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A new set of coherent states for the isotropic harmonic oscillator: Coherent 

angular momentum states 

A. J. Bracken and H. I. Leemon 
Department of Mathematics, University of Queensland, St. Lucia, Queensland 4067, Australia 

(Received 27 November 1979; accepted for publication 3 March 1980) 

The Hamiltonian for the oscillator has earlier been written in the form 

H = m"(2,,,tv + At'A +~), 

where vt and v are raising and lowering operators for vtv, which has eigenvalues k (the "radial" 

quantum number), and At and A are raising and lowering 3-vector operators for At. A, which has 

eigenvalues I (the total angular momentum quantum number). A new set of coherent states for the 

oscillator is now defined by diagonalizing v and A. These states bear a similar relation to the 

commuting operatorsH, L2, andL, (where L is the angular momentum of the system) as the usual 

coherent states do to the commuting number operatorsN1, N 2, and Ny It is proposed to call them 

coherent angular momentum states. They are shown to be minimum-uncertainty states for the 

variables v, v
t

, A, and At, and to provide a new quasiclassical description of the oscillator. This 

description coincides with that provided by the usual coherent states only in the special case that 

the corresponding classical motion is circular, rather than elliptical; and, in general, the 

uncertainty in the angular momentum of the system is smaller in the new description. The 

probabilities of obtaining particular values for k and I in one of the new states follow independent 

Poisson distributions. The new states are overcomplete, and lead to a new representation of the 

Hilbert space for the oscillator, in terms of analytic functions on CXlK.3• where lK.3 is the three­

dimensional complex cone. This space is related to one introduced recently by Bargmann and 

Todorov, and carries a very simple realization of all the representations of the rotation group. 

PACS numbers: 03.6S.Fd, 03.6S.Ca, 03.6S.Ge 

1. INTRODUCTION 

The states of the isotropic harmonic oscillator with 

Hamiltonian 

H = L + ! M(,,2 Xl 
2M 2 

are frequently described in terms of the basis vectors 

(1) 

In l,n 2,n,) which are eigenstates of H and also of the number 

operators 

Ni = a/a" i = 1,2,3 (no sum), 

where 

ai = (2Mmu) II2(ipi + M{ux,). 

(2) 

(3) 

The occupation numbers n i independently run over the non­

negative integers and a i is a shift operator for N i • lowering 

the corresponding eigenvalue nj by 1. 

An alternative approach 1-5 introduces the "coherent 

states" Iz), which are eigenvectors of the lowering operators 

ajIZ)=Zilz), Zi EC . (4) 

These vectors have many attractive properties. In particular, 

there is a well-defined sense in which one can say that when 

the system is progressing through a succession of coherent 

states its behavior is as close as possible to the behavior of its 

classical counterpart. The coherent states are therefore justi­

fiably called "quasiclassical" states of the oscillator. 

For any three dimensional system, the total angular 

momentum quantum number, denoted j in general, can take 

the values 0, 1, 2, ... or the values !, ~,. ... From this we are led 

to observe that it may be possible and useful to define, by 

diagonalizing suitable lowering operators forj, coherent an­

gular momentum states for a variety of systems, including 

the isotropic oscillator. The latter is the subject of the present 

work. Several authorsb-12 have defined and discussed coher­

ent angular momentum states, in particular for systems 

(such as the rigid rotor) for which the angular momentum 

operators J2 and J3 provide a complete set of commuting 

operators. (These states, and those we define in this paper, 

are not to be confused with the so-called "coherent spin 

states" which have been widely discussed since their intro­

duction by Radcliffe, 13 and which are superpositions of ei­

genvectors of J3 for afixed value of J2.) Atkins and Dobson 
7 

defined states by exploiting the Schwinger l4 boson calculus 

for SU(2), and diagonalizing the associated pair of boson 

annihilation operators. A difficulty here is that the states 

obtained are superpositions of states of integral and half­

integral j, because the boson operators lower j by ~ rather 

than I. In order to obtain states which might apply to some 

physical system with only rotational degrees of freedom, the 

states with half-integralj had to be rather arbitrarily deleted 

from the superpositions. Bhaumik, Nag, and Dutta-Roy8 

avoided this difficulty by constructing, within the Schwinger 

calculus, two operators quadratic in the boson operators, 

which lower the value ofjby 1. These operators were diagon­

alized to define coherent angular momentum states, which 

could then be identified as possible coherent angular mo­

mentum states for a system, again having only rotational 

degrees of freedom. The operators of Bhaumik et al. have 

algebraic properties similar to two components of the 3-vec­

tor operator A we introduce below. However, the operator A 
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acts within an entirely different space, namely that within 

which the oscillator boson operators a; anda; t act. The oper­

ators a" which form a 3-vector, should not be confused with 

the boson annihilation operators in the Schwinger calculus, 

which form a 2-spinor. At no stage in what follows do we 

work with the Schwinger calculus. 

A suitable definition of coherent angular momentum 

states for a system such as the isotropic oscillator, which 

possesses translational as well as rotational degrees of free­

dom, is more difficult than for a system possessing only rota­

tional degrees offreedom, because the dynamics will, in gen­

eral, couple the degrees of freedom in the former case. 

Nevertheless, we may hope with the authors mentioned 

above that coherent angular momentum states can be de­

fined in a suitable way for some systems, and that by analogy 

with the properties of the usual coherent states, these new 

states will have one or more of several nice properties. They 

may exhibit "quasiclassical" behavior, at least in their angu­

lar dependence, and they may be useful in examining the 

behavior of the angular momentum ofthe system as the clas­

sicallimit is approached. They may also represent states of 

"minimum uncertainty" for certain noncommuting varia­

bles associated with the angular dependence in the problem 

and, as they will most likely be overcomplete, they may per­

mit the construction of a representation in which, at the 

least, the angular dependence of the density matrix for the 

system can be put in a diagonal form. 

With this motivation, we define in this paper a new set 

of quasiclassical states for the isotropic oscillator and call 

them "coherent angular momentum states." They bear a 

similar relation to the commuting operators H, L2, and L3 

(where L = xXp is the angular momentum of the system) as 

the usual coherent states do to the commuting operators H, 

N I , N2 , and N 3 • In particular, these new states are eigenvec­

tors of a 3-vector operator which lowers the value of the total 

angular momentum quantum number. We emphasize that 

the problem is not the straightforward one of expressing the 

usual coherent states for the three-dimensional oscillator as 

superpositions of the COmmon eigenvectors of H, L 2 , and L 3 , 

instead of superpositions of the vectors I n I' n2, n3 >. Such 

expressions have been obtained and discussed by Mikhai­

IOV,15 but those coherent states are not eigenvectors of any 

lowering operator forj (or, rather, I in this case). The states 

we shall define below are in general quite distinct from the 

usual coherent states, as we shall see. We shall demonstrate 

that they do have some of the attractive properties men­

tioned above. 

We have shown in an earlier publication 16 (henceforth 

referred to as BL) that the operator H ofEq. (1) can also be 

written in the form 

(5) 

where vt and v are (boson) raising and lowering operators for 

vt v (which we also write asK), while At and A are raising and 

lowering operators for At'A (which we also write as L ). The 

eigenvalues k and I of K and L run over the nonnegative 

integers independently, and the eigenvalues of H appear in 

the form fuv(2k + I + ~ ). Here k is the "radial" quantum 

number and I is the total angular momentum quantum num-

720 J. Math. Phys .• Vol. 22. NO.4. April 1981 

ber. Both are familiar from the treatment in the coordinate 

representation of the eigenvalue problem for H, V, and L
3

. 

Here we adopt no particular representation. 

The basic algebraic relations satisfied by the operators 

v, vt, A, and At are (see BL) 

[v,vt] = I, 

[A"V] = 0 = [A, t,vt] , 

[A"vt] = 0 = [A; t,v] , 

[A;,Aj] =0= [A,\A/] , 

(2A t'A+ I)[A;,A/] =(2A
t
'A+I)D;j -24/A) , 

A'A = 0 = At'At , 

L, = - ifzt;jkA j tAk . 

With K = vt v and L = At 'A, it follows that 

LA=A(L-l), LAt =At(L+l), 

[L,v j = 0 = [L,vt ] , 

Kv=v(K-l), Kvt=vt(K+l), 

[K,Aj =0= [K,At], 

and also that 

L2 = L (L + l)fz2 , 

(6) 

(7) 

(8) 

so that when L has the eigenvalue I, L2 has the eigenvalue 

I (l + l)fz2. The two alternative sets of dynamical variables 

for the isotropic oscillator I v, v\ A, At) and {a, at!, are 

related by the equations 

v = (a'a)(4K +4L + 2) - 1/2 

A; = (a;L - ifz-1t;jka jLk) 

X [(2L + 1)(2K +2L + 1) j-1/2, 

a i = A, [(2K +2L + 1)/(2L + 1) jl/2 

+ A; tv[2/(2L + 3) jl/2, 

and their conjugates. 

(9) 

As the four lowering operators v and A; commute, we 

define the coherent angular momentum states as their com­

mon eigenvectors. Thus we seek vectors Iz, ;> satisfying 

viz, ;> = zlz, ;> , 

A,lz,;> = ;,Iz,;>, (10) 

where the eigenvalues z and;, may be expected to be com­

plex since v and A, are not Hermitian. Noting from Eqs. (6) 

that A 
2 

= 0, we see that; is confined to a complex cone 

;2=0. (11) 

The coherent angular momentum states will therefore be 

labelled by the four complex numbersz and ;i' of which only 

three are independent, whereas the usual coherent states are 

labelled by three complex numbers z,. 
Let us remark at this stage that although there is a cer­

tain so(2, 1) Ell so(3,2) Lie algebra underlying the algebra of 

operators which we use for this system (see BL), the opera­

tors v and A are not actually in (the complexification of) this 

Lie algebra, so that the states we define are not coherent 

states for a Lie algebra or group in the sense of Barut and 

Girardello l7 or Perelomov, 18 although they are closely relat-

A. J. Bracken and H. L Leemon 720 
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ed to such states. We make some comments on this at the end 

of Sec. 5. 

In Sec. 2 we find, for arbitrary complex z and arbitrary 

complex ~ satisfying Eq. (11), a nondegenerate normalized 

vector Iz, ~) satisfying Eqs. (10), in the form 

Iz, ~) = exp( - !Izlz _ !1~lz) 

00 00 1 

X I I I aklm(z,~)lklm), (12) 
k~O/~Om~ -I 

with 

a
k1m 

(z,~) = Zk (S3)/- Iml( - cS _ <)Im l 

X [(2l)!/k!2//!(1 + m)!(/- m)!]I/Z, (13) 

where c is the sign of m and S ± = SI ± iSz· Here Iklm) is 

the nondegenerate normalized common eigenvector of K, L, 

and L
3

, as constructed in BL, which in the coordinate repre­

sentation has the familiar form 19 

Iklm>=(-l)k[ 2a
3
k! ]11251e-ls' 

r(k+I+~) 

xL f+ P( 5 Z)Ytm (e,</J) , (14) 

where a = (M{j)/1f)1/2 and 5 = ar (r, e, and </J are the usual 

spherical polar coordinates), L ~ + II is the generalized La­

guerre polynomial defined as in Ref. (20), and the spherical 

harmonic Y 1m is defined as in Ref. (21). From Eqs. (12) and 

(14) one can deduce (see Appendix A) that in the coordinate 

representation 

Iz, ~) = [ J-; f/2exP ( - !Izlz - !1~12 - !a2IxI2) 

X I I Z (_Z)k 

k~O I~O r(k + ~ +~) 

00 00 [ r(/+J.) ]1/2 

XLf+ )(a2 IxI 2
) (V~~x-~)', (15) 

a result we have not been able to express more simply, except 

in the special case z = 0, when it becomes 

[ ]

312 -
IO,~) = .; 1T exp( - !1;1 2 

- !a21x12 + V 2ax-;) . 

(16) 

In Sec. 3 we examine the expectation values of the dyna­

mical variables when the system is in the state Iz, ~), and find 

in particular that the probability of obtaining the value Ion 

measurement of the total angular momentum follows a Pois­

son distribution. 

We go on to consider the sense in which the state Iz,~) is 

a "minimum-uncertainty" state for the hermitian variables 

u, T, a, and p, where 

V 2fz Y = C7 + iT 

and 

(17) 

Letting (A ) denote the expectation value of any observable 

A for a given state of the system, and defining the dispersions 

of u and a for that state by 

721 J. Math. Phys .• Vol. 22. No.4. April 1981 

and 

.1a = [(a-a) - (aHa)]1/2, (18) 

with similar definitions for .1 T and .1 /3, we find that, in 

general, 

(l9a) 

(19b) 

In the state Iz, ~) both inequalities become equalities and, 

moreover, 

(20a) 

and 

(.1 a? = (.1fJ? =-li(l +! «2L +1)-1». (20b) 

We show in Sec. 4 that, if the system is in the state 

Izo,~> at time t = 0, then at time t, in the SchrOdinger pic­

ture, it is in the state e - (3/2)
hvl lz(t), ~(t », where 

z(t) = e -Zi""ZO 

and 

~(t) = e - i<VI ~o . (21) 

We then deduce that the expectation values (u), (T), (a), 

and ( (3) reproduce the corresponding behavior in time of 

their classical counterparts a, f, a, and fl, as discussed in BL. 

Moreover, the dispersions ofthe quantum-mechanical varia­

bles remain constant during the motion at their minimum 

values as in Eqs. (20), so that the coherent angular momen­

tum states can properly be called quasiclassical states. 

Corresponding to a given classical motion ofthe oscilla­

tor there are therefore (at least) two quasiclassical descrip­

tions in quantum mechanics, which are distinct in general. 

One is provided by the usual coherent states, another by 

coherent angular momentum states. In the special case that 

the classical motion is circular rather than elliptical, these 

two quasiclassical descriptions are the same. We deduce this 

as a consequence ofthe identification of the coherent angular 

momentum state 10,~) with the usual coherent state Iz = ~), 

an identification which follows from the result (16) and the 

known form for the states Iz) in the coordinate 

representation. 22 

It is important to note, however, that we find that, if the 

quasiclassical description of a given classical motion is given 

by coherent angular momentum states, the expectation val­

ues (x) and (p) do not exactly reproduce the corresponding 

behavior of the classical variables:i and p, unless that classi­

cal motion is circular. Rather we find, for example, that (x) 

follows an elliptical path different from, though in the same 

plane as, the path followed by x. Furthermore, the state 

Iz,;> is not, in general, a minimum-uncertainty state for x 

and p and, when the system evolves in coherent angular mo­

mentum states, the dispersions Lix and Lip oscillate, but are 

always bounded. Therefore, in the coordinate representation 

(or the momentum representation) the state vector e -3 hoI 12 

X Iz(t ), ;(t» would appear as a pulsating wavepacket 

which follows the classical motion approximately. This re­

flects the fact that the variables x and p bear a special relation 

to the usual coherent states, not the coherent angular mo-

A. J. Bracken and H. /. Leemon 721 
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mentum states. In other representations, the usual coherent 

states are also presumably represented by pulsating packets 

which follow the classical motion only approximately. Fur­

thermore, in the quasiclassical description provided by the 

usual coherent states, the expectation values of a, 7, «, and P 
will not, in general, reproduce exactly the behavior of their 

classical counterparts. 

The outstanding feature of the description by coherent 

angular momentum states, in the general case of an elliptic 

orbit, is that the uncertainty in the angular momentum of the 

system, as best measured, according to Delbourgo, II by 

[(LZ) - (L).(L)] liZ, is smaller than it is for the description 

by the usual coherent states. 

After a brief discussion of the classical limit which is 

obtained with Izl- 00, I~I- 00, and Ii - Owegoon to Sec. 

5, where we give a completeness relation for the states Iz, ~). 

They are, in fact, overcomplete and, just as for the usual 

coherent states, there is associated with these states a Hilbert 

space of analytic functions with a reproducing kernel. We 

briefly discuss this space and the associated elegant represen­

tation of the dynamical variables v, vt,}.., }..t, K, L, and H. 

We conclude with some remarks in Sec. 6 about possi­

ble further developments. 

2. THE COHERENT ANGULAR MOMENTUM STATES 

We look for vectors satisfying Eqs. (10) in the form 

In BL, Eqs. (53) and (58), we showed that 

Iklm) = Cklm (vt)k (A !)lml(A D'-lmIIO) , (23) 

where 

Cklm = ( - E)m [(2/)!/k !21/!(/- m)!(/ + m)!] liZ, (24) 

E is the sign of m, 10) is a normalized vector on which v and }.. 

vanish and A t± = A t ± iA 1 . Supposing that the vector 

Iz, ~) ofEq. (22) does satisfy Eqs. (10), then we must have 

bklm Iz, ~) = (kim Iz, ~) 

= (Cklm)*(Olvk(A _£)lml(A3)'-lmllz,~) 

= CklmZk ({; _ £ )Iml( {;3)1- Iml (Olz, ~) , (25) 

where A + = AI ± iAz and {; + = {;I ± i{;z· 

Con-versely, taking the coefficients in Eq. (22) to have 

the form 

bklm (z,~) = n(z,~)Cklmzk( {; _ £ )Iml( (;3)1- Iml , (26) 

with n(z,~) an arbitrary function of z and ~, one can check 

that the vector Iz, ~) so defined does satisfy Eqs. (10). To 

verify this, one needs to use the equations 

vlklm) = k 1121k - 11m) 

A Iklm) = [ (1- m)(1 + m) ]1I2Ikl_ 1m) 
3 (2/- 1) 

A Iklm)= [(/+=m)(/+=m-l) ]1/2 
± ± (2/- 1) 

X Ikl- 1 m ± 1) , (27) 

as given in BL [Eqs. (59)], and also to use Eq. (11) in the form 

722 J. Math. Phys., Vol. 22, No.4, April 1981 

(28) 

It is easily seen that this vector Iz, ~) is normalizable for 

arbitrary complex z and for arbitrary complex ~ satisfying 

Eq. (11). Using the orthonormality of the vectors I kim), we 

have 

(z' ,~' Iz,~) = n(z',~')*n(z,~) I (Z'*Z)k ({; i*{;3)' - Iml 
kim 

X [( {; '_ J*{; _ £ ] Iml(Cklm)Z . (29) 

Because ~z = 0 = ~'z, we have, with the help of the binomial 

theorem, 

± ({; i*{;3)1-lml [( (; '_ £)*{; _£ ]Iml (2/)! 
m~ -I 2I(l+m)!(/-m)! 

= (~'*.~)' , (30) 

so that Eq. (29) reduces to 

(z',~'lz,~) = n(z',~')*n(z,~) t; (Z;~)k ({; ~~.~)I 

= n(z',~')*n(z,~)exp(z'*z + ~'*.~). (31) 

Thus Iz, ~) is normalized if we take 

n(z,~) = exp( - !lz l2 - !1~12) (32) 

and we have, from Eqs. (22), (24), and (26), the final form 

(12) for the coherent angular momentum states. 

With this normalization, we have 

(z',~'lz,~) = exp[ _ !(lz'I
Z + Izlz + 1~'lz + 1~12) 

+ z'*z + ~'*.~] , (33) 

so that 

l(z',~'lz,~)lz=exp[- !Iz'-zlz- !I~'_~IZ]. (34) 

These vectors are, therefore, not orthogonal for (z', ~')#(z, 

~), but they approximate orthogonality as Iz' - zl - 00 and 

I~' - ~I- 00. We shall see in Sec. 5 that they are 

overcomplete. 

3. EXPECTATION VALUES OF PHYSICAL VARIABLES 

AND THE MINIMUM UNCERTAINTY PROPERTY 

When the system is in the state Iz, ~) we have at once 

(v) =z, (vt) =z*, 

(}..) =~, (}..t) = ~* , (35) 

so that, using Eqs. (10) and (17), 

(a) =YIi/2(z+z*), (7) = -{VIi/2(z-z*) , 

(<<) = Y 1i/2({; + ~*), (P) = - iY 1i/2({; - ~*). 

Since K = vtv and L = }..t.}.. we have 

(K) = Iz12, (L) = 1~lz 

and 

(H) = w(21z12 + 1~12 +~), 

and from the last of Eqs. (6) we have 

(L) = - ili~*X~. 

(36) 

(37) 

(38) 

The probability of obtaining the value k on measuring K 

in the state Iz, ~) is given by 

A. J. Bracken and H. I. Leemon 722 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

06:12:13



p(k) = L I (kIm Iz, ~) 12 
I.m 

= In(z, ~)12 1~1!2k ~ 1b"31
2/

-
2m 

Ib" _ 1
2m 

X (2/)! 

2//!(1 + m)!(/- m)! 

= EL e - Izl' (39) 
k! ' 

which corresponds to a Poisson distribution with mean Iz12. 

Similarly, the probability of obtaining the value Ion measur­

ing L is given by 

p(/) = L I (klmlz,~) 12 
k.m 

= .l.i.E e -I~I' 
/! ' 

(40) 

corresponding to a Poisson distribution with mean 1~12. 

Because the k values and I values are distributed in 

probability according to (independent) Poisson distribu­

tions, it follows that 

(Kn) =e-Y(r :r YeY, r= Izl2 

and 

(Ln)=e-Y(r :rYeY, r=I~12. (41) 

In particular, 

(L2) = fz2(L (L + 1» 
= fz2(1~14 + 21~12) . (42) 

According to Delbourgo, 11 the quantity 

[(L)2 _ (LHL) ]112 provides the best measure of the uncer­

tainty in the angular momentum of the system ina given 

state. In view of Eq. (38), we have in the state Iz, ~) 

(LHL) = fz21~14 (43) 

and hence 

(L2) _ (LHL) = 2fz21~12, (44) 

a result to which we shall refer in Sec. 4. 

The conditional probability of obtaining the value mfz 

for L 3, given that I has been observed for L, is given by 

(45) 

Now, because ~2 = 0, we have 

V21~1 = Ib" + 1 + Ib" - 1 ' (46) 

which, with Eq. (45), enables us to write 

p(m;/) = C ~/m) 8 1
+ m(l - 8)1- m, (47) 

with 

e=J£.=.l=I-~ 
V21~1 V21~1 ' 

(48) 

Thus the m values are distributed, for a given I, in accor-
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dance with a binomial distribution with mean 

± m p(m;I)=1(28-1)=I[ 1b"-I-Ib"+I]. 
m ~ - 1 Ib" - I + Ib" + I 

(49) 

[These results are not valid if ~ = 0, when we get simply 

p(O;O) = 1 andp(m;/) = o otherwise.] The unconditional 

probability of obtaining the value mfz on measuring L3 in the 

state Iz, ~) is given by 

p(m) = ! p(l)p(m;/) 
1~lml 

=e-I~I' ! 1b"_II+mlb"+ I/-m 
I~ Iml 

X (2/)! 

2//!(/ + m)!(/- m)! 

= I L 1

m I b"~ Ilmle_I~I' ! 1b"31 2n 

b"+ 2 n~O 

X (2n +2Iml)! 

rn!(n + Iml)!(n +2Iml)! 

= I ~: 1

m 

I b"; I'm' 

-I~I' 

X _e -M(lml + Plml + l,21b"312) 
(Iml)! 

= I ~: 1

m 

exp( - !Ib" + 12 - !Ib" _ 12) 

Xlm(Ib"312), (50) 

where M is the confluent hypergeometric function and 1m is 

the modified Bessel function of order m. 20 Note that 

(51) 
m= - cD 

which ensures that ~;;; ~ _ 00 p(m) = I, as required. Note 

also that the result (50) can be written in the form 

p(m) = Ib" _ .1
2Iml

lb" + b" _ 1-lmlllml (Ib" + b" _ I) 

Xexp( - !Ib" + 12 - ~Ib" _ 1
2
), (52) 

where € is the sign of m, by using Eq. (28) and the properties 

of the modified Bessel functions. In this formp(m) is well 

defined even if b" + b" _ = 0, because z - Imlllml (z) is well de­

fined at z = O. 

Let us now consider the sense in which coherent angu­

lar momentum states are minimum-uncertainty states. As 

the operators v and v t are boson operators, we know that the 

inequality (19a) holds in general and, from our experience 

with the usual coherent states, we know that in the state 

Iz, ~), this inequality becomes an equality with 

(.JoY = (.J1"i = !fz, as in Eq. (20a). Thus the states Iz, ~) 

are minimum-uncertainty states in the usual sense for the 

conjugate variables (T and 1". 

By a simple extension of a familiar argumene3 it is easi­

ly shown that, if .Ja and.J f3 are defined as in Eq. (18), then 

(.Ja)2 + c2
(.J f3?> - ic([a,,,8,]) = fzc([A,,A t]), 

(53) 

for arbitrary real c, with the equality holding if and only if 

(a + ic(3)ltft) = «a) + ic( (3»ltft) , (54) 
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where Iif') is the appropriate state vector. We know from the 

fifth of Eqs. (6) that 

[A ,.ttl = 4L + 3 (55) 
I' 1 2L + 1 ' 

which is positive definite. The strongest inequality of the 

type (53) is therefore obtained by taking that positive value 

of C which makes (.1 a? Ie + c(.1 /3)2 a minimum, viz. 

C = .1a/ .1 /3 , (56) 

and the inequality then has the form 

41a.1 /3> !1i([A;,A n> = 1i(1 + !«2L + 1) -I») . (57) 

From Eq. (54) we see that this becomes an equality if and 

only if 

[(.1 /3)0. + i(.1a) P]Iif') = [(.1 /3)(0.) + i(.1a) ( P)]Iif') . 
(58) 

Now if Iif') = Iz, ~), we have 

(0.'0.) = !1i«A + At)'(A + At) 

= !1i«At'A + A'At» 
= !1i(2L + [A;,A 7]) 

= lli( 4L 2 + 6L + 3 ) . 
2 2L + 1 

(59) 

The same value is obtained for ( p·P). Furthermore, accord­

ing to Eqs. (36) and (37), 

(aHa) = 1i1~12 

= Ii(L ) , (60) 

and the same value is obtained for ( PH P). Combining 

Eqs. (59) and (60), we get 

( 
4L +3 ) 

(0.'0.) - (aHa) = !Ii , 
2L +1 

(61) 

and the same value for ( p·P) - ( PH P). Thus we have 

(.1a)2 = (.1 /3)2 = 1i(1 + !«2L +1) -I») , (62) 

and the inequality (57) becomes an equality. That Eq. (58) is 

satisfied when Iif') = Iz, ~) is also now evident. Since 

.:1a = .1 /3, it reduces to the equation 

Alz, ~) = (A) Iz, ~) , (63) 

which is satisfied because Iz, ~) is an eigenvector of A. 

In this sense then, the states Iz, ~) are minimum-uncer­

tainty states for a and p, as well as for if and 'T. However, this 

is a somewhat weaker notion of minimum-uncertainty than 

that applying to if and 'T, in two respects. First, the inequality 

(57) does not place restrictions on the uncertainty products 

for individual components of a and P such as the product 

.:1 a 141 /31' While a and P can be regarded in a certain sense as 

conjugate variables, the components a; and /3; cannot be 

regarded as three pairs of independent conjugate variables, 

because [a; ,a j ], [a;,/3 j ] and [/3; ,/3 j ] are nonzero for i =f j. 
Second, the right-hand side of the inequality (57) is not con­

stant. Since (2L + 1) -I has eigenvalues 1, l' !, ... , one sees 

that the greatest lower bound of «2L + I) - 1 ) is 0, but also 

that there are no states in which this bound is attained. Thus, 

in addition to Eq. (57), one can say that in general 

.:1a.1 /3 > Ii (64) 
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and that there are no states of the system in which .:1a.:1 /3 is 
minimized in an absolute sense. In the state Iz, ~), it is not 

hard to show from the result (40) that 

rl~1 
«2L + I) -I) = I~I ~I e -I~I' Jo e>" dy. (65) 

What one can properly say, then, is that of all states for 

which «2L + 1) -I) has a particular value say,A, (note that 

it then follows that ° <A< I), some of the states in which 

.:1a.1 /3 is minimized are the states Iz, ~), with 

rl~1 
1~1-le-I~I'Jo e>"dy=A. (66) 

In the introduction we remarked that the states Iz, ~) 
are not minimum-uncertainty states for x and p. This can be 

seen most simply by observing24 that any minimum-uncer­

tainty state for x and p is an eigenvector of 

(1 + Il)a + (1 -Il)at (67) 

for some real 11 > 0. (The usual coherent states have 11 = I.) 

It is reasonably obvious from the expressions (9) that no 

operator of the form (67) is diagonalized on the coherent 

angular momentum state Iz, ~) in general. (In the special 

case that z = 0, Iz, ~) becomes equal to one of the usual co­

herent states, as we saw in the introduction. Thus 10, ~) is an 

eigenvector of a.) 

Let us now consider the uncertainties in position and 

momentum of the oscillator in the state Iz, ~). We note from 

Eq. (9) that 

a; = u(K,L ),,1.; + A ;w(K,L)v, 

where 

u(K,L) = [(2K + 2L + 3)/(2L + 3)] 1/2 , 

w(K,L) = [2/(2L + 3)p/2 . 

With the help of Eqs. (6) and (7) we then deduce that 

a;a j = u(K,L )u(K,L + I)A;A j 

+ A; t w(K,L )u(K + I,L )A jV 

+ A/A /w(K,L + l)w(K + I,L )v
2 

+ A j tu(K,L + l)w(K,L + 1)A;v 

+ oiju(K,L )w(K,L )v 

(68) 

(69) 

- U/u(K,L + l)w(K,L + 1)(2L + 3) -1,,1. jV (70) 

and that 

a; ta j = A; tu(K,L )u(K,L)A j + A; tA j tu(K,L + l)w(K,L)v 

+ vtw(K,L )u(K,L + 1),,1.;,,1. j 

+ vtA j tw(K,L + l)w(K,L + I)A;v 

+ Oijvtw(K,L )w(K,L)v 

- 2VtA/W(K,L + l)w(K,L + I) (2L + 3) -I A jV . 

(71) 

Then we have, in the state Iz, ~), 
(a;) = (u(K,L )S; + (w(K,L )S; *z 

= us; + WS;*z, 

say, and 

(a;a j ) =cIS;Sj + c2S;*SjZ + c3S;*Sj*Z2 

+ c4s j*s;z + cljijz, 

A. J. Bracken and H. I. Leemon 
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(a/a j) = dlb;*bj + d2b;*b/Z + d3b;bjZ* 

+ d4b/b;Z*Z + dsD;jZ*Z + d~;*tjz*z, (74) 

where, for example, 

C l = (u(K,L )u(K,L + 1) . (75) 

Then 

and 

(2Mw/fi)l12(X;) = (a; + a; t) 

= (a,> + (a,)* 

= u( t; + t; *) + w( b; *Z + t;z*) (76) 

(2Mw/fi) (x;x j) = «a; + a/)(a j + a /» 
= (a;a) + (a/a) 

+ (a j ta;) + (a;a j)* + D;j. (77) 

We introduce.Jx, an overall measure of uncertainty in posi­

tions, by 

.Jx = «x·x) - (XHX»l/2 

= [(.JXl)2 + (.JX2)2 + (.Jx3ip/2 , (78) 

and using Eqs. (73), (74), (76) and (77) we deduce that 

(2Mw/fi)(.JX)2 = (c2 + C4 - 2uw)I~12(Z + z*) 

+2(d l - u2)1~12 

+ 2(d4 + d6 - w2)1~12IzI2 

+ 3cs(z + z*) +6ds lzI2 + 3. (79) 

In a similar way, we deduce that 

(21Mwfz)lf2(p;) = - iu(t; - t;*) - iw(trz - t;z*) , 
(80) 

(21Mwfz)(.J p)2 = (2uw - C2 - c4)1~12(Z + z*) 

+ 2(d l - u2)1~12 

+ 2(d4 + d6 - w2)1~12IzI2 

- 3cs(z + z*) + 6ds lzl 2 + 3 . (81) 

We shall make further reference to these results in Sec. 4. 

They are not particularly revealing as they stand, but they do 

make it obvious that Iz, ~) is not in general one of the usual 

coherent states, for which one always has 

.Jx = (3fz/2Mw)l/2, 

.J p = (3Mwfz/2)l/2 . (82) 

4. QUASICLASSICAL BEHAVIOR AND THE CLASSICAL 

LIMIT 

Classicaly, one may define the state of the oscillator at 

any time by giving the values of the classical variables i and 

p, or equivalently, by giving the value of the complex vari­

able ft, which is the classical counterpart of the usual lower­

ing operator a 

a = (2Mw) -1I2(ip + Mwi). (83) 

Alternatively, as shown in BL, one may give the values of the 

complex variables v and i (with i·i = 0), which are the 

classical counterparts of v and A. For if one knows the values 

of v and i, one can calculate that of a, the vice versa [cf Eqs. 

(9)]. One can think of vas the coordinate of a point in the 

complex plane e, and of i as the coordinates of a point on the 

complex cone ][(3' whose equation is J...·i = o. Then the space 

eX][(3 can be regarded as a sort of complex phase space for 
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the oscillator, with (v, J..) being the coordinates of the repre­

sentative point for the state of the system. As time t varies, 

this point moves in accordance with the classical equations 

of motion, with 

v(t ) = ;(O)e - U,O( , 

i(t) = i(O)e - iWI . (84) 

In the quantum mechanics problem, we have 

[H,A] = - fzwA , 

[H, v] = - 2fzwv . (85) 

If Izo,;o) is the state vector of the system at t = 0, then in the 

Schrodinger picture the state vector at time t is 

I ¢(t» = e - iHI Hilzo,bo) , (86) 

and from Eqs. (85) we deduce that 

vl¢(t» =zoe- 2iwl l¢(t» , 

AI¢(t» = ~e-iWII¢(t». (87) 

From the fact that H has the value fuv(2k + I + ~) on I kim), 

we readily deduce from Eqs. (86) and (12) that, in fact, 

I ¢(t » = e - 3h')l 121z(t ),~(t » , (88) 

with 

z(t ) = zoe - 2i"", ~(t ) = ~e - ,"" . (89) 

We see that if the system is in a coherent angular momentum 

state at one time, it is so at all times. 

The expectation values of v and A as functions of time 

are now given, according to Eqs. (35) and (89), by 

(v)(t) = z(t), 

(A)(t) = ~(t) , (90) 

and we see by comparing Eqs. (84) and (89) that these expec­

tation values are solutions of the classical equation of mo­

tion. Classical and quantum-mechanical descriptions which 

correspond are obtained by taking 

vet ) = v~ z(t ) , 

i(t ) = v~ ~(t ) . (91) 

The factors of V fz appear here because of a difference of a 

factor of Vfz in the definitions of classical and quantum­

mechanical variables like a in Eq. (83) and a in Eq. (3). (The 

quantum-mechanical variables are dimensionless; the classi­

cal ones are not.) 
We see also from Eqs. (20) that the values of.JC1,.Jr,.Ja, 

and.J /3 remain constant during the motion, with the pro­

ducts .JC1..::1r and .Ja..::1 /3 at their minimum values. (In the 

case of ..::1a..::1 /3, this minimum value is 

fz( I + ! «(2L + I) - l»), which remains constant because 

(2L + 1) - 1 is a constant of the motion.) 

We may say that if the system is evolving through a 

succession of coherent states, as in Eq. (88), its state at time t 

may be defined approximately by specifying a point 

(Vfz z(t ), Vfz ~(t )) in the classical phase space ex ][(3. How­

ever, there is a "volume of uncertainty" of size 

;:::.JC1.J r = !fz associated with the position of V fz z in e, and 

a volume of uncertainty defined by 

..::1a.J /3 = fz(1 + !«(2L + 1) - l») associated with the posi-

A. J. Bracken and H. I. Leemon 725 

 Reuse of AIP Publishing content is subject to the terms: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  130.102.82.2 On: Tue, 18 Oct 2016

06:12:13



tion of V Ii ~ in K;. This representative point follows a classi­

cal trajectory, and these volumes of uncertainty do not 

change with time. In this sense the coherent angular momen­

tum states are justifiably called quasiclassical states of the 

oscillator. Consider a typical classical trajectory, with 

i = (A cOSnJt,B sinwt,O), A>B>O 

p = Mw( - A sinwt,B cOSnJt,O), 

a = <! Mw) 1t2e - ;wt (A,iB,O) , 

or equivalently, (see BL, Sec. 4) 

v = ! (MW)1/2(A - B)e -2iwt , 

i = (~MwAB )1/2e - iwt (1,i,O) . 

(92) 

(93) 

The descripti.:m in terms of the coherent angular momentum 

states corresponding to this classical trajectory is provided 

by taking the state vector at time t to be as in Eqs. (88) and 

(89), with 

Zo = ! (MwlIi)I/2(A - B) , 

~ = (MwAB /21i)1/2(I,i,0). (94) 

According to Eq. (76), in this state the expectation value ofx 

in particular is given by 

(x)(t) = uJAB (coSnJt,sinwt,O) 

+ !w(A - B )(MwAB lli)1I2(COSnJt, - sinwt,O) 

= (A 'coSnJt,B 'sinwt,O) . (95) 

Therefore (x) follows an elliptical path which is in the same 

plane, with the same center and the same orientation as the 

elliptical path followed by i, but which has different sized 

axes. The ratios A '1 A and B '1 B involve the expectation val­

ues u and w, which are constants of the motion, but which 

are not simply functions of A and B. One can show from Eqs. 

(69) and (37) that as IZol and I~I are increased, u tends to­

wards !(A + B )1 V (AB ) and W tends towards (iii MwAB ) 1/2, 

sothatA ' andB' tend toA andB,respectively, as the classical 

limit is approached (see below). 

From the expression (79) we see that, because C2, c4, u 

etc. are constants of the motion, as are 1~12 and Iz12, and 

because 

Z + z* = (zo + Zo *)cos2wt - i(zo - Zo *)sin2wt, 

the value of (L1xf makes bounded oscillations with angular 

frequency 2w about a fixed mean value. A similar remark 

applies to (..1 p)2. In the coordinate representation (or the 

momentum representation), the wavefunction must there­

fore pulsate while it only approximately follows the classical 

motion, but it does not disperse.25 

The reader should not hasten to conclude that the de­

scription corresponding to the classical motion, as provided 

by the coherent angular momentum states, is in any sense 

"less quasi-classical" than the description provided by the 

usual coherent states. In the latter case one would take the 

state vector to be (up to a phase factor) Iz(t» [cf. Eq. (4)], 

where 

z(t) = (Mw/21i) 1/2e - iwt (A,iB,O) (96) 

for the particular motion described above. Then, as is well­

known, (x) and (p) reproduce the behavior oU and p and, 
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moreover, L1x; and ..1 Pi are constants, with L1xIL1 PI = ! Ii, 
etc. However, it is evident from the definition in Eqs. (9) that 

(v) and (A) will now not exactly reproducethebehaviorofv 

and i and ..1 a, L1r, L1a, and ..1 f3 will presumably now be 

oscillatory. 

(In the special case of a circular orbit, the two descrip­

tions become the same. We have A = B above and thus 

Zo = 0 = z(t). Because vIO,~) = 0 implies K 10,~) = 0, we 

deduce that u = 1 in this situation and so Eq. (95) reduces to 

(x) = i. More generally, corresponding to any circular or­

bit, we have z(t ) = 0, z(t )"z(t ) = 0, and z(t ) = ~(t ); and as 

explained in the Introduction, the coherent angular momen­

tum state 10,~) is equal to the usual coherent state Iz = ~).) 

The most important distinction between the two corre­

sponding quasi-classical descriptions is brought out by a 

consideration of the uncertainty in the angular momentum. 

If the system is in the state Iz), we readily deduce that 

(L)2 - (LHL) = 21i2z*"z, (97) 

after noting that 

Li = - ili£ijka j tak , 

(98) 

On the other hand, if the system is in the Iz,~) state, we have 

the result (44). Corresponding to the particular classical tra­

jectory described above, at time t we have z and ~ as in Eqs. 

(89) and (94), and z as in Eq. (96). For the description pro­

vided by the coherent angular momentum states, we then 

have 

(V) - (LHL) = 2liMwAB (99) 

at all times, while for the description using the usual coher­

ent states we obtain 

(V) - (LHL) = IiMw(A 2 +B2). (100) 

The latter is greater, by an amount IiMw(A - B )2. 

In the case of a circular orbit (A = B), the results agree, 

as they must in view of our earlier remarks, but in the general 

case of an elliptical orbit we see that the uncertainty in the 

angular momentum is greater in the usual quasi-classical 

description. 

We conclude this section with some brief comments on 

the classical limit. In the usual treatment this is reached by 

considering the system in a succession of states Iz), with 

Izl ~ 00, Ii~ 0, and (VIi)z finite [and equal to V(Mw/2) 

X e - iwt (A ,iB,O) for the particular orbit described above. In a 

similar way, we can approach the limit very simply by con­

sidering a succession of states Iz,~), with Izl ~ 00, I~I ~ 00, 

Ii - 0, and (VIi)z and (VIi)~ finite and equal to 

! y(Mw)(A - B)e- 2iwt and V(MwAB 12)e- iwt (l,i,O) in the 

particular orbit]. Note that the case of a circular orbit is 

special and corresponds always to z = O. It is evident from 

Eqs. (20) and (36) that as the limit is approached, 

L1a ~O L1r ~O 
(a) '(r) , 

L1a _0 
«a)"(a»1/2 ' 

(101) 

and also, from Eqs. (43) and (44), that 
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(L2) - (L)·(L) ~ 0 . 

(LHL) 
(102) 

Thus the relative widths of the probability distributions go to 

zero for all these variables, and one can easily see from Eqs. 

(37) that the same is true for K, L, and H. 

5. COMPLETENESS AND A HILBERT SPACE OF 

ANALYTIC FUNCTIONS 

In this section we find it more convenient to work with 

the unnormalized vectors 

Iz,~) = expl!lzl2 +! 1~12J Iz*,~*) 

= Laklm(z*,~*)lklm), 
kim 

(103) 

rather than with the Iz,~) themselves. According to Eq. (33) 

we then have 

(104) 

The coefficients aklm appearing in Eq. (103) were defined in 

Eq. (13). 

We first note that 

f dp, (z,~)aklm(Z*,~*)*ak'I'm'(Z*,~*) = 8kk ,811'8mm, . (lOS) 

(A derivation appears in Appendix B.) In this equation 

dp,(z,~) = ~ d2Zd6~(~·~)(21~12 _ l)exp( -lz l2 _ 1~12), 

(106) 

and the integration is over all possible complex z and ~. Of 

course, the coefficients aklm and vectors Iz,~) have only been 

defined for (z,~) on CXK3' but that is all that is needed in 

integrals like that in Eq. (lOS) and those below, because of the 

delta function in dp,. The meaning of the notation is as in Ref. 

26:Ifz = x + iy, ~ = u + iv, wherex,y, u and v are real, then 

d 2zd 6~(~.~) = dxdyd 3U d 3v8(u2 - v2)8 (2u·v). (107) 

It follows that 

dp,(z,~) = dp,(z*,~*). 

Now consider 

J dp, (z,~)lz,~)(z,~1 

(lOS) 

= L L J dp, aklm(Z*,~*)*ak'I'm,(Z*,~*)lk 'I'm') (klml 
kim k'l'm' 

= Llklm) (kim I , (109) 
kim 

using Eq. (105). As the vectors I kim) are complete and orth­

onormal, we have the result 

(110) 

expressing the completeness of the vectors Iz,~) (and hence 

of the vectors Iz,~», 

They are, in fact, overcomplete. For example, we can 

deduce from Eq. (110) an expression oflinear dependence: 
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Iz',~') = f dp, (z,~)(z,~lz',~')lz,~) , 

with (z,~lz',~') as in Eq. (104). 

Now consider an arbitrary vector 1t;6 ) and write 

1t;6 ) = L t;6klm Iklm) , 
kim 

with 

t;6klm = (klmlt;6) . 

Using Eq. (103), we see that 

(z,~It;6) = L t;6k1maklm(Z*,~*)* 
kim 

[ 
(2/ )! ] 112 

= ,6;, t;6k1m k !21/ !(I - m)!(1 + m)! 

XZk( ;i- ,m,( - E;Jml 

(111) 

(112) 

(113) 

= t;6 (z,~), (114) 

say. Because (z,~It;6 ) is finite for all (z,~) on CXK3, it follows 

that the series in Eq. (114) converges for all (z,~) on eX K3 

and that t;6 (z,~) is analytic there. Noting from Eq. (104) that 

(z,~lz,~) = exp(lzl2 + 1~12), 

we have from Eq. (114) and Schwartz's inequality, that 

1t;6 (z,~)I.;;;A exp I !lzl2 + !1~12J ' (115) 

with A = (t;6It;6 )1/2. Thus the growth oft;6 with Izl and I~I is 

limited. We note also from Eq. (110) that 

(t;6 1t;6 ) = f dp, (z,~)(t;6 Iz,~)(z,~It;6 ) 

= f dp, (z,~)It;6 (z,~W, (116) 

so that, in addition to the inequality (115), t;6 satisfies 

f dp, (z,~)It;6 (Z,~)12 < 00 ' (117) 

We see in this way that any vector 1t;6 ) defines a function 

t;6 (z,~), analytic on eX K3, and satisfying there the conditions 

(115) and (117), From Eqs. (110) and (114) we have 

I t;6 ) = J dp, (z,~)t;6 (z,~) Iz,~) . (I1S) 

Conversely, suppose that a function t;6 (z,~) of this type is 

given. Then we can define a vector 1t;6 ) by Eq. (11S) and 

check that it is normalizable and that t;6 (z,~) = (z,~ 1t;6 ). To do 

this we first note, from Eqs. (103) and (110), that 

(z',~'lklm) = f dp, (z,~)(z',~'lz,~)(z,~lklm) , 

Le., 

aklm(Z'*,~'*)* = f dp, (z,~)exp(z'z* + ~'·~*)aklm(Z*,~*)*. 
(119) 

Since t;6 is by assumption analytic, it can be expanded as a 

convergent series on CXK3: 

t;6 (z,~) = ! ! dki.i,".i,Zk;i. ;i, ···;i, ' (120) 
k=O 1=0 

and one can use Eq. (2S) to bring this expansion to the form 
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ifJ (z,~) = L ifJ kim a kim (Z· ,~.). (121) 
kim 

for suitable coefficients ifJklm' Since ifJ satisfies conditions 

(115) and (117), one can employ term by term integration to 

deduce from Eqs. (119) and (121) that 

J d,u(z,~)exp(z'z· + ~/·~·)ifJ (z,~) = ifJ (Z',~/) . (122) 

Now we have from the definition (118) of lifJ ) that, using 

Eqs. (104) and (122), 

(ifJ lifJ) = J d,u (z,~) J d,u (Z',~/)ifJ (z,~)ifJ (ZI,~/)·(ZI,~/lz,~) 

= J d,u (Z',~/)lifJ (Z',~/W . (123) 

Therefore lifJ ) is normalizable. Furthermore, we can now 

deduce from Eq. (118), with the help ofEq. (122), that 

(Z',~/lifJ) = J d,u (z,~)ifJ (Z,~)(ZI,~/I(z,~) 

= ifJ (Zl ,~/), (124) 

as claimed above. 

We see that there is a 1-1 correspondence between vec­

tors in our abstract Hilbert space and functions ifJ (z,~) of the 

type described, and that this correspondence is defined by 

Eqs. (118) and (124). Supposing lifJ ) and II/!) are any two 

vectors corresponding to functions ifJ (z,~) and I/!(z,~) in this 

way; then, using Eq. (122), we have from Eq.(118) and the 

corresponding equation for II/!) that, 

(1/!IifJ) = J d,u (z,~) J d,u (ZI,~/)I/!(Z',~/)·ifJ (Z,~)(ZI,~/lz,~) 

= J d,u (Z',~/)I/!(ZI,~/)·ifJ (Z',~/). (125) 

Weare now in a position to establish a realization of the 

abstract Hilbert space and algebra of operators (essentially, a 

(vt,A t)-representation) by taking ifJ (z,~) as the representative 

of lifJ ) in a Hilbert space JY of such functions with scalar 

product 

(ifJ,l/!) = J d,u (z,~)ifJ (z,~)·!/I(z,~) , 

so that 

(ifJ,l/!) = (ifJ,l/!) . 

(126) 

(127) 

We see from Eq. (110) that (for lifJ ) in the domain of vt) 

vtlifJ) = f d,u (z,~)(z,~lvtlifJ ) Iz,~) 

= f d,u (z,~)zifJ (z,~)lz,~) , (128) 

so that in JY, vt is represented by the operator which sends 

ifJ (z,~) intozifJ (z,~). Similarly, At is represented by the opera­

tor which sends ifJ (z,~) into ~ifJ (z,~). From our experience 

with the usual coherent states we know that the representa­

tive in JY of v is a I az, but the representative of A is more 

difficult to determine. We note first that, according to Eqs. 

(103) and (124), the representative in JY of Iklm) is the 

function aklm (z· ,~.)., which is homogeneous of degree k in z 

and homogeneous of degree I in the variables ~i' Equation 
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(105) expresses the orthonormality of these functions with 

respect to the scalar product (126) and of course, as the re­

presentatives of the I kIm), they must be complete in JY. In 

particular, we note that the vacuum vector 10) ( = Ik = 0 

1= 0 m = 0» is represented by the function 1 and, accord­

ingly, the vector 

(VttA ~A 1"'A ~ 10) , (129) 

where there are I subscripts a, /3, ... , 1', is represented by 

T~/{3"'T(Z,~) = zk~a~{3'''~T • (130) 

These functions also form a complete set in JY, when k and I 

run over the nonnegative integers independently and a, /3, ... , 
l' run over 1, 2, 3 independently, and they also represent 

eigenvectors of K and L corresponding to eigenvalues k and 

I. Note that T~/{3"'T is completely symmetric and traceless in 

the subscripts. Since it is evident that 

z.!!... T~/{3"'T = kT~/{3"'T , 

az 

r. ~ Tkl -IT kl 
'!) a~ a(30"T - a{3"'r' 

(131) 

we may conclude that, because of the completeness of these 

functions, K is represented by zal az (a result already evident 

since we know that K = vtv) and that L is represented by 

~·a I a ~. Furthermore, we know from Eq. (56) ofBL that the 

representative of Ai must send T~/{3Y'''UT into 

(8 T kl - \ + 8 T kl - \ + + 8 T kl- \ 
ia {3r··ur i {3 a')l*··U'T ••• iT a (jruu 

2 (8 T kl- \ + 8 T kl - \ + + 8 T kl - \ 
(21 _ 1) a {3 iY'''ur ay i {3"'UT '" aT i {3Y'''U 

+ ... 

+ 8UTT7;~: .. ) 

(132) 

which enables us to deduce that (2L + l)Ai is represented by 

the operator 

(133) 

One can check directly that this operator is hermitian conju­

gate to ~i(2~·ala~ + 1) [the representative of A ;(2L + 1)] 

with respect to the scalar product (126), but it is not a 

straightforward matter because of the delta function in d,u. 

One needs to use some results on differentiation of the delta 

function of a complex variable, as described in Ref. (26). 

Formally, tQe operator conjugate to ~i is now seen to be 

ala~i - (2~·ala~ + 1) -\ tia2/a~·a~, which is not a differ­

ential operatoronJy. However,L i ( = ifi£ijkA JAk) is seen to 

be represented by - ifi£ijk~j ala~k' 

Summarizing, the realization of our abstract algebra is 

provided in a Hilbert space JY of analytic functions ifJ (z,~) on 

eX K3, satisfying 

and 
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I dfl (z.~)I¢ (z,~W < 00 • 

The scalar product in K is 

(¢,t{!) = f dfl (z,;)¢ (z,;)*t{!(z,;) , 

(134) 

(135) 

and the relevant operators are represented as 

a a 
V= -, vt=z, K=z-, 

az az 

( a) a aZ 

(2L + I)A = 2;· ~ + 1 ~ - ; a~.a; , 

a 
At =~, L = ;·ar 
L, = - ifl£ijktj ~ • 

a;k 
(136) 

The common eigenvalues of K, L, and L3 are represented as 

Iklm) = [ (2/)! ] 112 

k !21/!(/ + m)!(/- m)! 

Xzkct3y-lml( - €t.)lm l . (137) 

This Hilbert space has a reproducing kernel given by 

K (z',;';z,;) = exp(z'*z + ;'*.;) , (138) 

since Eqs. (122) and (126) together give 

(K (z',;'; ),¢) = ¢ (z',;') . (139) 

The function K (z' ,;' ;z,;) can be seen to be the representative 

in K of Iz',;'). The space K is especially attractive as a 

carrier space for SO(3). If we restrict out attention to func­

tions/(;) analytic on the cone lK3 (in effect, we consider 

those ¢ in K satisfying K¢ = 0), then we have a Hilbert 

subspace Ko with scalar product 

(fl,h) = :z f d 6
;8(;·;)(21;I

Z 
-1)exp( -I;I

Z
) 

X/I (;)* h(;) , (140) 

carrying a reducible unitary representation ofSO(3), with 

hermitian generators 

(141) 

If we label as (I) the (21 + I)-dimensional irreducible repre­

sentation of SO(3), we see that 

Ko = K ooffiKol ffi "', (142) 

where KOl is (21 + I)-dimensional and carries the represen­

tation (/). A basis for KOl is provided by the orthonormal 

functions 

101m) = [. (2/)! ]112(t )I-Iml( _ €t )Iml 
il!(1 + m)!(l- m)! 3 • 

(143) 

ofEq. (137); or altenatively. by the (21 + I) linearly indepen­

dent elements of the traceless, symmetric rank-I tensor 

T?}p."r(;) = tatp,,·tr . (144) 

The decomposition (142) merely symbolizes the expansion 

of any of the analytic functions/in Ko in series form: 
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/(~) = f dl;aP"·rtatp,,·tr . (145) 
I~O 

This space Ko, which can be compared with the Barg­

mann space27 for SU(2), can be said to provide a realization 

of the "modified boson" structure set up by Lohe and 

Hurst. 28 They introduced operators satsifying the same alge­

braic relations as our A and At, but nothing corresponding to 

our v and v t. Recently Bargmann and Todorov29 have de­

scribed a very similar carrier space for SO(3). They also con­

sider analytic functions/(;) on the cone lK3 , but choose a 

more complicated scalar product, and consequently find a 

more complicated reproducing kernel. In their space, how­

ever, the operator conjugate to ti is simply (;·ala; + !) 
a I at, - !t, a 21 a ;·a ;, and these two vector operators, to­

gether with our Land fz -I L, generate a unitary representa­

tion ofSO(3,2). Their space was not derived from a consider­

ation of coherent states of any kind, but we have mentioned 

in BL that there is an so(3,2) algebra associated with the 

oscillator, spanned by our operators L, fz -I L, A, and At, 

where 

A = (2L +1)1/2 A, At = At(2L +1)1/2. (146) 

Had we chosen to define coherent angular momentum states 

by diagonalizing the operators A rather than A, we would 

have arrived at the Hilbert space of Bargmann and Todorov. 

The coherent states so obtained would evidently be general­

ized coherent states for so(3,2) (in particular) in the sense of 

Barut and Girardello l7 and Perelomov. 18 We have already 

given in BL some reasons for our preference for the opera­

tors A and At. The main point is that with our definitions, the 

expectation values of H, K, L, and L in the coherent angular 

momentum states have simple properties-more simple 

than if we were to follow the alternative path. In particular, 

the nice property that in a coherent angular momentum state 

the I values are distributed in probability according to a Pois­

son distribution would be lost if we were to diagonalize the 

A,. 

6. CONCLUDING REMARKS 

The existence of a second set of coherent or quasiclassi­

cal states for the oscillator places the usual ones in a new 

perspective. The two sets share several interesting proper­

ties, as we have seen, and we therefore hope to find interest­

ing applications of our new states. In particular, we hope to 

be able to construct a new diagonal representation of the 

density matrix for the oscillator. 

The usual coherent states are also quasiclassical states 

for the Hamiltonian 

H' =H+aL3 

corresponding to a charged oscillator in a uniform magnetic 

field. The same is true for coherent angular momentum 

states, since the diagonalized operators v, ..1.3, and..1. ± ' like a3 

and a ± (= a I ± ia2), are all shift operators for H '. The new 

states are also quasi-classical states for a Hamiltonian of the 

form 

H' = H + aL3 + !3L, 

which is not an exact Hamiltonian for any physical system 
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but may be of interest in the approximate description of some 

molecular spectra. In that connection, we may also expect 

the coherent angular momentum states to be of value in the 

analysis of Hamiltonians of the form 

H' = H + aL3 + f3L + yL 2 , 

although they will not then define states which are quasiclas­

sical in the same sense as above. 

The analysis we have developed above and in BL can no 

doubt be extended to n > 3 dimensions. The Hilbert space for 

the isotropic oscillator in n dimensions carries only symmet­

ric representations of so(n), labelled by a single nonnegative 

integer I. Accordingly, the first step in the generalization 

would be the introduction of a scalar operator L which has 

nonnegative integer eigenvalues I. One would then proceed 

to resolve n-vector boson operators a, at into shift operators 

for L. There appear to be various interesting alternative 

paths to follow from that point, corresponding to various 

chains of orthogonal subgroups of so(n). 

In the case n = 2, the boson operators a ± are shift op­

erators for the so(2) scalar L 3, and accordingly, the usual 

coherent states and the coherent angular momentum states 

may be identified. 

We recall that the eigenvalue problem for the three­

dimensional isotropic oscillator can also be solved by separa­

tion of variables in a cylindrical-polar coordinate system. 

APPENDIX A 

Are there then "cylindrical" coherent states, as well as "Car­

tesian" and "spherical" ones? The answer is "yes," but they 

can be taken to be the usual (Cartesian) ones. (Diagonalize a3 

and a ± ' which are shift operators for N3 and L3") 

With regard to the definition of coherent angular mo­

mentum states for other Hamiltonians of the form 

H = p2/2M + v(lxl) , 

it is clear that one cannot, in general, hope to obtain quasi­

classical states in the sense described above. The existence of 

this property for the oscillator depends on the special feature 

that the total angular momentum quantum number I ap­

pears linearly in the formula for the energy eigenvalue, when 

expressed in terms of I and the radial quantum number k: 

However, in the more general case one can still diagonalize 

vector lowering operators for L in order to define overcom­

plete sets of states for the "angular part" of the Hilbert space, 

and one may be able to use these to construct representations 

in which the angular part of the density matrix is diagonal. 
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The combination of Eqs. (12) and (14) with the expanded form of Y1m(O,t/J) and property (28) gives 

_ _ 1 2 _ 1 2 00 00 I k 1_ m _ m [ (21 )! ] 1I2( _ 1) k 

Iz,~) - exp( 21z1 . 21~1) k~O I~O m ~_ / (S3) ( S - ) k !2//r(1 + m)!(/- m)! 

x[ 2a
3
k! ]

1I2
sle- \5'L(I+ 1)(52)(_l)m[ (2/+1)(/-m)! ]1I2P7'(COSO)eimq, (AI) 

r (k + 1 + ~) k 41T(l + m)! 

= exp( - !lzl2 - !1~12 - !S2)X [ ;:2 r2 

X ktO Ito [ r~: ~: ~) ] 112( - z)kL f+ ll( SZ) 

X ± 1 (Y2S)'(S3y-mg_)mP7'(cosO)eimq" (A2) 
m~ _I (I + m)! 

using the result that 

r(1 J.) = (21 + 1)!V-; . (A3) 
+ 2 22/ + 1 /! 

We are able to evaluate the sum over m by noting that for any vector v, with spherical polar coordinates v, 0, t/J, 

v.~ = VS3{![ L eiq, + S + e - iq, ]sino + COSO} = vS3{HA -l/A ] sinO + cosO} , (A4) 
S3 S3 

where A = S _ eiq, IS
3

• We can further show, by induction, that 

I 

{HA-l/A]sinO +COSO}/=l! 2: A mp7'(cosO)/(/+m)! , (AS) 

rn = -I 

from which it follows that 

(A6) 

With the use of this result in the case v = (v'2)ax, Eq. (A2) becomes 

[

a] 3/2 00 ~ [ r (I + ~) ] 1!2( _ z)kL (kl + 112)( f:" 2) (V2ax'~)' , 
Iz,~) = exp( - !lzl2 - !1~12 - !S 2)X V 1T k~O (~O r(k + I + ~) ~ l! 

(A7) 
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as in Eq. (15). 

When z = 0 only the k = 0 term contributes, so that 

IO,~) = exp( _ !1~12 _ !a2IxI2) [y'a ]3/2 ~ (y'~~xo~)', 
1T 1-0 • 

(A8) 

which is equivalent to Eq. (16). 

APPENDIX B 

Using the definitions (13) and (106) of aklm and dp, respectively, and property (28), we can write 

f dp(z,~)aklm (z*,~*)*aKLM(z*,~*) 

2 [ (21 )!(2L )! ] 112 f d 2 (I 12) k ( *)K = - zexp - z z z 
r k !K!l!L !21+ L(l + m)!(L + M)!(l- m)!(L - M)! 

X f d6;(21~12 -l)exp( _1~12)8( ~o~)(;3)I-m(;t)L-M( _; + )m( _;",-)M. (B1) 

It is straightforward to show that 

f d 2Z exp( - Iz 1 2)Zk (Z*)K = 1Tk !8 k,K . (B2) 

However, the next integration is not so easy. Letting ~ = x + iy, where x and yare the real vectors, the delta function becomes 

[see Ref. (26)] 

8( ~o~) = 8(lx12 - lyI2)8(2xoy), (B3) 

and the integral becomes 

f d 6
; (21~12 - l)exp( - 1~12)8(~o~)( ;3)I-m(;r)L-M( ~; + n _;"'- )M 

= f d 3
x d 3

y exp( -lxl
2 

- lyI2)8(lxI
2 

-IYI2)8(2xoy)(2IxI2 + 21Yl2 - 1) 

X( - It + M(X3 + iY3)1- m(X3 - iY3)L - M [x, - Y2 + i(X2 + ytlJm[x, - Y2 - i(X2 + YI)J M
• 

and 

We can introduce the new variables r, 0, ifJ, R, t/!, and u by the following: 

[x I' x2, x3] = [r sinO cosifJ, r sinO sinifJ, r cosO J 

~
I] [COSOcosifJ 

Y2 = cosO~inifJ 

3 - smO 

- sinifJ 

cosifJ 

o 

SinOCOsifJ][R cost/!] 
sinOsinifJ Rsint/! . 

cosO u 

The matrix is orthogonal, with· determinant equal to 1. It is easily inverted to give 

u = (xoy)/r. 

Now 

8(2xoy) = 8(2ru) = J... 8(u) , 
2r 

and the integral (B4) becomes, after the u integration 

~ f r dr sinO dO difJ R dR dt/!exp( - r - R 2)8(r - R 2)(2r + 2R 2 - 1) ( - 1) m + M (r cosO - iR sinO cost/!)' - m 

X (r cosO + iR sinO COSt/!)L - M [r sinO cosifJ - R cosO sinifJ cost/! - R cosifJ sint/! 

+ i(r sinO sinifJ + R cosO cosifJ cost/! - R sinifJ sint/!) J m [r sinO cosifJ - R cosO sinifJ cost/! - R cosifJ sint/J 

- i(r sinO sinifJ + R cosO cosifJ cost/! - R sinifJ sint/J) J M • 

Since 

8(r - R 2) = _1_ 8(r - R ) 
r+R 

here, we can perform the R integration and obtain 
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! f r dr sine de difJ dt/! exp( - 2r),-' + L(4r -1)( - l)m + M (cose - i sine COSt/!)/- m(cose + i sine COSt/!)L - M 

X [sine - sint/! + i cose cost/!] m [sine - sint/! - i cose cost/!] Mei(m - M)<I> (BlO) 

= !m5m ,M f r dr sine de dt/! exp( - 2r),-' +L(4r - l)(cose - i sine COSt/!)1 x (cose + i sine COSt/!)L 

X (1 + sine sint/!) - m(1 - sine sint/!)m . (B11) 

Here we make yet another change of variables from e, t/! to a, /3, where 

[sina cos /3, sina sin /3, cosa] = [cose, sine cost/!, sine sint/!] (B12) 

and the integral becomes 

! m5m,M frdrsina da d/3exp( -2r),-'+L(4r -1)(1 + cosa)-m(1- cosa)m(sina)l+Lei(L-/){3 (B13) 

= rtJm,MtJ1,L f r dr exp( - 2r)rl (4r - 1) f sina da (1 + cosay - m(1 - cosa)1 + m (B14) 

= r l!21 (1- m)!(1 + m)! tJ tJ 
2 (2/)! I,L m,M' 

(B15) 

using the properties of the Gamma and Beta functions. Substitution of(B15) and (B2) into (B1) gives the required result, Eq. 

(105). 
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