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Abstract: The present study consists of two parts. The first part supplies an exact semi-analytical
solution for a general model of rigid plastic strain hardening material at large strains. The second part
applies this solution to tube hydroforming design. The solution provides stress and velocity fields in
a hollow cylinder subject to simultaneous expansion and elongation/contraction. No restriction is
imposed on the hardening law. A numerical method is only required to evaluate ordinary integrals.
The solution is facilitated using Lagrangian coordinates. The second part of the paper is regarded
as an alternative to the finite element design of tube hydroforming processes, restricted to rather
simple final shapes. An advantage of this approach is that the hardening law is not required for
calculating many process parameters. Therefore, the corresponding design is universally valid for all
strain hardening materials if these parameters are of concern. In particular, the prediction of fracture
initiation at the outer surface is independent of the hardening law for widely used ductile fracture
criteria. The inner pressure is the only essential process parameter whose value is controlled by the
hardening law.

Keywords: strain hardening; large strain; semi-analytical solution; tube hydroforming

1. Introduction

Approximate semi-analytical solutions for rigid plastic models at large strains are
useful for quick analysis and design of metal forming processes. Only a few solutions
are available for strain hardening materials. A solution for the radial planar flow of
linear hardening material has been provided in [1]. This solution has been extended to
axisymmetric flow in [2]. The solutions above have been adopted to analyze the extrusion
and drawing of sheets, rods, and tubes [3,4]. The continued plane strain compression of
a thin strip has been considered in [5]. A solution for the pure plane strain bending of a
sheet has been derived in [6]. This solution has been extended to plane strain bending
under tension in [7]. No restriction on the strain hardening law has been imposed in [6,7].
Paper [8] has further extended the solution to include kinematic hardening.

The present paper provides an exact semi-analytical solution for a hollow cylinder
subject to expansion and elongation/contraction. The constitutive equations are the Mises-
type yield criterion and its associated flow rule. The tensile yield stress is an arbitrary
function of the equivalent strain. The solution is facilitated using Lagrangian coordinates.
A numerical method is only necessary to evaluate ordinary integrals.

It has been demonstrated in [9] that a plane strain solution for an expanding two-
layer hollow cylinder can be useful for analyzing tube hydroforming processes. However,
the loading path is very important for designing such processes (for example, [10]). In
particular, the effect of process parameters on the formability of small-diameter ZM21
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magnesium alloy tubes in warm tube hydroforming has been studied in [11]. A finite
element optimization of a tube hydroforming process has been presented in [12]. The effect
of process parameters on stress distributions and thickness reduction has been revealed.
Taguchi’s method has been employed in [13] for multi-objective optimization of critical
process parameters, assuming mechanical properties of IF steel. Paper [14] compares the
axial and fixed feed conditions using two failure criteria. The design for hydro-flanging
processes proposed in [15] accounts for the loading path and the punch’s shape. The tube’s
material is aluminum alloy A6063-T0. An in-process feedback control system has been
developed in [16]. The system has been tested on aluminum alloys 5049-O and 6060-T6.
All the studies above are based on finite element solutions. Simplified stress analyses of
tube hydroforming processes have been presented in [17,18]. The present paper proposes
an alternative to FEM-based designs using the new theoretical solution. It extends the
approach [9] to include the loading path in the design. A significant portion of the solution
is independent of the hardening law. In particular, this law is not required to predict
fracture initiation at the outer surface if widely used ductile fracture criteria are employed.

2. Statement of the Problem

A tube is subject to simultaneous axial elongation or contraction. The initial inner and
outer radii of the tube are a0 and b0, respectively. The initial length of the tube is 2h0. The
inner radius expands at the velocity U, and the tube elongates at the velocity 2V. Both are
constant. The tube shortens if V < 0. The current inner radius, the current outer radius,
and the current half-length of the tubes are denoted as a, b, and h, respectively. It is natural
to choose a cylindrical coordinate system (r, θ, z) whose z-axis coincides with the tube’s
axis. Moreover, the plane z = 0 coincides with the process’ plane of symmetry. A current
configuration of the tube is shown in Figure 1.
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The solution is independent of θ. Let ur and uz be the radial and axial velocities,
respectively. The circumferential velocity vanishes. Due to symmetry, it is sufficient to
consider the domain 0 ≤ z ≤ h. The velocity boundary conditions are

ur = U (1)
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for r = a,
uz = V (2)

for z = h, and
uz = 0 (3)

for z = 0.
Let σr, σθ , and σz be the normal stresses referred to in the cylindrical coordinate system.

It is assumed that these stresses are the principal stresses. The hydrostatic stress is defined as

σ =
σr + σθ + σz

3
. (4)

The stress boundary condition is

σr = 0 (5)

for r = b. The inner pressure is determined from the equation:

P = −σr|r=a. (6)

The tube’s material is assumed to be rigid/plastic, strain hardening. Under the
conditions above, the von Mises yield criterion reads

σeq =
3
2

(
s2

r + s2
θ + s2

z

)
= σ2

0 Φ2(εeq
)
. (7)

Here, sr = σr − σ, sθ = σθ − σ, sz = σz − σ, εeq is the equivalent strain, σ0 is the yield
stress in uniaxial tension at εeq = 0, and Φ

(
εeq
)

is an arbitrary function of its argument
satisfying the conditions Φ(0) = 1 and dΦ

(
εeq
)
/dεeq ≥ 0 for all εeq. The following equation

defines the equivalent strain:
dεeq

dt
= ξeq (8)

where t is the time, d/dt denotes the convected derivative and ξeq is the equivalent strain
rate. In the case under consideration, the latter is defined as

ξeq =

√
2
3

√
ξ2

r + ξ2
θ + ξ2

z . (9)

Here, ξr, ξθ and ξz are the radial, circumferential, and axial strain rates, respectively.
These strain rates are expressed through the velocity components as

ξr =
∂ur

∂r
, ξθ =

ur

r
, ξz =

∂uz

∂z
. (10)

The plastic flow rule associated with the yield criterion in Equation (7) is

ξr = λsr, ξθ = λsθ , ξz = λsz. (11)

Here, λ is a non-negative multiplier. The equivalent strain vanishes at the initial
instant. Therefore, the initial condition to Equation (8) is

εeq = 0 (12)

at a = a0.
The only equilibrium equation that is not identically satisfied is

∂σr

∂r
+

σr − σθ

r
= 0. (13)
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3. Solution

The boundary conditions Equations (1) and (5) suggest that the solution, except the
axial velocity, is independent of z. The solution starts with the velocity field. The axial
velocity satisfying the conditions Equations (2) and (3) is taken as

uz

V
=

z
h

. (14)

A consequence of the plastic flow rule Equation (11) is the incompressibility equation.
The latter reads ξr + ξθ + ξz = 0. Using Equations (10) and (14), one transforms this
equation to

∂ur

∂r
+

ur

r
+

V
h

= 0. (15)

This equation can be immediately integrated to give

ur =
C
r
− r

2
V
h

(16)

where C is constant. Using the boundary condition Equations (1) and (16), one can find:

C = Ua +
a2

2
V
h

. (17)

Then, Equation (16) becomes

ur

V
=

Ua
Vr

+
r

2h

(
a2

r2 − 1
)

. (18)

By definition,
dr
dt

= ur,
dh
dt

= V, and
da
dt

= U. (19)

Equations (18) and (19) combine to give

dr
da

=
a
r
+

r
2h

(
a2

r2 − 1
)

V
U

and
dh
da

=
V
U

. (20)

Integrating the second equation yields

h =
V
U
(a− a0) + h0. (21)

This solution satisfies the initial condition h = h0 at a = a0. Using (21), one transforms
the first equation in Equation (20) to

dr
da

=
a
r
+

r
2(a− a0 + h0U/V)

(
a2

r2 − 1
)

. (22)

It is convenient to introduce the following dimensionless quantities:

η = ρ2 =
r2

a2
0

, α =
a
a0

, β =
b0

a0
, and s =

h0

a0

U
V

. (23)

Then, Equation (22) transforms to the following linear differential equation:

dη

dα
= 2α +

α2 − η

α− 1 + s
. (24)
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Its general solution is

η =
α3 + (s− 1)α2 + C0

α− 1 + s
(25)

where C0 is constant. Let R be the Lagrangian coordinate such that ρ = R at the initial
instant (i.e., at α = 1). Then, it follows from Equations (23) and (25) that C0 = s

(
R2 − 1

)
.

Using this equation to eliminate C0 in Equation (25), one gets

ρ =
√

η =

√
α3 + (s− 1)α2 + s(R2 − 1)

α− 1 + s
. (26)

The strain rate components in the cylindrical coordinate system are determined from
Equations (10), (14), (18) and (23) as

ξz =
U

a0(α− 1 + s)
, ξr = −

U
a0

[
α

η
+

1
2(α− 1 + s)

(
α2

η
+ 1
)]

, ξθ =
U
a0

[
α

η
+

1
2(α− 1 + s)

(
α2

η
− 1
)]

. (27)

Substituting Equation (27) into Equation (9) yields the equivalent strain rate as

ξeq =
U

a0|α− 1 + s|

√
1 +

α2

3η2 (3α− 2 + 2s)2. (28)

Using Equation (26), one can rewrite Equation (28) in the Lagrangian coordinates as

ξeq =
U

a0|α− 1 + s|

√√√√1 +
α2

3
(3α− 2 + 2s)2(α− 1 + s)2

[α3 + (s− 1)α2 + s(R2 − 1)]2
. (29)

Since dεeq/dt = ∂εeq/∂t in the Lagrangian coordinates, it follows from Equations (8),
(19), (23) and (29) that

∂εeq

∂α
=

1
|α− 1 + s|

√√√√1 +
α2

3
(3α− 2 + 2s)2(α− 1 + s)2

[α3 + (s− 1)α2 + s(R2 − 1)]2
. (30)

Using Equation (23), one can represent the solution of this equation satisfying the
initial condition Equation (12) as

εeq =

α∫
1

1
|γ− 1 + s|

√√√√1 +
γ2

3
(3γ− 2 + 2s)2(γ− 1 + s)2

[γ3 + (s− 1)γ2 + s(R2 − 1)]2
dγ. (31)

The yield criterion Equation (7) is satisfied by the following substitution:

sr = − 2
3 σ0Φ

(
εeq
)

sin ψ,

sθ = 1
3 σ0Φ

(
εeq
)(

sin ψ +
√

3 cos ψ
)

,

sz =
1
3 σ0Φ

(
εeq
)(

sin ψ−
√

3 cos ψ
)

.

(32)

Here, ψ is a new unknown function of R and α. It follows from the associated flow
rule Equation (11) that

ξr

sr
=

ξθ

sθ
=

ξz

sz
. (33)

Equations (32) and (33) combine to give

ξθ

ξr
= −1

2

(
1 +
√

3 cot ψ
)

,
ξθ

ξz
=

tan ψ +
√

3
tan ψ−

√
3

. (34)
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Substituting Equation (27) into each of the equations in Equation (34) and eliminating
η by means of Equation (26) leads to

cot ψ =
2α2(s− 1) + 2α(s− 1)2 + 3s(µ− 1)

√
3
[
4α3 + 6α2(s− 1) + 2α(s− 1)2 + s(µ− 1)

] (35)

where µ = R2. Equation (26) can be solved for µ as

µ = 1 +
ρ2(α− 1 + s)− α3 − (s− 1)α2

s
. (36)

Then,
∂µ

∂ρ
=

2(α− 1 + s)ρ
s

. (37)

Since σr − σθ = sr − sθ , upon substitution from Equations (23) and (32), Equation (13)
becomes

∂σr

∂ρ
−

σ0

(√
3 sin ψ + cos ψ

)
Φ
(
εeq
)

√
3ρ

= 0. (38)

Replacing here differentiation with respect to ρ with differentiation with respect to µ
utilizing Equation (37) and eliminating ρ employing Equation (26), one gets

∂σr

∂µ
=

σ0s
(

cos ψ +
√

3 sin ψ
)

Φ
(
εeq
)

2
√

3[α3 + (s− 1)α2 + s(µ− 1)]
. (39)

The right-hand side of this equation is a function of µ and α due to Equations (31) and (35).
In the Lagrangian coordinates, the boundary condition Equation (5) becomes σr = 0 for
R = β (or µ = β2). The solution of Equation (39) satisfying this boundary condition is

σr

σ0
=

s
2
√

3

µ∫
β2

Φ
(
εeq
)(√

3 sin ψ + cos ψ
)

[α3 + (s− 1)α2 + s(χ− 1)]
dχ. (40)

The dimensionless inner pressure is determined from this solution and Equation (6) as

p =
P
σ0

=
s

2
√

3

β2∫
1

Φ
(
εeq
)(√

3 sin ψ + cos ψ
)

[α3 + (s− 1)α2 + s(µ− 1)]
dµ. (41)

The integrals in Equations (31) and (40) can be evaluated numerically. Then, the other
stress components are determined from Equations (32) and (35) as

σ = σr − sr = σr +
2
3 σ0Φ

(
εeq
)

sin ψ,

σθ = sθ + σ = σr + σ0Φ
(
εeq
)(

sin ψ + cos ψ√
3

)
,

σz = sz + σ = σr + σ0Φ
(
εeq
)(

sin ψ− cos ψ√
3

)
.

(42)

Figure 1 shows the velocity V. It is assumed that it is the velocity of the punch. In this
case, the axial punch force is given by

Q = 2π

b∫
a

σzrdr. (43)
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It follows from Equations (23) and (36) that

rdr =
a2

0s
2(α− 1 + s)

dµ. (44)

Using Equations (42) and (44), one can determine the dimensionless axial punch force
from Equation (43) as

q =
Q

πσ0a2
0
=

s
(α− 1 + s)

β2∫
1

[
σr

σ0
+ Φ

(
εeq
)(

sin ψ− cos ψ√
3

)]
dµ. (45)

Upon substitution from Equations (31), (35) and (40), the integrand becomes a known
function of µ. The integral should be evaluated numerically.

The plane strain solution is a particular case of the solution above. However, in this
case, V = 0, and, as follows from Equation (23), s approaches infinity or negative infinity.
The easiest way to get the plane strain solution is to replace s with 1/p and put p = 0. This
solution has been derived in [9].

4. Application to Tube Hydroforming

The geometric model shown in Figure 1 has been successfully applied to some tube
hydroforming processes assuming that V = 0 [9]. However, the loading path is important
for tube hydroforming design ([10] and the list of references therein). The present solution
allows for the loading path to be considered through s-values. The present section contains
numerical solutions. All these solutions have been found at β = 1.08. This value is typical
for tube hydroforming processes [19].

4.1. Inner Pressure

The inner pressure is one of the most important process parameters. Its magnitude
depends on the loading path, geometric parameters, and material properties. Using the
solution above, one needs to evaluate the integral in Equation (41) for calculating the
dimensionless pressure. Figure 2 shows the effect of the loading path on the variation of the
inner pressure with the inner radius for St37 steel, assuming that Φ

(
εeq
)
= 1+ 2.4ε0.812

eq [19].
As expected, the pressure increases as |V| decreases (i.e., |s| increases). It is important to get
the dependence of the inner pressure on the axial feeding. The latter is defined as h0 − h.

Using Equations (21) and (23), one may define the dimensionless axial feeding as

ω =
h0 − h

h0
=

1− α

s
. (46)

The curves in Figure 2 are re-plotted in Figure 3 utilizing Equation (46). The function
Φ
(
εeq
)

involved in Equation (7) greatly affects the inner pressure. Figure 4 compares
the inner pressure at s = −5 for five materials: St37 steel, AISI 316L steel (Φ

(
εeq
)
=(

1 + 6.29εeq
)0.634) [20], SS-304 steel (Φ

(
εeq
)

=
(
1 + 16.67εeq

)0.584) [21], SUS321 steel

(Φ
(
εeq
)
= 1 + 3.15ε0.66

eq ) [22], and SS-304 steel (Φ
(
εeq
)
=
(
1 + 7.62εeq

)0.361) [23]. Surpris-
ingly, the most significant difference occurs in the case of two functions for SS-304 provided
in two different sources. The reason for this difference in the present solution is that the
stress–strain curves are very different.
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Figure 3 illustrates a one-parameter family of loading paths in the inner pressure-axial
feeding space, with s being the parameter. Similar families can be found in other spaces
using the solution in Section 3. In particular, the space of the principal strains is often used
to describe metal forming processes. In the case under consideration, the principal strains
coincide with the strains in the cylindrical coordinate system. Using Equation (26), one can
integrate the equations in Equation (27) to get

εz = ln
(

s−1+α
s

)
, εθ = 1

2 ln
[

α3+(s−1)α2+s(R2−1)
R2(α−1+s)

]
,

εr = ln
( s

s−1+α

)
− 1

2 ln
[

α3+(s−1)α2+s(R2−1)
R2(α−1+s)

]
.

For each s, the principal strain path can be determined from these equations eliminat-
ing α. The path depends on the Lagrangian coordinate.

The solution in Section 3 is semi-analytical. It does not require experimental verifica-
tion. However, its applicability to modeling tube hydroforming processes does. Experi-
mental data should include the value of s, which is usually unavailable. The experimental
verification below is based on data presented in [24] for aluminum alloy A1070. The es-
sential geometric parameters are a0 = 19 mm and b0 = 20 mm. The hardening law for
this material has been provided in [25] using the Holloman equation. This equation is
incompatible with the present solution because it results in σ0 = 0. However, it has been
shown in [9] that the Holloman equation can be replaced with the Ludwik equation. In
particular, σ0 = 32.2 MPa and Φ

(
εeq
)
= 1 + 3.6ε0.37

eq . Paper [24] provides the variation of
the inner pressure and the axial force with ∆b = b− b0. This quantity is determined from
Equation (26) as

∆b
a0

=

√
α3 + (s− 1)α2 + s(β2 − 1)

α− 1 + s
− β.
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The theoretical dimensionless inner radius and axial force depend on s. The latter
has been calculated to approximate both experimental curves in [24] closely. It has been
found that s = −3.02. Figure 5 compares the experimental and theoretical dimensionless
pressures. The latter has been found using Equation (41). The experimental values are
shown as a discrete function. A small range of the experimental curve corresponding to
elastic loading has been disregarded. A practically straight line represents the axial force
in [24] if this range is disregarded. The line corresponding to the dimensionless axial force
is shown by the broken line in Figure 6. The theoretical dimensionless axial force has been
found using Equation (45). The solid line represents this force in Figure 6. It is seen from
Figures 5 and 6 that the theoretical prediction is rather accurate, taking into account the
simplicity of the solution.
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4.2. Wall Thickness

The wall thickness is one of the most important geometric parameters. Its initial value
is H0 = b0 − a0. The Lagrangian coordinates of the inner and outer radii of the tube are
R = 1 and R = β, respectively. Then, the current thickness of the wall is determined from
Equation (26) as

H = H0(β− 1)−1

√α3 + (s− 1)α2 + s(β2 − 1)
α− 1 + s

−

√
α3 + (s− 1)α2

α− 1 + s

. (47)

Equations (46) and (47) supply the dependence of H/H0 on the axial feeding in
parametric form with α being the parameter.

The wall thinning defined as δ = 1− H/H0 is sometimes adopted as the failure limit
in tube hydroforming analysis and design [21]. Let δ∗ be the critical value of δ. It follows
from Equation (47) that

δ∗ = 1− (β− 1)−1

√α3∗ + (s− 1)α2∗ + s(β2 − 1)
α∗ − 1 + s

−

√
α3∗ + (s− 1)α2∗

α∗ − 1 + s

. (48)

Here, α∗ is the critical value of α corresponding to δ = δ∗. At a given value of δ∗, this
equation should be solved for α∗. The right-hand side of Equation (48), considered to be the
function of α∗, may attain a local maximum. If this maximum is less than δ∗, the equation
has no solution. In this case, the mode of failure above does not occur. Therefore, it is
important to find such a special solution to Equation (48) that its right-hand side attains
the local maximum at the same value of α∗. To satisfy these two conditions, one should
allow for s or β to be varied. In what follows, β is kept constant. Figure 7 illustrates the
special solution if δ∗ = 0.4, which is a typical value [21]. The corresponding values of the
other quantities are s = s∗ ≈ −4.66 and α∗ ≈ 2.83. Equation (48) has no solution if s > s∗.
Using Equation (46), one can rewrite the right-hand side of Equation (48) in terms of the
axial feeding. The dependence of ω at which δ = δ∗ = 0.4 on s is depicted in Figure 8.
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4.3. Damage

Damage mechanics models are often used to predict fracture initiation in tube hydro-
forming processes [19,21]. A wide class of damage mechanics models is based on ductile
fracture criteria [26]. The present paper considers two ductile fracture criteria. One of these
criteria has been proposed in [27] and modified in [28]. The modified criterion reads

ε
f
eq∫

0

σm

σeq
dεeq = C1. (49)

Here, σm is the largest principal stress, ε
f
eq is the equivalent strain to fracture, and C1 is

a constitutive parameter. The other criterion reads [29]

ε
f
eq∫

0

(
1 + C2

σ

σeq

)
dεeq = C3. (50)

Here, C2 and C3 are constitutive parameters. The integrals in Equations (49) and (50)
are taken over the strain path.

Fracture often initiates at the outer surface [19]. It follows from Equation (5) that

σ + sr = 0 (51)

at the fracture initiation site. The largest principal stress is the circumferential stress. Using
Equations (32) and (51), one finds

σm = σθ = sθ + σ = sθ − sr = σ0Φ
(
εeq
)(

sin ψ +
cos ψ√

3

)
. (52)

Substituting Equations (7) and (52) into Equation (49) gives

ε
f
eq∫

0

(
sin ψ +

cos ψ√
3

)
dεeq = C1. (53)
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Here, ψ is understood to be calculated from Equation (35) at µ = β2. Using Equation
(30), one can rewrite Equation (53) as

α f∫
1

(
sin ψ +

cos ψ√
3

)
dεeq

dα
dα =

1√
3

α f∫
1

(√
3 sin ψ + cos ψ

)
|α− 1 + s|

√√√√1 +
α2

3
(3α− 2 + 2s)2(α− 1 + s)2

[α3 + (s− 1)α2 + s(β2 − 1)]2
dα = C1. (54)

Here, α f is the value of α at fracture initiation. The corresponding value of ω can be
found from Equation (46) and is denoted as ω f . Figure 9 depicts C1 calculated from (54) for
several loading paths. These curves allow one to find the axial feeding at which fracture
occurs for a given value of C1.
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Substituting Equations (7), (32) and (51) into Equation (50) gives

ε
f
eq∫

0

(
1− C2

sr

σeq

)
dεeq =

ε
f
eq∫

0

(
1 +

2C2

3
sin ψ

)
dεeq = C3. (55)

As before, using Equation (30), one can rewrite Equation (55) as

1
3

α f∫
1

(3 + 2C2 sin ψ)

|α− 1 + s|

√√√√1 +
α2

3
(3α− 2 + 2s)2(α− 1 + s)2

[α3 + (s− 1)α2 + s(β2 − 1)]2
dα = C3. (56)

It is convenient to represent this equation as

Λ1

(
α f

)
+ Λ2

(
α f

)
C2 = C3 (57)

where

Λ1

(
α f

)
=

α f∫
1

1
|α−1+s|

√
1 + α2

3
(3α−2+2s)2(α−1+s)2

[α3+(s−1)α2+s(β2−1)]2
dα,

Λ2

(
α f

)
= 2

3

α f∫
1

sin ψ
|α−1+s|

√
1 + α2

3
(3α−2+2s)2(α−1+s)2

[α3+(s−1)α2+s(β2−1)]2
dα.

(58)
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Due to Equation (46), it is possible to regard Λ1

(
α f

)
and Λ2

(
α f

)
as functions of

ω f . Figures 10 and 11 depict these functions for several loading paths. These curves and
Equation (57) allow one to find the axial feeding at which fracture occurs for given values
of C2 and C3.
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5. Conclusions

A new rigid/plastic solution for the general isotropic hardening law has been found.
The solution describes a tube’s simultaneous expansion and elongation/contraction at
finite strains, giving the radial distribution of stress and strain rate at any deformation stage.
It is facilitated using Lagrangian coordinates. A numerical treatment is only necessary for
evaluating ordinary integrals.

The solution has been adopted for describing tube hydroforming processes. It can
be used for the preliminary design of such processes. In particular, several failure criteria
have been considered. The application of these criteria does not require the stress solution,
which makes the final result even simpler than the general solution. The stress solution is
only necessary to relate the inner pressure to other process parameters.

The solution in Section 3 is semi-analytical. It does not require experimental verifica-
tion. However, its applicability to modeling tube hydroforming processes developed in
Section 4 does. Experimental data should include the value of s introduced in Equation
(23). It is usually unavailable in papers devoted to experiments. The comparison, shown
in Figures 5 and 6, has been made using the experimental data [24]. This paper provides
the inner pressure and axial force variation as the deformation proceeds. The theoretical
counterparts depend on the single parameter s, provided that the initial geometry and
hardening law are given. Therefore, the existence of an s-value at which the experimental
and theoretical data for both the inner pressure and the axial force coincide confirms that
the semi-analytic solution can be used for the preliminary design of tube hydroforming
processes. Figures 5 and 6 show that the condition above is satisfied rather accurately at
s = −3.02.

The theoretical solution found is useful for other applications. An experimental
procedure for the inelastic response and failure materials has been developed in [30]. In
particular, the solution can be combined with this procedure during the homogenous
deformation stage. Another area of application is the method for repairing screen pipes
using a tube hydroforming process proposed in [31].
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Nomenclature

a inner radius
b outer radius
h half-length
p dimensionless inner pressure
q dimensionless axial punch force
(r, θ, z) cylindrical coordinates
s dimensionless parameter introduced in Equation (23)
sr, sθ , sz deviatoric stress components
t time
ur radial velocity
uz axial velocity



Materials 2022, 15, 5888 16 of 17

H wall thickness
P inner pressure
R Lagrangian coordinate
Q axial punch force
U speed of expansion
V speed of elongation
α dimensionless inner radius
δ wall thinning
εeq equivalent strain
εr, εθ , εz strain components
η function of the polar radius introduced in Equation (23)
ξeq equivalent strain rate
ξr, ξθ , ξz strain rate components
ρ dimensionless radius
σ hydrostatic stress
σeq equivalent stress
σr, σθ , σz stress components
ω dimensionless axial feeding
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