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ABSTRACT
Motivation: Most existing approaches for phylogenetic
inference use multiple alignment of sequences and assume
some sort of an evolutionary model. The multiple alignment
strategy does not work for all types of data, e.g. whole genome
phylogeny, and the evolutionary models may not always be cor-
rect. We propose a new sequence distance measure based
on the relative information between the sequences using
Lempel–Ziv complexity.The distance matrix thus obtained can
be used to construct phylogenetic trees.
Results: The proposed approach does not require sequence
alignment and is totally automatic.The algorithm has success-
fully constructed consistent phylogenies for real and simulated
data sets.
Availability: Available on request from the authors.
Contact: hotu@bidmc.harvard.edu

INTRODUCTION
Phylogenetic analysis using biological sequences can be
divided into two groups. The algorithms in the first group cal-
culate a matrix representing the distance between each pair of
sequences and then transform this matrix into a tree. In the
second type of approach, instead of building a tree, the tree that
can best explain the observed sequences under the evolution-
ary assumption is found by evaluating the fitness of different
topologies.

Some of the approaches in the first category utilize various
distance measures (Jukes and Cantor, 1969; Kimura, 1980;
Barry and Hartigan, 1987; Kishino and Hasegawa, 1989;
Lake, 1994) which use different models of nucleotide sub-
stitution or amino acid replacement. The second category
can further be divided into two groups based on the optim-
ality criterion used in tree evaluation: parsimony (Camin
and Sokal, 1965; Eck and Dayhoff, 1966; Cavalli-Sforza
and Edwards, 1967; Fitch, 1971) and maximum likelihood
methods (Felsenstein, 1973, 1981; Felsenstein and Churchill,
1996). For a detailed comparison of these methods see Yang
(1996) and Durbin et al. (1999).

∗To whom correspondence should be addressed.

All of these methods require a multiple alignment of the
sequences and assume some sort of an evolutionary model.
In addition to problems in multiple alignment (computational
complexity and the inherent ambiguity of the alignment cost
criteria) and evolutionary models (they are usually contro-
versial), these methods become insufficient for phylogenies
using complete genomes. Multiple alignment becomes mis-
leading due to gene rearrangements, inversion, transposition
and translocation at the substring level, unequal length of
sequences, etc. and statistical evolutionary models are yet
to be suggested for complete genomes. On the other hand,
whole genome-based phylogenetic analysis are appealing
because single gene sequences generally do not possess
enough information to construct an evolutionary history of
organisms. Factors such as different rates of evolution and
horizontal gene transfer make phylogenetic analysis of species
using single gene sequences difficult.

To overcome these problems, Sankoff et al. (1992) defined
an evolutionary edit distance as the number of inver-
sions, transpositions and deletions or insertions required to
change the gene order of one genome into another. Sim-
ilar distance measures using rearrangement, recombination,
breakpoint, comparative mapping and gene order have
been extensively studied for applications to genome-based
phylogeny (Hannenhalli and Pevzner, 1995; Kececioglu
and Sankoff, 1995; Kececioglu and Ravi, 1995, 1998;
Boore and Brown, 1998; Sankoff and Blanchette, 1998;
Sankoff, 1999a; http://www.agbiotechnet.com/proceedings/
jaylush.asp; Sankoff, 1999b; Hannenhalli and Pevzner, 1999;
Berman et al., 2001). However, these approaches are com-
putationally expensive and do not produce correct results on
events such as non-contiguous copies of a gene on the genome
or non-decisive gene order (as in mammalian mtDNA where
genes are in the same order).

Gene content was proposed by Snel et al. (1999) as
a distance measure in genome phylogeny where ‘the sim-
ilarity between two species is defined as the number of
genes they have in common divided by their total number
of genes’. The general idea is further extended to identify
evolutionary history and protein functionality (Snel et al.,
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2000, 2002; Huynen et al., 2000). A similar approach is taken
by Fitz-Gibbon and House (1999). Lin and Gerstein (2000)
constructed phylogenetic trees based on the occurrence of
particular molecular features: presence or absence of either
folds or orthologs throughout the whole genome. Takaia et al.
(1999) used whole proteome comparisons in deriving genome
phylogeny, taking into account the overall similarity and the
predicted gene product content of each organism. However,
such methods fail to work when the gene content of the organ-
isms are very similar (again as is the case with mammalian
mtDNA where the genomes contain exactly the same genes).

In the early 1990s, various data compression approaches
were applied to the analysis of genetic sequences
(Milosavljevic, 1993; Grumbach and Tahi, 1993, 1994; Rivals
et al., 1994; Farach et al., 1995). Data compression algorithms
function by identifying the regularities in the given sequence,
and in case of DNA sequences, these regularities would have
biological implications.

Grumbach and Tahi (1993, 1994) coded exact repeats and
palindromes in DNA along the lines of Lempel–Ziv (LZ)
compression scheme (Ziv and Lempel, 1977), and used an
arithmetic coder of order 2 when such structures are lacking.
Rivals et al. (1994, 1996) compressed the repeats which intro-
duced a significant compression gain and introduced a second
compressor which made use of approximate tandem repeats.
Rivals et al. (1997) also introduced a compression algorithm
which locates and utilizes approximate tandem repeats of short
motifs. Some of the later approaches include (Loewenstern
and Yianilos, 1999; Lanctot et al., 2000; Apostolico and
Lonardi, 2000). Grumbach and Tahi (1994) noted that the
compression rate obtained by compressing sequence S using
sequence Q would hint at some sort of a distance between
the two sequences. Although the proposed distance was not
mathematically valid and had some other problems, it applied
data compression to phylogeny construction.

Varre et al. (1999) defined a transformation distance where
sequence S is built from sequence Q by segment-copy,
-reverse-copy and -insertion. The total distance is the Min-
imum Description Length among all possible operations that
convert S into Q. This distance, as the one provided by
Grumbach and Tahi (1994), is asymmetric. Chen et al. (2000)
described a compression algorithm (GenCompress) based on
approximate repeats in DNA sequences. The program is then
used to approximate the distance proposed therein and the
distance proposed by Li et al. (2001). For a detailed analysis
of information distance in statistical and algorithmic settings,
see Ziv and Merhav (1993) and Bennett et al. (1998).

The distance proposed by Chen et al. (2000) and Li et al.
(2001) is 1 − [K(S) − K(S|Q)]/K(SQ), where K(S) is
the Kolmogorov complexity of S, K(S|Q) is the conditional
Kolmogorov complexity of S given Q and K(SQ) is the
Kolmogorov complexity of the sequence S concatenated
with Q. K(S|Q) is the shortest program that outputs S

when the input is Q on a universal computer and K(S) is

K(S|ε), where ε is the empty string. Kolmogorov complexity
is an algorithmic measure of information (Li and Vitanyi,
1997) but it is a theoretical limit and generally can only be
approximated. In calculating the aforementioned distance,
K(S|Q) is approximated by the length of the compressed
result of S (using the program GenCompress) given Q.

Benedetto et al. (2002) used a similar idea where relative
complexity between sequences S and Q is approximated
as it is done by Chen et al. (2000), this time using gzip.
However, both gzip and GenCompress are complicated pro-
grams, composed of multiple complex steps (algorithms to
reduce search space, find exact/approximate matches, per-
form entropy coding, etc.), which would affect the final result
on the complexity estimates in an ambiguous way. Therefore
the properties of the distance measures based on Kolmogorov
complexity (implicitly or explicitly) would not necessarily
hold for these approximations depending on the performance
of the compression algorithms on certain sequences.

Motivated by the work of Chen et al. (2000); Li et al.
(2001) and Benedetto et al. (2002), in this paper, we propose
a distance measure between finite sequences based on the
LZ complexity (Lempel and Ziv, 1976), which inspired the
well-known universal compression schemes (Ziv and Lempel,
1977, 1978) and their numerous variations. LZ complexity of
a finite sequence S is related to the number of steps required
by a production process that builds S. In the next section, we
will give some basic definitions and properties regarding LZ
complexity and introduce the proposed distance measure. The
following section provides results on phylogenetic tree con-
struction and the last section concludes the paper with some
remarks. Finally, we provide the mathematical properties of
the proposed distance in the Appendix.

METHODS AND ALGORITHMS
LZ complexity
Let S, Q and R be sequences defined over an alphabet A, l(S)

be the length of S, S(i) denote the ith element of S and S(i, j)

define the substring of S composed of the elements of S

between positions i and j (inclusive). An extension R = SQ

of S is reproducible from S (denoted S → R) if there exists
an integer p ≤ l(S) such that Q(k) = R(p + k − 1) for k =
1, . . . , l(Q). For example AACGT → AACGT CGT CG

with p = 3 and AACGT → AACGT AC with p = 2.
Another way of looking at this is to say that R can be

obtained from S by copying elements from the pth location in
S to the end of S. As each copy extends the length of the new
sequence beyond l(S), the number of elements copied can be
greater than l(S) − p + 1. Thus, this is a simple copying pro-
cedure of S starting from position p, which can carry over to
the added part, Q.

A sequence S is producible from its prefix S(1, j) (denoted
S(1, j) ⇒ S), if S(1, j) → S(1, l(S) − 1). For example
AACGT ⇒ AACGT AC and AACGT ⇒ AACGT ACC
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both with pointers p = 2. Note that production allows for an
extra ‘different’ symbol at the end of the copying process
which is not permitted in reproduction. Therefore, an exten-
sion which is reproducible is always producible but the reverse
may not always be true.

Any sequence S can be built using a production pro-
cess where at its ith step S(1, hi−1) ⇒ S(1, hi) [note that
ε = S(1, 0) ⇒ S(1, 1)]. An m-step production process of S

results in a parsing of S in which H(S) = S(1, h1) · S(h1 +
1, h2), . . . , S(hm−1 + 1, hm) is called the history of S and
Hi(S) = S(hi−1 +1, hi) is called the ith component of H(S).
For example for S = AACGT ACC, A · A · C · G · T · A · C ·
C, A · AC · G · T · A · C · C and A · AC · G · T · ACC are
three different (production) histories of S.

If S(1, hi) is not reproducible from S(1, hi−1) [denoted
S(1, hi−1) � S(1, hi)], then Hi(S) is called exhaustive. In
other words, for Hi(S) to be exhaustive the ith step in the
production process must be a production only, meaning that
the copying process cannot be continued and the component
should be halted with a single letter innovation. A history is
called exhaustive if each of its components (except maybe
the last one) is exhaustive. For example the third history
given in the preceding paragraph is an exhaustive history of
S = AACGT ACC. Moreover, every sequenceS has a unique
exhaustive history (Lempel and Ziv, 1976).

Let cH(S) be the number of components in a history of S.
Then the LZ complexity of S is c(S) = min{cH(S)} (Lempel
and Ziv, 1976) over all histories of S. It can be shown that
c(S) = cE(S) where cE(S) is the number of components in the
exhaustive history of S (Lempel and Ziv, 1976). This is quite
intuitive as an exhaustive component is the longest possible
one at a given step of a production process.

Proposed distance
Given two sequences Q and S, consider the sequence SQ, and
its exhaustive history. By definition, the number of compon-
ents needed to build Q when appended to S is c(SQ) − c(S).
This number will be less than or equal to c(Q) because at
any given step of the production process of Q (in building
the sequence SQ) we will be using a larger search space
due to the existence of S. Therefore the copying process
can only be longer which in turn would reduce the number
of exhaustive components. This can also be seen from the
subadditivity of the LZ complexity (Lempel and Ziv, 1976):
c(SQ) ≤ c(S) + c(Q). How much c(SQ) − c(S) is less than
c(Q) will depend on the degree of similarity between S and Q.

For example, letS = AACGT ACCAT T G, R = CT AGG-
GACT T AT and Q = ACGGT CACCAA. The exhaustive
histories of these sequences would be:

HE(S) = A · AC · G · T · ACC · AT · T G

HE(R) = C · T · A · G · GGA · CT T · AT

HE(Q) = A · C · G · GT · CA · CC · AA

yielding c(S) = c(R) = c(Q) = 7. The exhaustive histories
of the sequences SQ, and RQ would be:

A · AC · G · T · ACC · AT · T G · ACGG · T C · ACCAA

C · T · A · G · GGA · CT T · AT · ACG · GT · CA · CC · AA

respectively. Note that it took three steps to build Q in the
production process of SQ. On the other hand, we used five
steps to generate Q in the production process of RQ. The
reason it took more steps in the second case is because Q is
‘closer’ to S than R. In this example we can observe this by
looking at the patterns ACG and ACC which Q and S share.
We can formulate the number of steps it takes to generate
a sequence Q from a sequence S by c(SQ) − c(S). Thus,
if S is closer to Q than R then we would expect c(SQ) −
c(S) to be smaller than c(RQ) − c(R) as is the case in the
above example. Based on this idea of closeness we define four
distance measures.

Distance measure 1 Given two sequences S and Q, define
the function d(S, Q) as

d(S, Q) = max{c(SQ) − c(S), c(QS) − c(Q)}
In order to eliminate the effect of the length on the distance
measure, a more satisfying function would be the normalized
form of d(·, ·):
Distance measure 2 Given two sequences S and Q, define
the function d∗(S, Q) as

d∗(S, Q) = max{c(SQ) − c(S), c(QS) − c(Q)}
max{c(S), c(Q)}

Another distance measure that would naturally follow from
the idea of building sequence Q using S is the ‘sum distance’.
We use this term in the sense that it accounts for the total
number of steps it takes to build Q from S and vice versa.

Distance Measure 3 Given two sequences S and Q, define
the function d1(S, Q) as

d1(S, Q) = c(SQ) − c(S) + c(QS) − c(Q)

Similarly, the normalized version of d1(·, ·) can be defined as
follows.

Distance Measure 4 Given two sequences S and Q, define
the function d∗

1 (S, Q) as∗

d∗
1 (S, Q) = c(SQ) − c(S) + c(QS) − c(Q)

c(SQ)

∗
An alternative definition would be

d∗∗
1 (S, Q) = c(SQ) − c(S) + c(QS) − c(Q)

1
2 [c(SQ) + c(QS)] .
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A distance metric, D(·, ·), should satisfy the following
conditions:

1. D(S, Q) ≥ 0 where the equality is satisfied iff S = Q

(identity).

2. D(S, Q) = D(Q, S) (symmetry).

3. D(S, Q) ≤ D(S, T ) + D(T , Q) (triangle inequality).

In order for a metric to be a valid measure of evolutionary
change it should also satisfy the following condition:

4. D(Q, R) + D(S, T ) ≤ max{D(Q, S) + D(R, T ),
D(Q, T ) + D(S, R)} (additivity).

In the Appendix we prove that all four measures defined above
satisfy the first three conditions and are, therefore, valid dis-
tance metrics. We test the fourth condition by comparing a
distance matrix created by the proposed metrics with one
reconstructed from the branch lengths of the resulting tree.

In the next section we show that the proposed distance meas-
ures, which are based on the relative complexity between
sequences imply the evolutionary distance between organ-
isms. The distance between sequences S and Q was obtained
using the exhaustive histories of the sequences S, Q, SQ and
QS. These exhaustive histories were obtained by parsing the
sequences using the production rules described earlier and
in (Lempel and Ziv, 1976). The number of components in
the exhaustive histories, c(S), c(Q), c(SQ) and c(QS) were
then used as described above to compute the various distance
measures.

RESULTS AND DISCUSSION
Phylogenetic analysis based on DNA sequences has been
intimately connected with multiple alignment. Hence the
validity of a new approach is generally examined based on how
well the implicit assumptions used for scoring the multiple
alignment agree with particular evolutionary theories. As the
proposed approach does not depend on multiple alignments
we test the validity of the approach in two ways: we use sim-
ulated data to show that the proposed distance measures can
reasonably be represented by a tree. We also show the superi-
ority of the proposed method on existing techniques using
this simulated data. Secondly, we look at how well the results
generated by the proposed method agree with existing phylo-
genies. The trees are generated using the neighbor joining
(NJ) program (Saitou and Nei, 1987) in the PHYLIP pack-
age (Felsenstein, 1989). The multiple alignments required by
parsimony and maximum likelihood methods are calculated
using CLUSTAL W (Thompson et al., 1994).

For the simulated data, we started with a 1000 bp sequence
and evolved it into two sequences A′′ and B ′′ using point
mutations (insertions, deletions, substitutions) and segment-
based modifications (inversions, transpositions, transloca-
tions, etc.). We then similarly evolved A′′ into A1 and A2
and B ′′ into B1 and B2. Point mutations were introduced

(a) (b) (c)

Fig. 1. Phylogenetic trees obtained from the simulated sequences
A′, B ′, A1, A2, B1 and B2 using (a) Maximum Likelihood, (b)
parsimony and (c) Proposed methods.

into about 10% of the sequences. Another 10% of the final
sequences were a result of sequence rearrangements. These
included inversions and translocations. In order to provide
length difference and to preserve resemblance to the ancestor
sequences, we evolved A′′ into A′ and B ′′ into B ′ using point
mutations only. We used the sequences A′, B ′, A1, A2, B1
and B2 to build phylogenetic trees both using existing meth-
ods (maximum likelihood and parsimony) and the proposed
method. The results are shown in Figure 1.

The trees obtained by all five of the proposed distance meas-
ures resulted in identical topologies. In Figure 1, we show the
consensus tree obtained by those five trees along with the
trees obtained by maximum likelihood and parsimony meth-
ods. The results show that the true evolutionary topology is
achieved by the proposed method only. Both the maximum
likelihood and the parsimony trees fail to reflect the relation
between A′ and A1, A2. In addition, the maximum likelihood
tree fails to group A1 and A2 together.

We also compared the proposed distance matrix used to
build the NJ tree to that reconstructed from the branch lengths
of the tree. The purpose was to test additivity of the proposed
distance measures. Let M be the distance matrix obtained by
the proposed distance measure, T be the tree built using M ,
and R be the distance matrix reconstructed from the branch
lengths of T . In Table 1 we present M , R and |M−R| using d∗
for the simulated data set. We omit the corresponding results
for the remaining four measures as they are almost identical to
the ones presented here. The results in Table 1 show that M and
R are very similar to each other, validating the properness of
representing the proposed measures with a tree. The maximum
percent difference between the corresponding elements of the
matrices M and R is 11, with an average percent difference
of 2.5. In the remaining part of this section we show that the
proposed method agrees with existing phylogenies based on
both whole genome and individual gene sequences.

The phylogeny of eutherian orders has been unresolved
due to conflicting results obtained from comparison of
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Table 1. Fitness of the NJ tree to the distance matrix

Seq. A2 B1 B2 A′ B′

A1 0.7348 0.8093 0.8104 0.7535 0.8056
A2 0.8000 0.8046 0.7767 0.8139
B1 0.7488 0.8000 0.7674
B2 0.8000 0.7952
A′ 0.7745

A1 0.7348 0.8015 0.8161 0.7630 0.7180
A2 0.8056 0.8203 0.7672 0.7221
B1 0.7488 0.7878 0.7740
B2 0.8024 0.7886
A′ 0.7042

A1 0.0000 0.0077 0.0057 0.0095 0.0876
A2 0.0056 0.0156 0.0095 0.0918
B1 0.0000 0.0121 0.0065
B2 0.0024 0.0065
A′ 0.0702

Distance matrix used to construct the NJ tree, T ; distance matrix reconstructed from the
branch lengths of T and the difference of the two matrices are shown respectively.

whole mtDNA sequences and individual proteins encoded
by mtDNA (see Cao et al., 1998 and references therein).
Studies using the whole mtDNA sequences suggest the out-
group status of rodents relative to ferungulates and primates
[Rodents (Ferungulates, Primates)] while phylogenies using
individual proteins confirm the grouping of rodents with
primates. There have even been conflicting topologies res-
ulting from the use of different proteins in constructing the
evolutionary history.

We chose our first group of sequences from this controver-
sial data set using the following mtDNA sequences from Gen-
Bank: human (Homo sapiens, V00662), common chimpanzee
(Pan troglodytes, D38116), pigmy chimpanzee (Pan panis-
cus, D38113), gorilla (Gorilla gorilla, D38114), orangutan
(Pongo pygmaeus, D38115), gibbon (Hylobates lar, X99256),
baboon (Papio hamadryas, Y18001), horse (Equus caballus,
X79547), white rhinoceros (Ceratotherium simum, Y07726),
harbor seal (Phoca vitulina, X63726), gray seal (Halicho-
erus grypus, X72004), cat (Felis catus, U20753), fin whale
(Balenoptera physalus, X61145), blue whale (Balenoptera
musculus, X72204), cow (Bos taurus, V00654), rat (Rattus
norvegicus, X14848), mouse (Mus musculus, V00711), opos-
sum (Didelphis virginiana, Z29573), wallaroo (Macropus
robustus, Y10524) and platypus (Ornithorhyncus anatinus,
X83427). Note that we have kept rodent species to murids only
and marsupials and monotremes are being used as outgroup.

We applied the proposed distance measures to the com-
plete mitochondrial genomes listed above. All five metrics
(d, d∗, d1, d∗

1 and d∗∗
1 ) resulted in identical trees. In Figure 2,

we show the consensus of these five trees. The tree is in
complete agreement with Cao et al. (1998) confirming the out-
group status of rodents relative to ferungulates and primates.

opossum

wallaroo

platypus

f whale

b whale

cow

horse

w rhino

h seal

g seal

cat

human

com chim

pig chim

gorilla

orangutan

gibbon

baboon

rat

mouse

Fig. 2. Topology for eutherians using whole mtDNA where
wallaroo, opossum and platypus are used as outgroup.

The second data set is an extension of the first one obtained
by the addition of non-murid rodents (squirrel, dormouse
and guinea pig) and more ferungulate sequences. The Gen-
Bank accession codes for these additional mtDNA sequences
are as follows: squirrel (Sciurus vulgaris, AJ238588), fat
dormouse (Glis glis, AJ001562), guinea pig (Cavia porcellus,
AJ222767), donkey (Equus asinus, X97337), Indian rhino-
ceros (Rhinoceros unicornis, X97336), dog (Canis familiaris,
U96639), sheep (Ovis aries, AF010406), pig (Sus scrofa,
AJ002189), and hippopotamus (Hippopotamus amphibius,
AJ010957). This more controversial data set deals with the
relative positions of two rodent clades, murids and non-murids
(whether there is rodent monophyly, paraphyly or polyphyly)
and the phylogenetic position of guinea pigs (Cao et al., 1997;
Reyes et al., 2000).

The resulting trees from the five distance metrics were in
agreement for the most part. All of the metrics confirmed
rodent paraphyly (except for d which suggested rodent mono-
phyly) and guinea pig was not grouped with either rodent
clade in each case (except for d∗ which suggested grouping
of guinea pig with nonmurids). We present the consensus
tree of the five trees obtained using the proposed metrics
in Figure 3. The consensus phylogeny is in agreement with
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wallaroo
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baboon

gibbon
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human

com chim
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dog

cat
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h seal

pig
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hipptms

f whale

b whale
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Squirrel

rabbit

g pig

rat

mouse

Fig. 3. The consensus tree for the proposed distance metrics using
complete mtDNA.

Reyes et al. (2000) except for the position of guinea pig which
remains an open question (Cao et al., 1997). Figure 3 groups
squirrel with dormouse, which has shown to be based on
strong molecular, palaeontological and morphological evid-
ence [see Reyes et al. (2000) and references therein]. On
the other hand, nonmurid rodents are placed at the base
of primates and ferungulates with murids being an early
branch of the tree (suggesting rodent paraphyly), which is
presented as the most likely hypotheses by Reyes et al.
(2000).

The results presented in Figures 2 and 3 are in accord with
(Li et al., 2001), which also applied an information theoretic
distance measure to these data sets. However, mammalian
phylogeny still remains to be a controversial topic. Two recent
studies suggest a monophyletic clade of rodents and primates
(Madsen et al., 2001; Murphy et al., 2001). As noted earlier,
conflicting results have been reported regarding the phylogeny

of eutherian orders based on whole genome sequences or indi-
vidual genes. The sequences used in Madsen et al. (2001) and
Murphy et al. (2001) use individual genes to build the trees.
We also note that the data sets used in these two studies differ
from each other and the data sets used in this paper, which
could result in varying topologies.

Note that in both of these analyses we have used the whole
mitochondrial genomes of the species. The results are not
based on the phylogenies inferred using coding regions or
individual proteins. Instead we use the complete sequences
as opposed to partial genome data. The phylogenies inferred
using the proposed distances confirm that our method can suc-
cessfully construct evolutionary histories using whole genome
sequences.

We also successfully applied the proposed method to
constructing phylogenies using individual genes (data not
shown). In most phylogenetic analysis using single genes,
the sequences are preprocessed before inferring phylogenies.
A multiple alignment is constructed and the ambiguous parts
are disregarded in the tree construction phase. The pro-
posed method does not go through any such trimming of the
sequences and processes them as given. Even with such an
input of sequences (rendering a more noisy data) the proposed
method is able to construct successful phylogenies both using
whole genomes and single genes.

CONCLUSIONS
In this paper, we propose a new sequence distance measure
and its variations. The proposed metric uses LZ complexity
which relates the number of steps in a production process of
a sequence to its complexity. We extend this idea to generate
a sequence from a different sequence linking the resulting
number of steps to the ‘closeness’ between two sequences.

Unlike most existing phylogeny construction methods, the
proposed method does not require multiple alignment and is
fully automatic. Therefore, we are able to perform comparis-
ons at the whole genome level where multiple alignment based
strategies fail. Unequal sequence length or the relatively dif-
ferent positioning of similar regions between sequences (such
as different gene order in genomes) are not problematic as
the proposed method handles both cases naturally. Moreover,
we use no approximations and assumptions in calculating the
distance between sequences. The proposed metrics utilize the
entire information contained in the sequences and require no
human intervention.

The results show that the proposed method can successfully
construct phylogenies using either whole genomes or single
genes. This is quite promising as the genome level phylogeny
construction becomes important with the arrival of such data.
Finally, it is worth noting that our distance measures do not use
any evolutionary model and seem to be more fitting for whole
genome phylogenies where current evolutionary models do
not apply directly.
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APPENDIX
Lemma 1. c(SQ)−c(S) ≤ c(ST )−c(S)+c(T Q)−c(T )

Proof. First we note that

c(ST Q) − c(ST ) ≤ c(T Q) − c(T ). (1)

The LHS of (1) is the number of components Q would have
when parsed using ST and the RHS is the number of compon-
ents Q would have when parsed using T . Having ST instead
of T cannot increase the number of components in parsing of
Q. Since c(SQ)− c(S) ≤ c(ST Q)− c(S), using (1) we have
c(SQ) − c(S) ≤ c(ST ) − c(S) + c(T Q) − c(T ).

Corollary 1. c(Q) ≤ c(T Q)

Proof. Let S = ε, the empty string, in Lemma 1.

Let S = A(n) denote the sequence obtained by n − 1 con-
catenations of the sequence A to itself. For the remainder of
this appendix, if S = A(n), we consider S to be equal to A.

Theorem 1. The function d(S, Q) is a distance metric.

Proof. By definition d(·, ·) satisfies the symmetry condi-
tion. The identity condition is satisfied up to an additive error
term of O(1) depending on whether the last component of the
sequence is exhaustive or not. In order to prove the triangle
inequality, we need to show:

max{c(SQ) − c(S), c(QS) − c(Q)}
≤ max{c(ST ) − c(S), c(T S) − c(T )}

+ max{c(T Q) − c(T ), c(QT ) − c(Q)}
From Lemma 1, we have the following two symmetric
inequalities:

c(SQ) − c(S) ≤ c(ST ) − c(S) + c(T Q) − c(T )

c(QS) − c(Q) ≤ c(QT ) − c(Q) + c(T S) − c(T )

which proves the triangle inequality. Hence, the function
d(S, Q) is a distance metric.

Theorem 2. The function d∗(S, Q) is a distance metric.

Proof. Again, by definition d∗(·, ·) satisfies the symmetry
condition. The identity condition is satisfied up to an addit-
ive error term of O(1/c(S)) depending on whether the last
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component of the sequence S is exhaustive or not. We now
need to show that d∗(·, ·) satisfies the triangle inequality:

max{c(SQ) − c(S), c(QS) − c(Q)}
max{c(S), c(Q)}

≤ max{c(ST ) − c(S), c(T S) − c(T )}
max{c(S), c(T )}

+ max{c(T Q) − c(T ), c(QT ) − c(Q)}
max{c(T ), c(Q)}

Without loss of generality, assume c(Q) ≤ c(S).

Case 1: Assume c(T ) ≤ c(S). In this case we have:

max{c(SQ) − c(S), c(QS) − c(Q)}
max{c(S), c(Q)}

= max{c(SQ) − c(S), c(QS) − c(Q)}
c(S)

≤ max{c(ST ) − c(S), c(TS) − c(T )}
c(S)

+ max{c(T Q) − c(T ), c(QT ) − c(Q)}
c(S)

≤ max{c(ST ) − c(S), c(TS) − c(T )}
max{c(S), c(T )}

+ max{c(TQ) − c(T ), c(QT ) − c(Q)}
max{c(T ), c(Q)}

where the first inequality follows from Theorem 1 and the
second inequality follows from the assumptions.

Case 2: Assume c(S) ≤ c(T ). Since c(SQ) = c(QS) up
to a logarithmic factor (Lempel and Ziv, 1976), due to the
assumptions we have:

max{c(SQ) − c(S), c(QS) − c(Q)} = c(QS) − c(Q)

max{c(ST ) − c(S), c(T S) − c(T )} = c(ST ) − c(S)

max{c(TQ) − c(T ), c(QT ) − c(Q)} = c(QT ) − c(Q)

Therefore, we need to show:

c(QS) − c(Q)

c(S)
≤ c(QT ) − c(Q) + c(ST ) − c(S)

c(T )

Since the LHS of the above inequality is ≤1, we can start
by adding the non-negative quantity c(T ) − c(S) to both the
numerator and denominator of the LHS:

c(QS) − c(Q)

c(S)
≤ c(QS) − c(Q) + c(T ) − c(S)

c(T )

log
≤

c(QT ) − c(Q) + c(ST ) − c(S)

c(T )

where the last inequality follows from Lemma 1 using it in
the form c(T ) ≤ c(QT ) + c(TS) − c(QS) and log

≤
means the

inequality holds up to a logarithmic factor.

Theorem 3. The function d1(S, Q) is a distance metric.

Proof. By definition d1(·, ·) satisfies the symmetry condi-
tion. The identity condition is satisfied up to an additive error
term of O(2) depending on whether the last component of the
sequence is exhaustive or not. The triangle inequality follows
directly from Lemma 1.

Theorem 4. The function d∗
1 (S, Q) is a distance met-

ric (The corresponding theorem and proof for d∗∗
1 is almost

identical and therefore will not be included here.).

Proof. Again, by definition d∗
1 (·, ·) satisfies the symmetry

condition (up to a logarithmic factor). The identity condition is
satisfied up to an additive error term of O(2/c(S)) depending
on whether the last component of the sequence S is exhaustive
or not. Next, we prove the triangle inequality for d∗

1 (·, ·). It
suffices to show the two inequalities

c(SQ) − c(S)

c(SQ)
≤ c(ST ) − c(S)

c(ST )
+ c(T Q) − c(T )

c(T Q)

c(QS) − c(Q)

c(SQ)
≤ c(T S) − c(T )

c(ST )
+ c(QT ) − c(Q)

c(T Q)

Since these two inequalities are symmetric we will prove the
first one only. Let δ = c(T Q) − c(T ) + c(ST ) − c(S) −
[c(SQ) − c(S)]. From Lemma 1, 0 ≤ δ. As [c(SQ) −
c(S)]/[c(SQ)] ≤ 1 it follows that

c(SQ) − c(S)

c(SQ)
≤ c(SQ) − c(S) + δ

c(SQ) + δ

= c(ST ) − c(S) + c(TQ) − c(T )

c(ST ) + c(TQ) − c(T )

≤ c(ST ) − c(S)

c(ST )
+ c(TQ) − c(T )

c(TQ)

since C(ST ) + C(TQ) − C(T ) ≥ C(ST ) and C(ST ) +
C(TQ) − C(T ) ≥ C(TQ) (from Corollary 1). As the second
inequality is proved symmetrically we have

c(SQ) − c(S) + c(QS) − c(Q)

c(SQ)

≤ c(ST ) − c(S) + c(T S) − c(T )

c(ST )

+ c(TQ) − c(T ) + c(QT ) − c(Q)

c(TQ)

which is what we needed to show.
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