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Abstract: The aim of this paper was to introduce and investigate a new seminorm of operator tuples
on a complex Hilbert spaceH when an additional semi-inner product structure defined by a positive
(semi-definite) operator A onH is considered. We prove the equality between this new seminorm
and the well-known A-joint seminorm in the case of A-doubly-commuting tuples of A-hyponormal
operators. This study is an extension of a well-known result in [Results Math 75, 93(2020)] and
allows us to show that the following equalities rA(T) = ωA(T) = ‖T‖A hold for every A-doubly-
commuting d-tuple of A-hyponormal operators T = (T1, . . . , Td). Here, rA(T), ‖T‖A, and ωA(T)
denote the A-joint spectral radius, the A-joint operator seminorm, and the A-joint numerical radius
of T, respectively.

Keywords: positive operator; A-adjoint operator; A-joint operator seminorm; A-hyponormal opera-
tor; A-joint spectral radius; A-joint numerical radius

MSC: 47B65; 47A05; 47A12; 46C05; 47B20; 47A10

1. Introduction

In functional analyses, many authors have studied the tuples of operators. For example,
we refer to [1–5] and the references therein.

Consider a complex Hilbert space (H, 〈·, ·〉), where the norm induced by 〈·, ·〉 is
denoted by ‖ · ‖. The set B(H) denotes the C∗-algebra of all bounded linear operators
acting onH with identity IH (or shortly I). IfH is n-dimensional, we identify B(H) with
the spaceMn of all n× n matrices with entries in the complex field and denote its identity
by In. In what follows, by an operator, we mean a bounded linear operator. We will mention
some specific notions of an operator, i.e., the null space of every operator T is denoted
by N (T), its range by R(T), and T∗ is the adjoint of T. An operator T ∈ B(H) is said to
be positive if 〈Tx, x〉 ≥ 0 for all x ∈ H. We write T ≥ 0 if T is positive. If T ≥ 0, then
T1/2 means the square root of T. The commutator of two operators T, S ∈ B(H) is defined
as [T, S] := TS − ST. It is easy to see that [T − λI, S − µI] = [T, S], for every λ, µ ∈ C
and T, S ∈ B(H). Recall that T ∈ B(H) is called normal (respectively hyponormal) if
[T∗, T] = 0 (respectively, [T∗, T] ≥ 0).

Next, we present some inequalities related to operators that we need in the future.
First, we give the classical Schwarz inequality for a positive operator T ∈ B(H):

|〈Tx, y〉|2 ≤ 〈Tx, x〉〈Ty, y〉, (1)
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where x, y ∈ H.
In [6], Halmos obtains a result similar to the inequality above

|〈Tx, x〉| ≤ 〈|T|x, x〉1/2〈|T∗|x, x〉1/2

for every T ∈ B(H) and for any x, y ∈ H. In [7], Kato proves a Schwarz-type inequality (1),
which generalizes the inequality of Halmos:

|〈Tx, y〉|2 ≤ 〈|T|2θ x, x〉〈|T∗|2(1−θ)y, y〉 (2)

for all operators T ∈ B(H), for every vector x, y ∈ H, and θ ∈ [0, 1]. McCarthy [8] gives an
important inequality in the theory of operators as follows:

Lemma 1 (Theorem 1.4 in [8]). Let T ∈ B(H) be a positive operator and x ∈ H satisfy ‖x‖ = 1.
Then, for r ≥ 1,

〈Tx, x〉r ≤ 〈Trx, x〉.

For 0 ≤ r ≤ 1, the above inequality is reversed.

In what follows, we assume that A is a positive nonzero operator that defines the
following positive semi-definite sesquilinear form:

〈·, ·〉A : H×H → C
(x, y) 7→ 〈x, y〉A := 〈Ax, y〉 = 〈A1/2x, A1/2y〉.

The seminorm induced by 〈·, ·〉A is given by ‖x‖A =
√
〈x, x〉A, ∀ x ∈ H. It can be seen

that ‖ · ‖A is a norm onH if and only if A is injective, and the semi-Hilbert space (H, ‖ · ‖A)
is complete if and only ifR(A) is closed inH.

Definition 1 ([9]). An operator S ∈ B(H) is called an A-adjoint of T ∈ B(H), if we have
〈Tx, y〉A = 〈x, Sy〉A (AS = T∗A) for every x, y ∈ H.

The existence of an A-adjoint operator is not guaranteed. Thus, we denote by BA(H)
the set of all operators that admit A-adjoints. Using Douglas’ theorem [10], we obtain
the following:

BA(H) = {T ∈ B(H) ; R(T∗A) ⊆ R(A)}

and
BA1/2(H) = {T ∈ B(H) ; ∃ c > 0 ; ‖Tx‖A ≤ c‖x‖A, ∀ x ∈ H}.

When T ∈ BA1/2(H), we say that T is A-bounded. The sets BA(H) and BA1/2(H) are
subalgebras of B(H), which are neither closed nor dense in B(H). Moreover, the inclusions

BA(H) ⊆ BA1/2(H) ⊆ B(H)

hold. We have equality if A is injective andR(A) = R(A), whereR(A) means the closure
ofR(A) in the norm topology ofH (see [11]). Further, 〈·, ·〉A gives the following seminorm
on BA1/2(H)

‖T‖A := sup
x∈R(A),

x 6=0

‖Tx‖A
‖x‖A

= sup
x∈H,
‖x‖A=1

‖Tx‖A = sup
x,y∈H,

‖x‖A=‖y‖A=1

|〈Tx, y〉A| < ∞ (3)

(see [12] and the references therein). It is useful to note that if T ∈ BA1/2(H), then
T(N (A)) ⊆ N (A). Further, ‖TS‖A ≤ ‖T‖A‖S‖A for any T, S ∈ BA1/2(H). Let X† denote
the Moore–Penrose pseudo-inverse of an operator X (for more details concerning this
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operator, see [11]). Following [11], we have: T ∈ BA1/2(H) implies that A1/2T(A1/2)† ∈
B(H) and

‖T‖A =
∥∥A1/2T(A1/2)†∥∥. (4)

In 2012, Saddi [13] introduced the A-numerical radius of an operator T ∈ B(H) by

ωA(T) := sup{|〈Tx, x〉A| ; x ∈ H, ‖x‖A = 1}.

In 2020, the concept of the A-spectral radius of A-bounded operators was defined
in [14] as follows:

rA(T) := inf
n≥1
‖Tn‖

1
n
A = lim

n→∞
‖Tn‖

1
n
A. (5)

Note that ‖T‖A and ωA(T) may equal +∞ for some T ∈ B(H) (see [14]). However, the
following relation shows that ‖ · ‖A and ωA(·) are equivalent seminorms on BA1/2(H):

rA(T) ≤ max
{

1
2‖T‖A, rA(T)

}
≤ ωA(T) ≤ ‖T‖A. (6)

For the proof of (6), we refer to the following references [12,14]. If A = I, then the classical
definitions of the operator norm, numerical radius, and spectral radius for Hilbert space
operators are obtained and are simply denoted by ‖ · ‖, ω(·) and r(·).

If T ∈ BA(H), then by Douglas’s theorem [10] there exists a unique solution, given by
T]A , of the following problem

AX = T∗A, R(X) ⊆ R(A).

Note that T]A = A†T∗A, where A† is the Moore–Penrose pseudo-inverse of A (see [11]). If
T, S ∈ BA(H), then TS, αT + βS ∈ BA(H) for every α, β ∈ R and we have (TS)]A = S]A T]A

and (αT + βS)]A = αT]A + βS]A . Moreover, if PR(A)
denotes the orthogonal projection

onto R(A), then for a given T ∈ BA(H), we have T]A ∈ BA(H), (T]A)]A = PR(A)
TPR(A)

and
(
(T]A)]A

)]A = T]A . For more details about the operator T]A , one can see [9,11,15].
Furthermore, we recall that an operator T is said to be A-positive if AT is a positive operator
and we write T ≥A 0. It can be observed that A-positive operators are in BA(H). For
T, S ∈ B(H), the notation T ≥A S means T − S ≥A 0. When A = I, then T ≥I S will
simply be denoted by T ≥ S.

The structure of this paper is organized as follows: in Section 2, we give some notions
that characterize a d-tuple of operators T = (T1, . . . , Td) ∈ B(H)d. In Section 3, we
introduce a new joint norm of tuples of operators that generalizes the joint norm given
in (12) and define the class of doubly-commuting tuples of hyponormal operators acting
on an A-weighted Hilbert space, where A is a positive operator that is not assumed to be
invertible. We proved a generalization of the well-known result due to G. Popescu [16].
We also present an inequality that characterizes the Euclidean norm of an operator tuple
T = (T1, . . . , Td) ∈ B(H)d. In Section 4, we give several characterizations related to the
operators from BA1/2(H) and the operators from B(R(A1/2)). For an A-doubly-commuting
d-tuple of hyponormal operators, we prove the equalities ‖T‖e,A = ‖T‖A and rA(T) =
‖T‖A = ωA(T). The motivation for our investigation comes from a recent paper [17].

2. Preliminaries

To prepare the framework in which we will work, we present in this section some
notions and notations that will be useful in this paper.

Let N and N∗ denote the set of nonnegative and positive integers, respectively. Let
d ∈ N∗ and T = (T1, . . . , Td) ∈ B(H)d be a d-tuple of operators. If [Ti, Tj] = 0 for all
i, j ∈ {1, . . . , d}, then T is said to be a commuting tuple. Moreover, if T is a commuting
d-tuple of operators and [T∗i , Tj] = 0 for every 1 ≤ i 6= j ≤ d, then it is called a doubly-
commuting operator tuple.
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In the next definition, we recall two important classes of operators in semi-Hilbert spaces.

Definition 2 ([14]). An operator T ∈ BA(H) is called

(i) A-normal if [T]A , T] = 0;
(ii) A-hyponormal if [T]A , T] ≥A 0.

For some results concerning the above two classes of operators, see [14] and the
references therein. For T ∈ BA(H), the equalities

rA(T) = ωA(T) = ‖T‖A (7)

hold for the class of A-normal, A-hyponormal, and A-positive operators (see [14]). Since
T]A T ≥A 0 and TT]A ≥A 0, then an application of the second equality in (7) together with
the last equality in (3) shows that

‖T]A T‖A = ‖TT]A‖A = ‖T‖2
A = ‖T]A‖2

A. (8)

Now, associated with a d-tuple of operators, T = (T1, . . . , Td) ∈ B(H)d (not necessarily
commuting), the following quantities

‖T‖A := sup


√√√√ d

∑
j=1
‖Tjx‖2

A ; x ∈ H, ‖x‖A = 1

,

and

ωA(T) := sup


√√√√ d

∑
j=1
|〈Tjx, x〉A|2 ; x ∈ H, ‖x‖A = 1


are defined in [12]. If Tj ∈ BA1/2(H) for all j ∈ {1, . . . , d}, then one can verify that ‖ · ‖A and
ωA(·) two seminorms on BA1/2(H)d. Notice that ωA(T) and ‖T‖A are called the A-joint
numerical radius and the A-joint operator seminorm of T, respectively.

In [18], H. Baklouti et al. introduced the concept of the A-joint spectral radius associ-
ated with a d-tuple of commuting operators T = (T1, . . . , Td) ∈ BA(H)d as follows

rA(T) := inf
n∈N∗

∥∥∥∥∥∥∥∥ ∑
|α|=n,
α∈Nd

n!
α!

(
T]A

)α
Tα

∥∥∥∥∥∥∥∥
1

2n

A

= lim
n→∞

∥∥∥∥∥∥∥∥ ∑
|α|=n,
α∈Nd

n!
α!

(
T]A

)α
Tα

∥∥∥∥∥∥∥∥
1

2n

A

, (9)

where T]A = (T]A
1 , . . . , T]A

d ). Moreover, for the multi-index α = (α1, . . . , αd) ∈ Nd, we will
use the following notations:

Tα :=
d

∏
k=1

Tαk
k , |α| :=

d

∑
j=1
|αj| and α! :=

d

∏
k=1

αk!.

We mention here that the second equality in (9) has also been proved by Baklouti et al.
in [18]. Notice that for every commuting operator tuple T = (T1, . . . , Td) ∈ BA(H)d,
we have

rA(T) ≤ max
{

1

2
√

d
‖T‖A, rA(T)

}
≤ ωA(T) ≤ ‖T‖A (10)

(see Theorem 2.4 in [12] and Theorem 2.2 in [19]). In [19], it is stated that if T = (T1, . . . , Td) ∈
BA(H)d is any d-tuple of commuting A-normal operators, then

rA(T) = ωA(T) = ‖T‖A. (11)
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One of the main targets of this work is to establish the equalities in (11) for a new class of
multivariable operators.

Next, for A = I, we define rI(T), ωI(T), and ‖T‖I which will simply be denoted by
r(T), ω(T) and ‖T‖, respectively. Thus, we obtain

‖T‖ := sup


√√√√ d

∑
j=1
‖Tjx‖2 ; x ∈ H, ‖x‖ = 1

,

and

ω(T) := sup


√√√√ d

∑
j=1
|〈Tjx, x〉|2 ; x ∈ H, ‖x‖ = 1

.

The last equality is given in [20] by M. Chō and M. Takaguchi and is the Euclidean operator
radius of an operator tuple T = (T1, . . . , Td) ∈ B(H)d, see also [16].

For T = (T1, . . . , Td) ∈ B(H)d, G. Popescu defined in [16] the following quantity

‖T‖e := sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . . + λdTd‖, (12)

where Bd denotes the open unit ball of Cd with respect to the Euclidean norm, i.e.,

Bd :=

{
λ = (λ1, . . . , λd) ∈ Cd ; ‖λ‖2

2 :=
d

∑
j=1
|λj|2 < 1

}
.

It is clear that we can change Bd with its closure in (12) without changing the value of
‖T‖e. Note that ‖ · ‖e defines a norm on B(H)d. Moreover, in [17], the following equality is
established:

‖T‖ = ‖T‖e (13)

for every doubly-commuting d-tuple of hyponormal operators T. It is important to mention
that G. Popescu proved in [16] that the following inequalities hold

1√
d

√√√√∥∥∥∥∥ d

∑
j=1

TjT∗j

∥∥∥∥∥ ≤ ‖T‖e ≤

√√√√∥∥∥∥∥ d

∑
j=1

TjT∗j

∥∥∥∥∥ (14)

for any d-tuple T = (T1, . . . , Td) ∈ B(H)d. Furthermore, it has been shown in [16] that the
constants 1√

d
and 1 are the best choices possible.

3. New Joint Seminorm for Operator Tuples

In this section, we aim to introduce and investigate a new joint seminorm for d-tuples
of A-bounded operators. An alternative and easy proof of a well-known result due to G.
Popescu [16] is established.

First, we introduce the following definition, which is a natural generalization of (12).

Definition 3. Let T = (T1, . . . , Td) ∈ BA1/2(H)d. The A-Euclidean seminorm of the d-tuple of
A-bounded operators T is given by

‖T‖e,A := sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . . + λdTd‖A.

In the next proposition, we state some connections between the seminorms ‖ · ‖e,A
and ‖ · ‖A.
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Proposition 1. Let T = (T1, . . . , Td) ∈ BA1/2(H)d be the d-tuple of the operators. Then, the
following assertions hold:

(1) ‖T‖e,A ≤ ‖T‖A;
(2) If Tk ∈ BA(H) for all k ∈ {1, . . . , d}, then ‖T]A‖e,A = ‖T‖e,A and

1√
d

max
{
‖T‖A, ‖T]A‖A

}
≤ ‖T‖e,A, (15)

where T]A = (T]A
1 , . . . , T]A

d ).

Proof. (1) Let x ∈ H and λ = (λ1, . . . , λd) ∈ Bd. Then, by applying the Cauchy–Schwarz
inequality (in short (C–S)) and making several calculations, we deduce that∥∥∥∥∥ d

∑
j=1

λjTjx

∥∥∥∥∥
2

A

= 〈
(

d

∑
j=1

λjTj

)
x,

(
d

∑
k=1

λkTk

)
x〉A

=
d

∑
j=1

d

∑
k=1

λjλk〈Tjx, Tkx〉A

≤
d

∑
j=1

d

∑
k=1
|λj| × |λk| × ‖Tjx‖A‖Tkx‖A

=

(
d

∑
j=1
|λj| × ‖Tjx‖A

)2

.

By applying the inequality (C–S) again, we obtain the following inequality∥∥∥∥∥ d

∑
k=1

λkTkx

∥∥∥∥∥
2

A

≤ ‖λ‖2
2

(
d

∑
j=1
‖Tjx‖2

A

)
.

Then, by taking the supremum over all x ∈ H with ‖x‖A = 1, we find∥∥∥∥∥ d

∑
k=1

λkTk

∥∥∥∥∥
A

≤ ‖λ‖2‖T‖A.

So, the desired inequality is proved by taking the supremum over all λ ∈ Bd.

(2) The fact that ‖T]A‖e,A = ‖T‖e,A follows trivially since ‖X]A‖A = ‖X‖A for all
X ∈ BA(H). Now, in order to prove (15), we need to recall from [16] the following facts: if
we denote by Sd the unit sphere of Cd and σ the rotation-invariant positive Borel measure
on Sd for which σ(Sd) = 1, then for all µ = (µ1, . . . , µd) ∈ Cd, we have∫

Sd

|µk|2dσ(µ) =
1
d

, ∀ k ∈ {1, . . . , d} and
∫
Sd

µiµj dσ(µ) = 0, ∀ 1 ≤ i 6= j ≤ d. (16)

Now, let Bd denote the closed unit ball of Cd. It is clear that

‖T‖2
e,A = sup

(λ1,...,λd)∈Bd

∥∥∥∥∥ d

∑
j=1

λjTj

∥∥∥∥∥
2

A

= sup
(λ1,...,λd)∈Bd

∥∥∥∥∥ d

∑
j=1

λjTj

∥∥∥∥∥
2

A

.
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Further, by using (8), we see that

‖T‖2
e,A = sup

(λ1,...,λd)∈Bd

∥∥∥∥∥∥
(

d

∑
j=1

λjTj

)]A
(

d

∑
j=1

λjTj

)∥∥∥∥∥∥
A

= sup
(λ1,...,λd)∈Bd

sup
‖x‖A=1

〈
(

d

∑
j=1

λjT
]A
j

)(
d

∑
j=1

λjTj

)
x, x〉A

= sup
‖x‖A=1

sup
(λ1,...,λd)∈Bd

d

∑
i,j=1

λiλj〈T]A
i Tjx, x〉A.

On the other hand, since σ(Sd) = 1, then it follows that

sup
(λ1,...,λd)∈Bd

d

∑
i,j=1

λiλj〈T]A
i Tjx, x〉A =

∫
Sd

sup
(λ1,...,λd)∈Bd

d

∑
i,j=1

λiλj〈T]A
i Tjx, x〉A dσ(µ)

≥
∫
Sd

d

∑
i,j=1

µiµj〈T]A
i Tjx, x〉A dσ(µ),

for all x ∈ H. This implies that, through (16),

‖T‖2
e,A ≥ sup

‖x‖A=1

∫
Sd

d

∑
i,j=1

µiµj〈T]A
i Tjx, x〉A dσ(µ)

=
1
d

sup
‖x‖A=1

d

∑
i=1
〈T]A

i Tix, x〉A =
1
d
‖T‖2

A.

This proves that
1
d
‖T‖A ≤ ‖T‖e,A. (17)

By replacing Tk by T]A
k in (17) and then using the fact that ‖T]A‖e,A = ‖T‖e,A, we have

1
d
‖T]A‖A ≤ ‖T‖e,A. (18)

Combining (17) together with (18) yields (15) as desired.

Remark 1. (1) If T = (T1, . . . , Td) ∈ BA(H)d, then clearly
d

∑
k=1

T]A
k Tk ≥A 0. Hence, a direct

application of (7) shows that

‖T‖A =

√√√√∥∥∥∥∥ d

∑
j=1

T]A
j Tj

∥∥∥∥∥
A

. (19)

It should be mentioned here that the equality ‖T]A‖A = ‖T‖A may not be correct even if T is a

commuting operator tuple. Indeed, let us consider the following matrices inM3: A =

1 0 0
0 2 0
0 0 1

,

T1 =

0 1 0
0 0 0
0 0 0

 and T2 =

0 0 1
0 0 0
0 0 0

. We remark that [T1, T2] = 0. Furthermore, by using
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the fact that T]A
k = A†T∗k A with k ∈ {1, 2}, it can be seen that T]A

1 =

0 0 0
1
2 0 0
0 0 0

 and

T]A
2 =

0 0 0
0 0 0
1 0 0

. Further, by applying (19) and (4), we can show that

‖(T1, T2)‖A =

√∥∥∥T]A
1 T1 + T]A

2 T2

∥∥∥
A
= 1

and

‖(T]A
1 , T]A

2 )‖A =

√∥∥∥(T]A
1
)]A T]A

1 +
(
T]A

2
)]A T]A

2

∥∥∥
A
=

√
5

2
.

(2) In virtue of proposition 1, we infer that ‖ · ‖A and ‖ · ‖e,A are equivalent seminorms on BA(H)d.

The following corollary provides a generalization and improvement of the well-known
result due to G. Popescu [16].

Corollary 1. Let T = (T1, . . . , Td) ∈ BA(H)d be a d-tuple of operators. Then, the inequality

1√
d

max{α, β} ≤ ‖T‖e,A ≤ min{α, β} (20)

holds, where α =

√√√√∥∥∥∥∥ d

∑
k=1

TkT]A
k

∥∥∥∥∥
A

and β =

√√√√∥∥∥∥∥ d

∑
k=1

T]A
k Tk

∥∥∥∥∥
A

.

Proof. By applying Proposition 1 together with (19), we deduce that

1√
d

√√√√∥∥∥∥∥ d

∑
k=1

T]A
k Tk

∥∥∥∥∥
A

≤ ‖T‖e,A ≤

√√√√∥∥∥∥∥ d

∑
k=1

T]A
k Tk

∥∥∥∥∥
A

. (21)

By replacing Tk by T]A
k in (21), we can see that

1√
d

√√√√√
∥∥∥∥∥∥
(

d

∑
k=1

TkT]A
k

)]A
∥∥∥∥∥∥

A

≤ ‖T]A‖e,A ≤

√√√√√
∥∥∥∥∥∥
(

d

∑
k=1

TkT]A
k

)]A
∥∥∥∥∥∥

A

,

from which we have

1√
d

√√√√∥∥∥∥∥ d

∑
k=1

TkT]A
k

∥∥∥∥∥
A

≤ ‖T‖e,A ≤

√√√√∥∥∥∥∥ d

∑
k=1

TkT]A
k

∥∥∥∥∥
A

. (22)

A combination of (21) together with (22) yields (20) as desired.

Remark 2. Note that the following equality∥∥∥∥∥ d

∑
j=1

T]A
j Tj

∥∥∥∥∥
A

=

∥∥∥∥∥ d

∑
j=1

TjT
]A
j

∥∥∥∥∥
A
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may not be correct for some d-tuple of operators T = (T1, . . . , Td) ∈ BA(H)d even if A = I.

Indeed, we consider the following matrices inM2: A = I2, T1 =

(
1 0
0 0

)
and T2 =

(
0 0
1 0

)
. It

is not difficult to check that ∥∥∥∥∥ 2

∑
j=1

TjT∗j

∥∥∥∥∥ = 1 6= 2 =

∥∥∥∥∥ 2

∑
j=1

T∗j Tj

∥∥∥∥∥.

In the next theorem, we give a new formula of ‖T‖A,e for T ∈ BA1/2(H)d, which allows
us to prove that ‖ · ‖A,e and ‖ · ‖A are two equivalent seminorms on BA1/2(H)d. Notice that
our new techniques provide an alternative and easy proof of the inequalities (14), which
were first proved in [16].

Theorem 1. Let T = (T1, . . . , Td) ∈ BA1/2(H)d. Then, the equality

‖T‖A,e = sup


√√√√ d

∑
j=1
|〈Tjx, y〉A|2 ; x, y ∈ H, ‖x‖A = ‖y‖A = 1

 (23)

holds.

Proof. By using (3), we see that

‖T‖e,A = sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . . + λdTd‖A

= sup
(λ1,...,λd)∈Bd

sup

{∥∥∥∥∥ d

∑
k=1

λkTkx

∥∥∥∥∥
A

; x ∈ H, ‖x‖A = 1

}

= sup

{
sup

(λ1,...,λd)∈Bd

∥∥∥∥∥ d

∑
k=1

λkTkx

∥∥∥∥∥
A

; x ∈ H, ‖x‖A = 1

}
. (24)

Moreover, recall from [19] that for complex numbers z1, . . . , zd, we have

sup
(λ1,...,λd)∈Bd

∣∣∣∣∣ d

∑
k=1

λkzk

∣∣∣∣∣ =
√√√√ d

∑
k=1
|zk|2. (25)

Now, let x, y ∈ H. By using (25), we have√√√√ d

∑
j=1
|〈Tjx, y〉A|2 = sup

(λ1,...,λd)∈Bd

∣∣∣∣∣ d

∑
j=1

λj〈Tjx, y〉A

∣∣∣∣∣
= sup

(λ1,...,λd)∈Bd

∣∣∣∣∣〈
(

d

∑
j=1

λjTjx

)
, y〉A

∣∣∣∣∣
Hence, by taking the supremum over all y ∈ H with ‖y‖A = 1 in the last equality we have

sup
y∈H,
‖y‖A=1

√√√√ d

∑
k=1
|〈Tkx, y〉A|2 = sup

y∈H,
‖y‖A=1

sup
(λ1,...,λd)∈Bd

∣∣∣∣∣〈
(

d

∑
k=1

λkTkx

)
, y〉A

∣∣∣∣∣.
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This yields that

sup
y∈H,
‖y‖A=1

√√√√ d

∑
k=1
|〈Tkx, y〉A|2 = sup

(λ1,...,λd)∈Bd

 sup
y∈H,
‖y‖A=1

∣∣∣∣∣〈
(

d

∑
k=1

λkTkx

)
, y〉A

∣∣∣∣∣
. (26)

On the other hand, it is not difficult to check that

sup{|〈u, v〉A| ; v ∈ H, ‖v‖A = 1} = ‖u‖A, ∀u ∈ H. (27)

Thus, by using (26) and (27), we obtain

sup
y∈H,
‖y‖A=1

√√√√ d

∑
k=1
|〈Tkx, y〉A|2 = sup

(λ1,...,λd)∈Bd

∥∥∥∥∥ d

∑
k=1

λkTkx

∥∥∥∥∥
A

. (28)

Combining (28) together with (24) yields (23) as required, and, hence, the proof is com-
plete.

Remark 3. By letting A = I in (23), we obtain a well-known result established by Dragomir in
Theorem 9 in [21], and when the 2-tuple is (T, T]A), where T ∈ BA(H), we obtain a recent result
in [22].

The following corollary is an application of Theorem 1 and provides an improve-
ment of the results given in Proposition 1 since BA(H) ⊆ BA1/2(H). Moreover, the new
Formula (23) enables us to derive an alternative and easy proof of the inequalities (14).

Corollary 2. Let T = (T1, . . . , Td) ∈ BA1/2(H)d be a d-tuple of operators. Then,

1√
d
‖T‖A ≤ ‖T‖e,A ≤ ‖T‖A. (29)

Proof. By using (23) and then applying the inequality (C–S), we easily prove the second
inequality in (29). Now, let x ∈ H be such that ‖x‖A = 1. Assume that Tkx /∈ N (A) for all
k ∈ {1, . . . , d} and let

yk =
Tkx
‖Tkx‖A

, ∀ k ∈ {1, . . . , d}.

(If Tk0 x ∈ N (A) for some k0 ∈ {1, . . . , d}, we choose yk0 = x). We clearly have

‖yk‖A = 1 and |〈Tkx, yk〉A|2 = ‖Tkx‖2
A, ∀ k ∈ {1, . . . , d}.

Thus, by applying (23), we have

‖T‖2
A,e ≥

d

∑
k=1
|〈Tkx, yk〉A|2 ≥ |〈T1x, y1〉A|2 = ‖T1x‖2

A.

Similarly, we prove that ‖T‖2
A,e ≥ ‖Tix‖2

A for all i ∈ {1, . . . , d}. This yields

d‖T‖2
A,e ≥

d

∑
k=1
‖Tkx‖2

A.

Therefore, by taking the supremum over all x ∈ H with ‖x‖A = 1 in the last inequality,
we have

‖T‖A,e ≥
1√
d
‖T‖A.
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Hence, the proof is complete.

Remark 4. By letting A = I in (29) and then replacing Tk with T∗k for all k ∈ {1, . . . , d} we
easily obtain the inequalities (14) that have been already established by G. Popescu in [16] by using
a different argument.

To establish our next result, we require the following lemma.

Lemma 2. For any vectors x1, x2, . . . , xd inH and for arbitrary complex numbers λ1, λ2, . . . , λd,
with λi 6= 0, i = 1, d, we have

d

∑
i=1
‖xi‖2

A ≥

∥∥∥ d
∑

i=1
λixi

∥∥∥2

A

d
∑

i=1
|λi|2

+ max
i,j∈{1,...,d}

‖λixj − λjxi‖2
A

|λi|2 + |λj|2

for any d ≥ 2.

Proof. We use, as in [23] or [24], the technique of the monotony of a sequence. Consider
the sequence

Sd =
d

∑
i=1
‖xi‖2

A −

∥∥∥ d
∑

i=1
λixi

∥∥∥2

A

d
∑

i=1
|λi|2

, d ≥ 1.

By studying the monotony of sequence Sk, k ≤ d, we have

Sk+1 − Sk = ‖xk+1‖2
A +

∥∥∥ k
∑

i=1
λixi

∥∥∥2

A

k
∑

i=1
|λi|2

−

∥∥∥ k
∑

i=1
λixi + λk+1xk+1

∥∥∥2

A

k
∑

i=1
|λi|2 + |λk+1|2

.

For two vectors x, y ∈ H and for complex numbers λ, µ 6= 0, the following equality holds:

‖x‖2
A

|λ|2 +
‖y‖2

A
|µ|2 −

‖x + y‖2
A

|λ|2 + |µ|2 =
‖|µ|2x− |λ|2y‖2

A
|λ|2|µ|2(|λ|2 + |µ|2) . (30)

Since the term on the right side of equality (30) is positive, then we have

‖x‖2
A

|λ|2 +
‖y‖2

A
|µ|2 ≥

‖x + y‖2
A

|λ|2 + |µ|2 . (31)

Now, using the inequality from (31), we have:

‖xk+1‖2
A +

∥∥∥ k
∑

i=1
λixi

∥∥∥2

A

k
∑

i=1
|λi|2

=

∥∥∥λk+1xk+1

∥∥∥2

A
|λk+1|2

+

∥∥∥ k
∑

i=1
λixi

∥∥∥2

A

k
∑

i=1
|λi|2

≥

∥∥∥ k
∑

i=1
λixi + λk+1xk+1

∥∥∥2

A

k
∑

i=1
|λi|2 + |λk+1|2

.

It is easy to see that Sk+1 − Sk ≥ 0, that is, the sequence Sk is increasing. Therefore, we
deduce that

Sd ≥ Sd−1 ≥ . . . ≥ S2 ≥ S1 = 0.
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However, by applying relation (30) for x = λ1x1, y = λ2x2, λ = λ1 and µ = λ2, we obtain

S2 = ‖x1‖2
A + ‖x2‖2

A −
‖λ1x1 + λ2x2‖2

A
|λ1|2 + |λ2|2

=
‖λ1x2 − λ2x1‖2

A
|λ1|2 + |λ2|2

.

Taking into account that we can rearrange the terms of the two sequences, we obtain
the inequality:

Sd =
d

∑
i=1
‖xi‖2

A −

∥∥∥ d
∑

i=1
λixi

∥∥∥2

A

d
∑

i=1
|λi|2

≥ S2 =
‖λ1x2 − λ2x1‖2

A
|λ1|2 + |λ2|2

.

Consequently, we deduce the inequality of the statement.

We are now able to establish the following result.

Theorem 2. Let T = (T1, . . . , Td) ∈ BA1/2(H)d be a d-tuple of operators. Then, the inequality

‖T‖A ≥ ‖T‖e,A + max
i,j∈{1,...,d}

sup
(λ1,...,λd)∈Bd

inf
‖x‖A=1

‖(λiTj − λjTi)x‖2
A (32)

holds for any d ≥ 2.

Proof. In Lemma 2, set xi = Tix for all i ∈ {1, . . . , d}, then

d

∑
i=1
‖Tix‖2

A ≥

∥∥∥ d
∑

i=1
λiTix

∥∥∥2

A

d
∑

i=1
|λi|2

+ max
i,j∈{1,...,d}

‖λiTjx− λjTix‖2
A

|λi|2 + |λj|2
. (33)

First, we take the supremum over all x ∈ H with ‖x‖A = 1 in relation (33), we deduce

‖T‖A ≥

∥∥∥ d
∑

i=1
λiTi

∥∥∥2

A

d
∑

i=1
|λi|2

+ max
i,j∈{1,...,d}

inf
‖x‖A=1

‖(λiTj − λjTi)x‖2
A

|λi|2 + |λj|2
. (34)

Therefore, it we take the supremum over all (λ1, . . . , λd) ∈ Bd in relation (34), then we find
the inequality of the statement.

Remark 5. By letting A = I in (32), we obtain

‖T‖ ≥ ‖T‖e + max
i,j∈{1,...,d}

sup
(λ1,...,λd)∈Bd

inf
‖x‖=1

‖(λiTj − λjTi)x‖2

for any d-tuple of operators T = (T1, . . . , Td) ∈ B(H)d and d ≥ 2.

Next, we will present a result that characterizes the Euclidean norm of an operator
tuple T = (T1, . . . , Td) ∈ B(H)d.

Proposition 2. Let T = (T1, . . . , Td) ∈ B(H)d be a d-tuple of operators. The following
inequality holds:

‖T‖e ≤ ‖T‖θ‖T∗‖1−θ , (35)
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where θ ∈ [0, 1]. Here T∗ = (T∗1 , . . . , T∗d ).

Proof. First, we will prove a radon-type inequality,

d

∑
k=1

aθ
kb1−θ

k ≤
(

d

∑
k=1

ak

)θ( d

∑
k=1

bk

)1−θ

, (36)

for every ak ≥ 0 and bk > 0 with k ∈ {1, . . . , d}. If we apply the Jensen inequality for the
function f (x) = xθ , which is concave for θ ∈ [0, 1], we deduce

∑d
k=1 bk

(
ak
bk

)θ

∑d
k=1 bk

≤

∑d
k=1 bk

(
ak
bk

)
∑d

k=1 bk


θ

,

which is equivalent to inequality (36). In [25], Dragomir applied Hölder’s inequality for
this. For θ ≥ 1, the function f (x) = xθ is convex and the inequality sign in (36) is flipped,
obtaining the classical Radon inequality

d

∑
k=1

aθ
k

bθ−1
k

≥

(
∑d

k=1 ak

)θ

(
∑d

k=1 bk

)θ−1 .

Thus, we have

d

∑
k=1
|〈Tkx, y〉|2

Kato
≤

d

∑
k=1
〈|Tk|2θ x, x〉〈|T∗k |

2(1−θ)y, y〉

McCarthy
≤

d

∑
k=1
〈|Tk|2x, x〉θ〈|T∗k |

2y, y〉1−θ

(36)
≤
(

d

∑
k=1
〈|Tk|2x, x〉

)θ( d

∑
k=1
〈|T∗k |

2y, y〉
)1−θ

=

( d

∑
k=1
‖Tkx‖2

)1/2
2θ( d

∑
k=1
‖T∗k y‖2

)1/2
2(1−θ)

.

Therefore, we deduce

(
d

∑
k=1
|〈Tkx, y〉|2

)1/2

≤

( d

∑
k=1
‖Tkx‖2

)1/2
θ( d

∑
k=1
‖T∗k y‖2

)1/2
1−θ

. (37)

Consequently, by taking the supremum over x, y ∈ Hwith ‖x‖ = ‖y‖ = 1 in inequality (37)
and taking into account the equality from Theorem 1 for A = I, we obtain the desired
result.

Remark 6. If we take θ = 1 in relation (35), then ‖T‖e ≤ ‖T‖ and for θ = 0 in the same relation,
we obtain ‖T‖e ≤ ‖T∗‖. Using the Kittaneh–Manasrah inequality [26] and inequality (35), we
found the following inequality:

‖T‖e ≤ θ‖T‖+ (1− θ)‖T∗‖ −min{θ, 1− θ}
(√
‖T‖ −

√
‖T∗‖

)2

for all T = (T1, . . . , Td) ∈ B(H)d a d-tuple of positive operators.
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4. A-Doubly-Commuting Tuples of A-Hyponormal Operators

In this section, we give several characterizations related to the operators from BA1/2(H)
and the operators from B(R(A1/2)). For an A-doubly-commuting d-tuple of hyponormal
operators, we proved the equalities ‖T‖e,A = ‖T‖A and rA(T) = ‖T‖A = ωA(T).

Let us introduce the following definition.

Definition 4. Let T = (T1, . . . , Td) ∈ BA(H)d. The d-tuple T is said to be A-doubly commuting if:

(i) it is commuting, i.e., [Ti, Tk] = 0 for all i, k ∈ {1, . . . , d},
(ii) T]A

i Tk = TkT]A
i for all 1 ≤ i 6= k ≤ d.

In this section, we will study the connection between ‖T‖A and ‖T‖e,A, when T is a
d-tuple of A-doubly-commuting tuples of A-hyponormal operators. For this purpose, we
need to recall some aspects: the semi-inner product 〈·, ·〉A induces an inner product on the
quotient spaceH/N (A) is given by

(x, y) = 〈Ax, y〉,

for any x = x +N (A), y = y +N (A) ∈ H/N (A). We remark that
(
H/N (A), (·, ·)

)
is

not complete unless R(A) is closed in H. However, L. de Branges and J. Rovnyak [27]
proved that the completion of H/N (A) is isometrically isomorphic to the Hilbert space
R(A1/2) :=

(
R(A1/2), 〈·, ·〉R(A1/2)

)
, where 〈·, ·〉R(A1/2) is given by

〈A1/2δ, A1/2ξ〉R(A1/2) := 〈PR(A)
δ, PR(A)

ξ〉, ∀ δ, ξ ∈ H.

It is obvious that ‖ · ‖R(A1/2) stands for the norm induced by the inner product 〈·, ·〉R(A1/2).
We mention here that, in view of Proposition 2.1. in [15], we haveR(A) is dense in R(A1/2).
Further, sinceR(A) ⊆ R(A1/2), then we observe that

〈Aδ, Aξ〉R(A1/2) = 〈δ, ξ〉A, ∀ δ, ξ ∈ H, (38)

which implies that
‖Aξ‖R(A1/2) = ‖ξ‖A, ∀ x ∈ H. (39)

In the next proposition, we give an interesting connection between operators in
BA1/2(H) and operators in B(R(A1/2)). Furthermore, we summarize in the same proposi-
tion some useful properties.

Proposition 3 ([14,15,19,28]). Let T ∈ B(H). Then there exists T̃ ∈ B(R(A1/2)) such that
T̃ZA = ZAT if and only if T ∈ BA1/2(H). In such cases T̃ is unique. Here ZA : H → R(A1/2)
is defined by ZAx = Ax. Furthermore, for every T, S ∈ BA1/2(H) and α, β ∈ C, we have the
following properties:

(1) ‖T‖A = ‖T̃‖B(R(A1/2)) and rA(T) = r(T̃).

(2) If T ∈ BA(H), then T̃]A =
(
T̃
)∗ and ˜(T]A)]A = T̃.

(3) If Tk ∈ BA1/2(H) and ηk ∈ C for all k ∈ {1, . . . , d}, then we have

(i)
d

∑
k=1

ηkTk ∈ B(R(A1/2)) and
d̃

∑
k=1

ηkTk =
d

∑
k=1

ηkT̃k;

(ii)
d

∏
k=1

ηkTk ∈ B(R(A1/2)) and
d̃

∏
k=1

ηkTk =
d

∏
k=1

ηkT̃k.

(4) If T = (T1, . . . , Td) ∈ BA(H)d such that TiTj = TjTi for all i, j ∈ {1, . . . , d}, then
rA(T) = r(T̃), where T̃ = (T̃1, . . . , T̃d).
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The following lemma is also useful in proving our results in this section.

Lemma 3. Let T, S ∈ BA1/2(H). Then, the following assertions hold:

(i) If T ≥A S, then T̃ ≥ S̃;
(ii) If T ∈ BA(H) is A-hyponormal, then T̃ is hyponormal on R(A1/2).

Proof. (1) Let x ∈ H. By applying (38) together with Proposition 3 (3), we have〈
(T − S)x, x

〉
A =

〈
A(T − S)x, Ax

〉
R(A1/2)

=
〈 ˜(T − S)Ax, Ax

〉
R(A1/2)

=
〈
(T̃ − S̃)Ax, Ax

〉
R(A1/2)

≥ 0,

where the last inequality follows by using the fact that T ≥A S. Now, by using the fact that
R(A) is dense in R(A1/2), we can check that〈

(T̃ − S̃)A1/2x, A1/2x
〉

R(A1/2)
≥ 0, ∀ x ∈ H.

Hence, T̃ − S̃ is a positive operator on the Hilbert space R(A1/2). Therefore, T̃ ≥ S̃
as required.

(2) Since T is A-hyponormal, then T]A T ≥A TT]A . Hence, by the first assertion of this

lemma, we deduce that T̃]A T ≥ T̃T]A . By Proposition 3, this implies that (T̃)∗T̃ ≥ T̃(T̃)∗.
Therefore, T̃ is an hyponormal operator on R(A1/2).

Now, we are able to prove the following result.

Theorem 3. Let T = (T1, . . . , Td) ∈ BA(H)d be an A-doubly-commuting d-tuple of A-hyponormal
operators. Then, the following equality

‖T‖e,A = ‖T‖A (40)

holds.

Proof. Since T = (T1, . . . , Td) ∈ BA(H)d ⊆ BA1/2(H)d, then by applying Proposition 3 we
deduce that for each k ∈ {1, . . . , d} there exists T̃k ∈ B(R(A1/2)) such that ZATk = T̃kZA.
Another application of Proposition 3 shows that

‖T‖e,A = sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . . + λdTd‖A

= sup
(λ1,...,λd)∈Bd

‖ ˜λ1T1 + . . . + λdTd‖B(R(A1/2))

= sup
(λ1,...,λd)∈Bd

‖λ1T̃1 + . . . + λdT̃d‖B(R(A1/2)),

and hence,
‖T‖e,A = ‖T̃‖e, (41)

where T̃ = (T̃1, . . . , T̃d). On the other hand, we observe that the A-joint seminorm of T can
be written as: ‖T‖A = sup{‖λλλ‖2 ; λλλ = (λ1, . . . , λd) ∈ ΩA(T)} where

ΩA(T) :=
{(
‖T1x‖A, . . . , ‖Tdx‖A

)
; x ∈ H, ‖x‖A = 1

}
.



Mathematics 2023, 11, 685 16 of 21

If A = I, we simply denote ΩI(·) by Ω(·). In particular, we observe that

Ω(T̃) =
{(
‖T̃1y‖R(A1/2), . . . , ‖T̃dy‖R(A1/2)

)
; y ∈ R(A1/2), ‖y‖R(A1/2) = 1

}
.

Now, by using the decompositionH = N (A)⊕R(A1/2) together with (39), we obtain

ΩA(T) =
{(
‖T1x‖A, . . . , ‖Tdx‖A

)
; x ∈ R(A1/2) ; ‖x‖A = 1

}
=
{(
‖AT1x‖R(A1/2), . . . , ‖ATdx‖R(A1/2)

)
; x ∈ R(A1/2), ‖Ax‖R(A1/2) = 1

}
,

from which

ΩA(T) =
{(
‖T̃1 Ax‖R(A1/2), . . . , ‖T̃d Ax‖R(A1/2)

)
; x ∈ R(A1/2), ‖Ax‖R(A1/2) = 1

}
. (42)

This immediately implies that
ΩA(T) ⊆ Ω(T̃) (43)

Furthermore, it can be seen that

Ω(T̃)

=
{(
‖T̃1 A1/2x‖R(A1/2), . . . , ‖T̃d A1/2x‖R(A1/2)

)
; x ∈ H, ‖A1/2x‖R(A1/2) = 1

}
=
{(
‖T̃1 A1/2x‖R(A1/2), . . . , ‖T̃d A1/2x‖R(A1/2)

)
; x ∈ R(A1/2), ‖A1/2x‖R(A1/2) = 1

}
.

Now, let λλλ = (λ1, . . . , λd) ∈ Ω(T̃). Then, there exists x ∈ R(A1/2) satisfying

‖A1/2x‖R(A1/2) = 1 and λi = ‖T̃i A1/2x‖R(A1/2), ∀ i ∈ {1, . . . , d}. (44)

Since the subspace R(A) is dense in R(A1/2), then there exists a sequence {ξn}, which
may be assumed to be in R(A1/2) (because of the fact that H = N (A)⊕R(A1/2)) such
that A1/2x = lim

n→+∞
Aξn. Thus, by taking (44) into consideration, it holds that

lim
n→+∞

‖Aξn‖R(A1/2) = 1 and λi = lim
n→+∞

‖T̃i Aξn‖R(A1/2), (45)

for all i ∈ {1, . . . , d}. Now, set θn := ξn
‖Aξn‖R(A1/2)

. Clearly, we have ‖Aθn‖R(A1/2) = 1. Further,

by using (45), it can be checked that

lim
n→+∞

‖T̃i Aθn‖R(A1/2) = λi, ∀ i ∈ {1, . . . , d}.

This implies that, through (42), λλλ ∈ ΩA(T) and, therefore,

Ω(T̃) ⊆ ΩA(T). (46)

From (43) and (46), we deduce that Ω(T̃) = ΩA(T). Therefore, we infer that

‖T‖A = ‖T̃‖. (47)

On the other hand, since T = (T1, . . . , Td) ∈ BA(H)d is an A-doubly-commuting
d-tuple of A-hyponormal operators, then

TiTj = TjTi, ∀ i, j ∈ {1, . . . , d} , T]A
i Tj = TjT

]A
i , ∀ 1 ≤ i 6= j ≤ d.

and T]A
k Tk ≥A TkT]A

k , ∀ k ∈ {1, . . . , d}.
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Therefore, by applying Proposition 3 together with Lemma 3 (ii), we have

T̃iT̃j = T̃jT̃i, ∀ i, j ∈ {1, . . . , d} and (T̃i)
∗T̃j = T̃j(T̃i)

∗, ∀ 1 ≤ i 6= j ≤ d.

and (T̃k)
∗T̃k ≥ T̃k(T̃k)

∗, ∀ k ∈ {1, . . . , d}.

Hence, T̃ = (T̃1, . . . , T̃d) is a d-tuple of doubly-commuting hyponormal operators on the
Hilbert space R(A1/2). Therefore, by (13), we have

‖T̃‖ = ‖T̃‖e.

This completes the proof by taking (41) and (47) into consideration.

Remark 7. Note that the converse of Theorem 3 need not be correct as shown in the next example.

Example 1. Let us consider the same matrices inM3 given in Remark 1, i.e., A =

1 0 0
0 2 0
0 0 1

,

T1 =

0 1 0
0 0 0
0 0 0

 and T2 =

0 0 1
0 0 0
0 0 0

. By Remark 1, we have ‖(T1, T2)‖A = 1. Further, we

see that

‖(T1, T2)‖e,A = sup
(λ1,λ2)∈B2

‖λ1T1 + λ2T2‖A = sup
(λ1,λ2)∈B2

‖λ1T1 + λ2T2‖A, (48)

where B2 means the closed unit ball of C2. So, by using (4) and making direct calculations, we
show that

‖(T1, T2)‖e,A = sup
|λ1|2+|λ1|2≤1

(
sup

|x|2+|y|2+|z|2=1

∣∣∣ λ1√
2

y + λ2z
∣∣∣).

By making use of the Cauchy–Schwarz inequality, it can be easily checked that ‖(T1, T2)‖e,A ≤ 1.
On the other hand, by using (48) and then (4), we see that

‖(T1, T2)‖e,A ≥ ‖T2‖A = 1,

from which ‖(T1, T2)‖e,A = 1. So,

‖(T1, T2)‖A = ‖(T1, T2)‖e,A = 1.

However, it can be verified that T]A
1 T2 6= T2T]A

1 and this (T1, T2) is not an A-doubly-commuting
2-tuple of A-hyponormal operators.

Remark 8. According to our proof in Theorem 3, we remark that the equality

‖(T1, . . . , Td)‖A = ‖(T̃1, . . . , T̃d)‖, (49)

holds for every d-tuple of operators (T1, . . . , Td) ∈ BA1/2(H)d. Here, T̃k ∈ B(R(A1/2)) and verify
ZATk = T̃kZA for all k ∈ {1, . . . , d}. Note that (49) provides an improvement of a result of the
second author in [19] since BA(H) is in general a proper subspace of BA1/2(H).

In order to derive an important consequence from Theorem 3, we first introduce the
following definition that is inspired by the work of G. Popescu [16].
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Definition 5. For T = (T1, . . . , Td) ∈ BA1/2(H)d, we define a new A-joint numerical radius and
a new A-joint spectral radius of T by setting

re,A(T) = sup
(λ1,...,λd)∈Bd

rA(λ1T1 + . . . + λdTd), (50)

and
ωe,A(T) = sup

(λ1,...,λd)∈Bd

ωA(λ1T1 + . . . + λdTd).

Remark 9. If A = I, then re,I(·) will simply be denoted by re(·). Further, it is worth mentioning
that the equality

r(T) = re(T) (51)

holds for every commuting operator tuple T = (T1, . . . , Td) ∈ B(H)d (see Theorem 2.1 in [29]
or [2]).

Now, as an application of Theorem 3, we state the following result.

Theorem 4. Let T = (T1, . . . , Td) ∈ BA(H)d be an A-doubly-commuting d-tuple of A-hyponormal
operators. Then

rA(T) = ‖T‖A = ωA(T).

Proof. Since T = (T1, . . . , Td) ∈ BA(H)d is a d-tuple of A-doubly-commuting A-hyponormal
operators, then in particular we have

T]A
k Tl = TlT

]A
k , ∀ 1 ≤ k 6= l ≤ d and T]A

m Tm ≥A TmT]A
m , (52)

for every m ∈ {1, . . . , d}. Now, for λλλ = (λ1, . . . , λd) ∈ Cd, we let Sλλλ := ∑d
m=1 λmTm. Clearly,

Sλλλ ∈ BA(H). By making simple calculations and using (52), we see that

S]A
λλλ Sλλλ =

d

∑
i=1

d

∑
j=1

λjλiT
]A
i Tj

=
d

∑
i=1
|λi|2T]A

i Ti +
d

∑
i=1

d

∑
j=1,
j 6=i

λjλiT
]A
i Tj

≥A

d

∑
i=1
|λi|2TiT

]A
i +

d

∑
i=1

d

∑
j=1,
j 6=i

λjλiTjT
]A
i = SλS]A

λ .

Hence, Sλλλ is an A-hyponormal operator. This implies that, by (7),

rA(Sλλλ) = ωA(Sλλλ) = ‖Sλλλ‖A,

for all λλλ = (λ1, . . . , λd) ∈ Cd. If we take the supremum over all λ ∈ Bd in the last equalities,
then we obtain

re,A(T) = ωe,A(T) = ‖T‖e,A. (53)

Taking into account relation (25), we have

ωA(T) = sup
x∈H,
‖x‖A=1

√√√√ d

∑
j=1
|〈Tjx, x〉A|2 = sup

x∈H,
‖x‖A=1

(
sup

(λ1,...,λd)∈Bd

∣∣∣∣∣ d

∑
j=1

λj〈Tjx, x〉A

∣∣∣∣∣
)

.
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This implies that

ωA(T) = sup
(λ1,...,λd)∈Bd

 sup
x∈H,
‖x‖A=1

∣∣∣∣∣〈
(

d

∑
j=1

λjTj

)
x, x〉A

∣∣∣∣∣
 = sup

(λ1,...,λd)∈Bd

ωA

(
d

∑
j=1

λjTj

)
.

This proves
ωA(T) = ωe,A(T). (54)

In view of Theorem 3, we have ‖T‖e,A = ‖T‖A. So, all that remains to be proven is
that rA(T) = re,A(T). Since we have T = (T1, . . . , Td) ∈ BA(H)d ⊆ BA1/2(H)d, then by
applying Proposition 3 we deduce that for each j ∈ {1, . . . , d} there exists T̃j ∈ B(R(A1/2))

such that ZATj = T̃jZA. Hence, another application of Proposition 3 shows that

re,A(T) = sup
(λ1,...,λd)∈Bd

rA
(
λ1T1 + . . . + λdTd

)
= sup

(λ1,...,λd)∈Bd

r
( ˜λ1T1 + . . . + λdTd

)
= sup

(λ1,...,λd)∈Bd

r
(
λ1T̃1 + . . . + λdT̃d

)
,

and so,
re,A(T) = re(T̃), where T̃ = (T̃1, . . . , T̃d). (55)

Since T is an A-doubly-commuting operator tuple, then it is commuting. So, similar to the
proof of Theorem 3, we find that T̃ is a commuting d-tuple of operators in the Hilbert space
R(A1/2). Therefore, by (51), we conclude that re(T̃) = r(T̃). Further, by Proposition 3 (4),
we have rA(T) = r(T̃). Hence, by taking (55) into account, we deduce that

rA(T) = re,A(T), (56)

as desired. Thus, combining (53) with (54), (56) and (40) yields the desired result and the
proof is complete.

5. Conclusions

In this paper, we introduced a definition that is a generalization of (12). For T =
(T1, . . . , Td) ∈ BA1/2(H)d, the A-Euclidean seminorm of T is given by

‖T‖e,A := sup
(λ1,...,λd)∈Bd

‖λ1T1 + . . . + λdTd‖A.

Consequently, our objective was to study a new joint norm of tuples of operators which
generalizes the joint norm given in (12) and define the class of doubly-commuting tuples
of hyponormal operators acting on an A-weighted Hilbert space, where A is a positive
operator that is not assumed to be invertible. The motivation for our investigation comes
from the recent paper [17].

This article was structured as follows: In Section 3, we investigated a new joint semi-
norm for d-tuples of A-bounded operators. An alternative and easy proof of a well-known
result due to G. Popescu [16] was established. In Section 4, we give several characteri-
zations related to the operators from BA1/2(H) and the operators from B(R(A1/2)). For
the A-doubly-commuting d-tuple of hyponormal operators, we proved the equalities
‖T‖e,A = ‖T‖A and rA(T) = ‖T‖A = ωA(T).

In this paper, the ideas and methodologies used may serve as a starting point for future
studies in this field. We will look for other connections of these seminorms for d-tuples of
A-bounded operators by studying other possible characterizations. In future work, we will
generalize the results given a countable collection of operators.
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