 1 ton (each of the features ifi, can be exchanged The considered data set referred to the agricultural area of
only once or left inSy), whereas SA performs just one movdndian Pine in the northern part of Indiana [18]. Images were
per iteration. However, it is not true any more that each mo@equired by an AVIRIS in June 1992. The data set was com-
in the spaceB is performed in the direction of the steepest agrosed of 220 spectral channels (spaced at about 10 nm) acquired
cent. We expect this algorithm to be less effective in terms of tie the 0.4-2.5:m region. A scene 14% 145 pixels in size
goodness of the solution found, but it is always faster than orwes selected for our experiments (Fig. 1 shows channel 12 of
fast as the SA algorithm. In addition, as the number of iteratioffse sensor). The available ground truth covered almost all the
required by FCS is a priori known, the computational load is decene. For our experiments, we considered the nine numerically
terministic. Obviously, for this algorithm the same initializatiormost representative land-cover classes (see Table ). The crop

strategies as for SA can be adopted. canopies were about a 5% cover, the rest being soil covered with
the residues of the previous year's crops. No till, a minimum
V. EXPERIMENTAL RESULTS ti[l, and a clean till were the three different levels of.tillage, in-
. dicating a large, moderate, and small amount of residue, respec-
A. Data Set Description tively [18].

Experiments using various data sets were carried out to vali-Overall, 9345 pixels were selected to form a training set. Each
date our search algorithms. In the following, we shall focus grixel was characterized by the 220 features related to the chan-
the experiments performed with the most interesting data se¢ls of the sensor. All the features were normalized to the range
that is, a hyperspectral data set. In particular, we investigatedm O to 1.
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Fig. 2. Computed values of the criterion function for the feature subsets selected by the different search algorithms versus number of sedsciBuifeatues
of the criterion function obtained by the proposed SA and FCS algorithms and by SFFS have been divided by the corresponding values provided by SFS.

B. Results that is, we plotted the values of the criterion function computed

Experiments were carried out to assess the performanceQBfhe subsets provided by SA, FCS, and SFFS, after dividing
the proposed algorithms and to compare them with those of ¢ by the corresponding values obtained by SFS (Fig. 2). For
SFS and SFFS algorithms in terms of both the solution quali§f@mple, a value equal to 1 on the curve indicated as SFFS/SFS
and the computational load. SFS was selected for the comp&gans that SFFS and SFS provided identical values of the JM
ison because it is well-known and widely used (thanks to iflistance. For the initializations of SA and FCS, we adopted the

simplicity). SFFS was considered as it is very effective for tig'aegy of performing only one run, starting from the feature

selection of features from large feature sets and allows a gogtPSet provided by SFS. _

tradeoff between execution time and solution quality [5], [13]. AS can be observed from Fig. 2, the use of SFFS and
As a criterion function, we adopted the average Jeffries-M8f the proposed SA and FCS algorithms resulted in some

tusita (JM) distance [4], [6], [7], as it is one of the best knowHnProvements over SFS for numbers of selected features below

distance measures utilized by the remote sensing community?9 Whereas for larger numbers of features, differences are
feature selection in multiclass problems negligible. The improvement obtained for six selected features

is the most significant. Comparing the results of SA and FCS

‘e with those of SFFS on the considered data set, one can notice
IM =2 Z Z P TMp, ) that the first two algorithms allowed greater improvements than
=L k> the third (about two times greater, in many cases). Finally, a
IMpx =4/2(1 — e~bnr) (10) comparison between the two proposed algorithms shows that
1 SA usually (but not always) provided better or equal results
bk :1(Mh — M)* <M) (My, — My,) than/to those yielded by the FCS algorithm; however, differ-
8 2 ences are negligible (the related curves are almost completely
1 | St overlapped in Fig. 2).
3 In |Cw ]| Cr| (11) In order to check if numbers of selected features smaller than
20 are sufficient to distinguish the different classes of the con-
where sidered data set, we selected, as interesting examples, the num-
c number of classes:(= 9, for our data set); bers six, nine, and 17 (see Fig. 2). In order to assess the classi-
P a priori probability of the:th class; fication accuracy, the set of labeled samples was randomly sub-
bk Bhattacharyya distance between thie andkth  divided into a training set and a test set, each containing ap-
classes; proximately half the available samples. Under the hypothesis
M; andC; mean vector and the covariance matrix ofttie of Gaussian class distributions, the training set was used to es-
class, respectively. timate the mean vectors, the covariance matrices and the prior

The assumption of Gaussian class distributions was madeclass probabilities; the Bayes rule for the minimum error [2]
order to simplify the computation of the Bhattacharyya distaneeas applied to classify the test set. Overall classification accu-
according to (11). A9M is a distance measure, the larger theacies equal to 78.6%, 81.4%, and 85.3% were obtained for the
obtained distance, the better the solution (in terms of class sémature subsets provided by the SA algorithm and numbers of
arability). selected features equal to six, nine, and 17, respectively. The
To better point out the differences in the performances of tieeror matrix and the accuracy for each class in the case of 17
above algorithms, we used the results of SFS as reference ofegtures are given in Table Il. The inspection of the confusion
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Fig. 3. Execution times required by the considered search algorithms versus number of selected features.

TABLE I more than 25 selected features. In general, we can say that all

ERRORMATRIX AND CLASS ACCURACIES FOR THETEST SET CLASSIFICATION the computations presented in Fig 3 are reasonable. as also the
BASED ON THE17 FEATURES SELECTED BY THE SA ALGORITHM. CLASSES ARE ) !

LISTED IN THE SAME ORDER AS INTABLE | longest one (i.e., the selection of 50 out of 220 features by SA)
took less than one hour. In the range two to 20 features, the SA
Ground Truth : : : .
CI[Cz[C3[Ca]C5 [ C6 [ CT]C8 [ CO [ Class Acearacy algor!thm took, on average, five times more than SFFS; the FCS
Cl|584] 9 |01 4 01265161 o 34.4% algorithm took, on average, about 1.5 times more than SFFS.
C2[250286| 0 | 0 | 0|2 ]65[14] 0 73.0% In particular, the selection of 20 features by the SA algorithm
Elc3lolof23[4]0]0[5][4]1 94.1% : o i h - for th
ST o T o T3 el o T2 T o T o TR required about 3 min, i.e., 5.8 times more than SFFS; for the
2(¢c5] 00,0 023/ 0[]0 0]0 100.0% same task, FCS took about 1.6 times more than SFFS.
g1c6133| 52 1]0368[7]2]0 76.5% Finally, an experiment was carried out to assess, at least for
o g; 919 ‘l‘j 100 (1) g 528 92459 26627 g ;2%‘ the considered hyperspectral data set, how sensitive the SA al-
T o 10171210101 0To0 63 98.6% gorithm is to the initial point, that is, if starting from random

points involves a high risk of converging to local maxima asso-
ciated with low-performance feature subsets. At the same time,
matrix confirms that the most critical classes to separate atés experiment allowed us to evaluate if adopting the solution
corn-no till, corn-min till, soybean-no till, soybean-min till andprovided by SFS as the starting point can be regarded as an ef-
soybean-clean till; this situation was expected, as the specfetive initialization strategy. To this end, the number of fea-
behaviors of such classes are quite similar. The above clasgies to be selected ranged from one to 20 out of the 220 avail-
fication accuracies may be considered satisfactory or not, @@ie features. In each case, 100 different starting points were
pending on the application requirements. randomly generated to initialize the SA algorithm. The value
The other important characteristics to be compared are iheJM was computed for each of the 100 solutions; the min-
computational loads of the selection algorithms, as not only tireum and the maximum of such JM values were determined,
optimal search techniques, but also some sophisticated submpwell as the number of times the maximum occurred. For a
timal algorithms (e.g., generalized sequential methods [5]) exemparative analysis, the minimum and maximum JM values
hibit good performances, though at the cost of long executiarne given in Fig. 4 in the same way as in Fig. 2, i.e., by using as
times. reference values the corresponding JM values of the solutions
For all the methods used in our experiments, the most tirpeovided by the SFS algorithm. In the same diagram, we show
consuming operations were the calculations of the inverse naayain the performances of the SFFS algorithm. As one can ob-
trices and of the matrix determinants (the latter being requiredrve, with the 100 random initializations, even the worst per-
for the computation of the JM distance). Therefore, to reduce tf'emance (Min/SFS curve) can be considered good for all the
number of operations to be performed, we adopted the methaginbers of selected features except 13 and 14. For these two
devised by Cholesky [19], [20]. In Fig. 3, we give the executionumbers, considering only one random starting point would be
times for SFS, SFFS, SA, and FCS. All the experiments werigky. To overcome this problem, one should run the SA algo-
performed on a SUN SPARC station 20. rithm a few times, starting from different random points. For
For every number of selected features (from two to 50), SE®ample, with five or more random initializations, one would
is the fastest, and the proposed SA algorithm is the sloweseé very likely to obtain at least one good solution, even for 13
In the most interesting range of features (two to 20), SFFSfmatures to be selected. In fact, in our experiment, for 13 features
faster even than the proposed FCS algorithm. It is slower flrbe selected, we obtained the maximum in 45 cases out of 100.
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Fig. 4. Performances of the SA algorithm with multiple random starts. The plot shows the minimum and maximum values of the criterion functiowibtained
100 random starts versus number of selected features. For a comparison, the performances of SFS are used as reference values. The perforraameésoof SFFS
given.

If one compares the diagram Min/SFS (Fig. 4) with théhe execution times of both proposed algorithms remain quite
SA/SFS one (Fig. 2), one can deduce that the strategy tkhbrt, as compared with the overall time that may be required
considers only the solution provided by the SFS algorithivy the classification of a remote sensing image. For a compar-
represents a good tradeoff between limiting the computati@on between the two proposed algorithms, we note thatthe FCS
time (by using only one starting point) and obtaining solutioredgorithm allows a better tradeoff between solution quality and
of good quality. In particular, in only one case (four features texecution time than the SA algorithm, as itis much faster and re-
be selected), the solution obtained by this strategy was signdiiires a deterministic execution time, whereas the solution qual-
cantly worse than that reached by the strategy based on multiitiles are almost identical. In comparison to SFFS, the FCS algo-
random initializations. In addition, thanks to the way the SAthm provides better solutions at the cost of an execution time
algorithm operates, one can be sure that the final solution witlat, on average, is about 1.5 times longer. For a larger number
be better than or equal to the starting point. Therefore, startiofyselected features (more than 20), all the considered selection
from the solution provided by SFS is certainly more reliablprocedures provide solutions of similar qualities.
than starting from a single random point. We have proposed two strategies for the initialization of the
SA and FCS algorithms, that is, initialization with the results of
SFS and initialization with multiple random feature subsets. Our
experiments performed by the SA algorithm pointed out that

A new search strategy for feature selection from hyperspdbe former strategy provides a better tradeoff between solution
tral remote sensing images has been proposed that is baseduality and computation time. However, the strategy based on
the representation of the problem solution by a discrete binanultiple trials, which obviously takes a longer execution time,
space and on the search for constrained local extremes of a gray yield better results. For the considered hyperspectral data
terion function in such a space. According to this strategy, aet, when there was a significant difference of quality between
algorithm applying the concept of SA has been defined. In athe best and the worst solutions with 100 trials, the best solution
dition, an FCS algorithm has also been proposed that resemhies always obtained in a good share of the cases (at least 45 out
the SA algorithm but that makes only a prefixed number of abf 100). Consequently, for this data set, the number of random
tempts to improve the solution, no matter if a local extreme hastializations required would not be large (e.qg., five different
been reached or not. The proposed SA and FCS algorithms hstagting points would be enough).
been evaluated and compared with the SFS and SFFS ones okccording to the results obtained by the experiments, in
a hyperspectral data set acquired by the AVIRIS sensor (2@0r opinion, the proposed search strategy and the related
spectral bands). Experimental results have shown that, congittjorithms represent a good alternative to the standard SFFS
ering the most significant range of selected features (from onesiod SFS methods for feature selection from hyperspectral data.
20), the proposed methods provide better solutions (i.e., betterparticular, different algorithms and different initialization
feature subsets) than SFS and SFFS, though at the cost oftategies allow one to obtain different tradeoffs between the
increase in execution times. However, in spite of this increasffectiveness of the selected feature subset and the required

VI. DiscussiON ANDCONCLUSIONS
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computation time. The choice should be driven by the conf20] T. M. Tu, C. H. Chen, J. L. Wu, and C. I. Chang, “A fast two-stage
straints of the specific problem considered. classification method for high-dimensional remote sensing dHE&E
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