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Abstract

The Laplacian matrix of a graph can be used in
many areas of mathematical research and has a
physical interpretation in various theories. How-
ever, there are a few open issues in the Lapla-
cian graph construction: (i) Selecting the appro-
priate scale of analysis, (ii) Selecting the appro-
priate number of neighbors, (iii) Handling multi-
scale data, and, (iv) Dealing with noise and out-
liers. In this paper, we propose that the affinity be-
tween pairs of samples could be computed using
sparse representation with proper constraints. This
parameter free setting automatically produces the
Laplacian graph, leads to significant reduction in
computation cost and robustness to the outliers and
noise. We further provide an efficient algorithm to
solve the difficult optimization problem based on
improvement of existing algorithms. To demon-
strate our motivation, we conduct spectral cluster-
ing experiments with benchmark methods. Empir-
ical experiments on 9 data sets demonstrate the ef-
fectiveness of our method.

1 Background and Motivation
Graph theory is an important branch in mathematics and
has many applications. There are many algorithms built on
graphs: (1) Clustering algorithms [Ng et al., 2002; Hagen
and Kahng, 1992; Shi and Malik, 2000; Nie et al., 2014], (2)
Dimension reduction algorithms based on manifold, such as
LLE [Roweis and Saul, 2000] and Isomap [Tenenbaum et al.,
2000], (3) Semi-supervised learning algorithms, such as label
propagation [Zhu et al., 2003; Wang et al., 2014], (4) Rank-
ing algorithms, such as Page-Rank [Page et al., 1999] and
Hyperlink-Induced Topic Search (HITS) [Kleinberg, 1999].
Many data sets also have a natural graph structure, web-pages
and hyper-link structure, protein interaction networks and so-
cial networks, just to name a few. In this paper, we limit our
discussion to the data sets that can be transformed to similar-
ity graph by simple means.
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The key to many applications mentioned lies in the ap-
propriate construction of the similarity graphs. There are
various ways to set up such graphs, which depend on both
the application and data sets. However, there are still a few
open issues: (i) Selecting the appropriate scale of analysis,
(ii) Selecting the appropriate number of neighbors, (iii) Han-
dling multi-scale data, and, (iv) Dealing with noise and out-
liers. There are already a few papers [Long et al., 2006;
Li et al., 2007] solving one of these issues. In particular, the
classic paper self-tuning spectral clustering [Zelnik-Manor
and Perona, 2004] by L. Zelnik-Manor et al. solves issues
(i) and (iii). However, there is no single method that solves
all of these issues to the best of our knowledge.

In the remainder part of this section, we first provide a
brief review about commonly used similarity graph construc-
tion methods. Next, we present a concise introduction to
sparse representation so as to lay out the background of our
method. In Section 2, we present our motivation and for-
mulate our Simplex Sparse Representation (SSR) objective
function Eq. (10). We propose a novel accelerated projected
gradient algorithm to optimize the objective function in an
efficient way. Our experiment part consists of two sections,
one with a synthetic data set to highlight the difference be-
tween our method and previous method, the other with real
data sets to demonstrate the impressive performance of SSR.
We conclude this paper with the conclusion and future work.

1.1 Different Similarity Graphs
There are many ways to transform a given set x1,. . . ,xn of
data points with pairwise similarities Sij or pairwise distance
Dij into a graph. The following are a few popular ones:

1. The ε-neighbor graph: We connect all points whose
pairwise distances are smaller than ε.

2. k-nearest neighbor graph: The vertex xi is connected
with xj if xj is among the k-nearest neighbors of xi.

3. The fully connected graph: All points are connected
with each other as long as they have positive similar-
ities. This construction is useful only if the similar-
ity function models local neighborhoods. An exam-
ple of such function is the Gaussian similarity function
S(xi,xj) = exp

(
−‖xi−xj‖2

2σ2

)
, where σ controls the

width of neighborhoods.
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Note that all the above three methods suffer from some of the
open issues mentioned. The ε-neighbor graph method needs
to find the appropriate ε to establish the edge connections,
the k-nearest neighbor graph uses the specified k to connect
neighbors for each node, the σ in Gaussian similarity method
clearly determines the overall shape of the similarity graph.
In short, they are not parameter free. Also, ε is clearly prone
to the influence of data scale, k and σ would also be dom-
inated by any feature scale inconsistence among these data
vectors. Therefore, a parameter free and robust similarity
graph construction method is desired and this is our motiva-
tion of this paper.

1.2 Introduction to Sparse Representation
Suppose we have n data vectors with size d and arrange them
into columns of a training sample matrix

X = (x1, . . . ,xn) ∈ Rd×n.
Given a new observation y, sparse representation method
computes a representation vector

β = (β1, · · · , βn)T ∈ Rn (1)
to satisfy

y ≈
n∑
i=1

xiβi = Xβ (2)

To seek a sparse solution, it is natural to solve
min
β
‖Xβ − y‖22 + λ0‖β‖0 (3)

,where pseudo norm `0 counts the number of non-zero ele-
ments in β and λ0 > 0 is the controlling parameter.

Recent discovery in [Donoho, 2004; Candès and Tao,
2006] found that the sparse solution in Eq. (3) could be ap-
proximated by solving the `1 minimization problem:

min
β
‖β‖1, s.t. Xβ = y (4)

or the penalty version:
min
β
‖Xβ − y‖22 + λ1‖β‖1 (5)

This `1 problem can be solved in polynomial time by standard
linear programming methods [Roweis and Saul, 2000].

In the literature, sparse representation framework is well
known for its robustness to noise and outliers in image classi-
fication [Wright et al., 2008]. It is noting that in such scheme,
there is no restriction on the scale consistence for the data
vectors. In other words, sparse representation has the poten-
tial to address the scale inconsistence and outlier issue pre-
sented in the introduction.

2 Similarity Matrix Construction with
Simplex Representation

Assuming we have the data matrix X = [x1,x2, . . . ,xn] ∈
Rd×n, where each sample is (converted into) a vector of di-
mension d. The most popular method to compute the similar-
ity matrix S is using Gaussian kernel function

Sij =

 exp{
−‖xi − xj‖22

2σ2
}, xi,xj are neighbors

0, otherwise

One major disadvantage of this method is that the hyper-
parameter σ in the Gaussian kernel function is very sensitive
and is difficult to tune in practice.

The sparse representation proposed in [Roweis and Saul,
2000] can be applied here to compute the similarity matrix
S. Specifically, the similarities αi ∈ Rn−1 between the i-th
feature and other features are calculated by a sparse represen-
tation as follows:

min
αi

‖X−iαi − xi‖22 + λ‖αi‖1 (6)

where X−i = [x1, . . . ,xi−1,xi+1, . . . ,xn] ∈ Rd×(n−1), i.e,
the data matrix without column i.

Since the similarity matrix is usually non-negative, we can
impose the non-negative constraint on problem (6) to mini-
mize the sum of sparse representation residue error:

n∑
i=1

min
αi≥0

‖X−iαi − xi‖22 + λ‖αi‖1 (7)

The parameter λ is still needed to be well tuned here. It is
easy to note that Eq. (7) is the sum of n independent variables,
as a result, we will limit the discussion to a single term in
the following context. More importantly, when the data are
shifted by constants t = [t1, · · · , td]T , i.e., xk = xk + t for
any k, the computed similarities will be changed. To get the
shift invariant similarities, we need the following equation:∥∥(X−i + t1T )αi − (xi + t)

∥∥2
2

= ‖X−iαi − xi‖22, (8)

which indicates αTi 1 = 1. Imposing the constraint αTi 1 = 1
on the problem (7), we have

min
αi

‖X−iαi − xi‖22 + λ‖αi‖1
s.t. αi ≥ 0,αTi 1 = 1

(9)

Interestingly, the constraints in problem (9) makes the second
term constant. So problem (9) becomes

min
αi

‖X−iαi − xi‖22
s.t. αi ≥ 0,αTi 1 = 1

(10)

The constraints in problem (10) is simplex, so we call this
kind of sparse representation as simplex representation.

Note that the above constraints (`1 ball constraints) indeed
introduce sparse solution αi and have empirical success in
various applications. In order to solve the Eq. (10) for high
dimensional data, it is more appropriate to apply first-order
methods, i.e, use function values and their (sub)gradient at
each iteration. There are quite a few classic first-order meth-
ods, including gradient descent, subgradient descent, and
Nesterovs optimal method [Nesterov, 2003]. In this paper,
we use the accelerated projected gradient method to optimize
Eq. (10). We will present the details of the optimization and
the algorithm in next section.

3 Optimization Details and Algorithm
Our accelerate projected gradient method introduces an aux-
iliary variable to convert the objective equation into an easier
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one, meanwhile the auxiliary variable approximates and con-
verges to the solution αi in an iterative manner. The follow-
ing part of this section provides the details. For the conve-
nience of notations, we use f(αi) to represent the objective
function in Eq. (10) and C to represent the associated con-
straints. In other words, we need to solve min

αi∈C
f(αi).

Let us assume that the auxiliary variable is zi and we will
implement the alternative optimization method. We first solve
α0
i via solving Eq. (9) with λ = 1 without considering the

constraints, then initialize z0i = α0
i to start the iterative pro-

cess, here zt−1i denotes zi at iteration t − 1. c1 = 1 is the
initial value of Newton acceleration coefficient, which will
be updated at each iteration.

Next, we start the iterative approximation process. At iter-
ation t, we approximate αi via Taylor expansion up to second
order:

α
t
i = argmin

αi

f(z
t−1
i ) + (αi − z

t−1
i )

T
f
′
(α

t−1
i ) +

L

2

∥∥∥αi − z
t−1

∥∥∥2

F
,

(11)

With extra terms independent of αi, we could write the
previous objective function into a more compact form as fol-
lows:

αti = arg min
αi∈C

L

2

∥∥∥∥αi − (zt−1i − 1

L
f
′
(zt−1i ))

∥∥∥∥2
2

(12)

The critical step of the our algorithm is to solve the follow-
ing proximal problem:

min
αi

1
2 ‖αi − v‖22 ,

s.t αi ≥ 0,αT1 = 1.
(13)

Here we use v to represent zt−1i − 1
Lf
′
(zt−1i ) for notation

convenience. We will introduce an efficient approach to solve
Eq. (13) in a separate subsection below.

Then, we update the acceleration coefficient as follows:

ct+1 =
1 +

√
1 + 4c2t
2

(14)

Last the auxiliary variable is updated with the formula

zti = αti +
ct − 1

ct+1
(αti −αt−1i ) (15)

Note that Eq. (14) and Eq. (15) together accelerate our algo-
rithm.

The number of iteration is updated with t = t+ 1.
We repeat the Eqs. (11)-(15) until the algorithm converges

according to our criteria. Note that our algorithm converges
at the order of O(t2), here t is number of iterations. We have
to omit the proof due to space constrain, interested readers
may refer to [Nesterov, 1983; 2003; 2005; 2007].

Our whole algorithm is summarized as follows:
Here the convergence criteria is that the relative change of

‖αi‖, the frobenius norm of αi, is less than 10−4. The em-
pirical experiments conducted in this paper show that our al-
gorithm converges fast and always ends within 30 iteration.

One subtle but important point we need to point out here
that the similarity matrix S = [α̂1, . . . , α̂n] is not necessarily

Input: Data Matrix X
Output: α1, . . . ,αn
1. Initialize αi and zi for i from 1 to n
while Convergence Criteria Not Satisfied do

2. Optimize αi with the induced equation 13
using the method introduced in the corresponding
subsection.
3. Update coefficient ct+1 =

1+
√

1+4c2t
2

4. Update zti = αti + ct−1
ct+1

(αti −αt−1i )

5. t=t+1
end

Algorithm 1: Accelerated Projected Gradient Method

symmetric. Here, α̂i is the result of inserting coefficient 0 for
its i-th of αi, which is of dimension n. The coefficient αij ,
the similarity between xi and xj forX−i, does not have to be
equal to αji. Our approach to deal with this is to get the final
similarity matrix

W =
S + ST

2
, (16)

i.e, get the average of S and its transpose. This is a conven-
tional practice and the correctness is easy to see, so we omit
the proof here. After we get the similarity matrix, we could
then follow the standard spectral clustering procedure, i.e,
calculate the Laplacian matrix, get the corresponding spec-
tral vectors, then calculate the clustering based on K-means
clustering. The key difference between our proposed method
and standard spectral clustering method is how the similarity
graph is constructed. Conventional similarity graph generally
is constructed with one of the methods specified in the in-
troduction part and clearly is not parameter-free. Also, these
methods clearly are prone to outlier and data scale inconsis-
tence influence.

We would like to summarize the main advantages of our
method Simplex Sparse Representation (SSR).

First It is parameter free. There is no parameter tuning for
either data vector scale or the number of neighbors.

Second The simplex representation adopts the merits of
sparse representation. Our method is therefore robust
to scale inconsistence and outlier noise issues.

Third Our optimization algorithm is easy to implement and
converges fast.

3.1 Optimization Algorithm to Eq. (13)
We write the Lagrangian function of problem (13) as

1

2
‖αi − v‖22 − γ(αTi 1− 1)− λTαi, (17)

where γ is a scalar and λ is a Lagrangian coefficient vector,
both of which are to be determined. Suppose the optimal so-
lution to the proximal problem (13) is α∗, the associate La-
grangian coefficients are γ∗ and λ∗. Then according to the
KKT condition [Boyd and Vandenberghe, 2004], we have the
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following equations:
∀j, α∗ij − vj − γ∗ − λ∗j = 0 (18)

∀j, α∗ij ≥ 0 (19)

∀j, λ∗j ≥ 0 (20)

∀j, α∗ijλ
∗
j = 0 (21)

here α∗ij is the j-th scalar element of vector α∗i . Eq. (18)
can be written as α∗ij − vj − γ∗1 − λ∗j = 0. According to

the constraint 1Tα∗i = 1, we have γ∗ = 1−1Tv−1Tλ∗

n . So
α∗ = (v − 11T

n v + 1
n1−

1Tλ∗

n 1) + λ∗.
Denote λ̄∗ = 1Tλ∗

n and u = v− 11T

n v + 1
n1, then we can

write α∗ = u + λ∗ − λ̄∗1. So ∀j we have

α∗ij = uj + λ∗j − λ̄∗. (22)

According to Eq. (19)-(22) we know uj + λ∗j − λ̄∗ = (uj −
λ̄∗)+, here x+ = max(x, 0). Then we have

α∗j = (uj − λ̄∗)+. (23)

So we can obtain the optimal solution α∗ if we know λ̄∗.
We write Eq.(22) as λ∗j = α∗ij+λ̄∗−uj . Similarly, accord-

ing to Eqs. (19)-(21) we know λ∗j = (λ̄∗−uj)+. As v is a n−

1-dimensional vector, we have λ̄∗ = 1
n−1

n−1∑
j=1

(λ̄∗ − uj)+.

Defining a function as

f(λ̄) =
1

n− 1

n−1∑
i=1

(λ̄− uj)+ − λ̄, (24)

so f(λ̄∗) = 0 and we can solve the root finding problem to
obtain λ̄∗.

Note that λ∗ ≥ 0, f ′(λ̄) ≤ 0 and f ′(λ̄) is a piecewise linear
and convex function, we can use Newton method to find the
root of f(λ̄) = 0 efficiently, i.e,

λ̄t+1 = λ̄t −
f(λ̄t)

f ′(λ̄t)

4 Experiments on Synthetic Data Sets
In this part, we would like to compare our proposed method
with Self-Tuning Spectral Clustering (STSC) proposed in
[Zelnik-Manor and Perona, 2004]. STSC is also a param-
eter free spectral clustering method and relative new. We
will first give a brief overview about STSC and then design a
synthetic data experiment to highlight its difference between
our method. STSC uses local scale parameters carefully and
avoids using an uniform scale parameter, therefore the out-
lier influence is reduced. On the other hand, SSR focuses
on representing every data vector using other vectors directly,
therefore we don’t worry about how to measure the similarity
between vectors using appropriate metrics.

Next, we conduct a synthetic data experiment to demon-
strate the difference in similarity graph construction between
STSC and our algorithm SSR.

Input: Data Matrix X ∈ Rd×n
Output: α1, . . . ,αn
1. Compute the local scale σi for each xi using the
formula

σi = d(xi,xK),

where xK is xi’s K-th neighbor
2. Construct the affinity matrix and normalized
Laplacian matrix L. 3. Find v1, . . . , vC the C largest
eigenvectors of L and form the matrix
V = [v1, . . . ,vC ] ∈ Rn×C , where C is the largest
possible group number
4. Recover the rotation R which best aligns V’s columns
with the canonical coordinate system using the
incremental gradient descent scheme
5. Grade the cost of the alignment for each group

number, up to C, according to J =
n∑
i=1

C∑
j=1

Z2
ij

M2
i
, where

Z = VR
6. Set the final group number Cbest to be the largest
group number with minimal alignment cost.
7. Take the alignment result Z of the top Cbest
eigenvectors and assign the original point xi to cluster c
if and only if max

j

(
Z2
ij

)
= Z2

ic

Algorithm 2: Self-Tuning Spectral Clustering

We construct 3 groups of normal distributed vectors of di-
mension 10. First group consists of 10 vectors and with mean
value 1, second, third group both contain 10 vectors but with
mean 2 and 3 respectively. We try to do the clustering for
these 3 groups vectors. To make the problem non-trivial, we
also add noise with mean 0 and standard deviation 0.5 to the
total 30 vectors. Such experiments are repeated 100 times.
We now would like to introduce clustering measure metrics
to evaluate clustering performance, which would be used to
evaluate synthetic data set mentioned and real data sets in the
next part.

4.1 Evaluation Metrics
To evaluate the clustering results, we adopt the three widely
used clustering performance measures which are defined be-
low.

Clustering Accuracy discovers the one-to-one relation-
ship between clusters and classes and measures the extent
to which each cluster contained data points from the corre-
sponding class. Clustering Accuracy is defined as follows:

Acc =

∑n
i=1 δ(map(ri), li)

n
, (25)

where ri denotes the cluster label of xi and li denotes the
true class label, n is the total number of samples, δ(x, y) is
the delta function that equals one if x = y and equals zero
otherwise, and map(ri) is the permutation mapping function
that maps each cluster label ri to the equivalent label from the
data set.

Normalized Mutual Information(NMI) is used for deter-
mining the quality of clusters. Given a clustering result, the
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Figure 1: A demonstration for similarity graph coefficients
between SSR and STSC. We do the histogram plot for the
900 pair-wise similarity coefficients for both methods. It can
be observed that SSR yields a significant more sparse solution
than STSC does. Such sparsity could also improve clustering.

NMI is estimated by

NMI =

∑c
i=1

∑c
j=1 ni,j log

ni,j

nin̂j√
(
∑c
i=1 ni log ni

n )(
∑c
j=1 n̂j log

n̂j

n )
(26)

where ni denotes the number of data contained in the cluster
Ci(1 ≤ i ≤ c), n̂j is the number of data belonging to the
Lj(1 ≤ j ≤ c), and ni,j denotes the number of data that are
in the intersection between cluster Ci and the class Lj .

Purity measures the extent to which each cluster contained
data points from primarily one class. The purity of a clus-
tering is observed by the weighted sum of individual cluster
purity values, given as follows:

Purity =
K∑
i=1

ni
n
P (Si), P (Si) =

1

ni
max
j

(nji ) (27)

where Si is a particular cluster size of ni, n
j
i is the number

of the i-th input class that was assigned to the j-th cluster. K
is the number of the clusters and n is the total number of the
data points.

4.2 Synthetic Data Experiment Results

We first plot the similarity graph coefficients for the two
methods in Fig. (1). Since the random vectors vary a lot dur-
ing different times of experiments, it makes no sense plotting
the average coefficient. As a result, we have to demonstrate
the plot for a typical experiment, however, the plot does not
vary noticeable according to our empirical experiments. It
can be observed that our method yields a much sparse simi-
larity graph.

Next, we summarize the average clustering performance of
these two methods on this synthetic data set in Table 1. It can
be observed that both methods achieve very good clustering
results due to the clear structure of data matrix. However,
SSR slightly outperforms STSC in terms of all three measure
metrics.

Measure Acc
SSR 0.976± 0.013
STSC 0.953± 0.014

Measure NMI
SSR 0.963± 0.011
STSC 0.943± 0.017

Measure Purity
SSR 0.976± 0.013
STSC 0.953± 0.014

Table 1: Clustering Performance on Synthetic Data Set for
Two Parameter-Free Methods

5 Experiments on Real Data Sets
In this section, we will evaluate the performance of the pro-
posed method on benchmark data sets. We compare the
our method with K-means, NMF [Lee and Seung, 2001],
Normalized Cut (NCut) [Shi and Malik, 2000] and Self-
Tuning Spectral Clustering (STSC) [Zelnik-Manor and Per-
ona, 2004]. K-means and NMF are classic clustering meth-
ods and perfect for benchmark purpose. We also include NC
and STSC here since their close connection with our proposed
method.

Parameter setting is relatively easy for these methods.
STSC and our method are both parameter free. For K-means
and NMF, we set the number of clusters equal to the num-
ber of classes for each data set. For Ncut, we construct the
similarity matrix via tuning the scale parameter σ from the
list {10−2, 10−1, 1, 101, 102}. Under such setting of each
method, we repeat clustering 30 times and report the average
for each method.

There are in total 9 data sets used in our experiment section.
Among those, 6 are image ones, AR 1[Martinez and Kak,
2001], AT&T 2[Samaria and Harter, 1994], JAFFE [Lyons
et al., 1998], subset of MNIST [LeCun et al., ], subset of PIE
3[Sim et al., 2002], subset of UMIST. The other 3 non-image
ones are from UCI machine learning repository [Frank and
Asuncion, 2010]: Abalone, Ecoli and Scale.

Table 1 summarizes the characteristics of the data sets used
in the experiments.

5.1 Experiment Results and Discussions
Table 3 summarizes the results for all methods on the bench-
mark data sets specified above. We bold the corresponding
result if it is statistically significant better than results from
other methods via T-test. It can be observed that our proposed
method outperforms other methods on all these data sets with
the specified metrics. In particular, our method significantly
gets a better result than Ncut (standard spectral clustering)
and STSC (parameter-free spectral clustering) on some image
data sets. AR and PIE, which both contain a large number of

1http://www2.ece.ohio-state.edu/ aleix/ARdatabase.html, other
downloads 1.

2http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.
html

3http://www.zjucadcg.cn/dengcai/Data/data.html,we use first 10
images in each class
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Data set No. of Observations Dimensions Classes
AR 2600 792 100

AT&T 400 168 40
JAFFE 360 90 15
MNIST 150 196 10

PIE 680 256 68
UMIST 360 168 20
Abalone 4177 8 3

Ecoli 327 7 5
Scale 625 4 3

Table 2: Description of Data Set

classes and noisy samples, are widely used benchmark data
sets for sparse representation related classification methods.
Note that Ncut could get better result if we tune the scale pa-
rameter in a refined way. However, as we mentioned in the
introduction, choosing an appropriate scale parameter is diffi-
cult when the ground truth is unknown. Choosing an uniform
scale parameter is also prone to outlier influence. The results
demonstrate that our method provides the potential solution
to the open issue in spectral clustering.

5.2 Computational Complexity and Scalability
Discussion

Our method provides a parameter-free way to construct the
similarity graph for subsequent clustering task. Its computa-
tional complexity is comparable to conventional spectral clus-
tering methods, indeed significantly faster. For each data vec-
tor, the sparse coefficient vector will converge in the quadratic
order in each iteration due to integrated Newton acceleration
idea. The algorithm usually converges after a limited num-
ber of iterations. Our method runs efficiently on individual
machines.

It is noting that our method does not have scalability issue
on distributed computing system either. In addition to its im-
pressive performance on individual machine, our method can
be easily extended to distributed computing platform. With
Apache Spark, we can hash all data vectors in the memory,
compute the individual coefficient vectors on work nodes, and
transmit the αs back to name node. This is due to the fact the
sparse vector α for each individual vector can be easily par-
alleled.

6 Conclusion and Future Work
In this paper, we proposed a parameter free spectral clustering
method that is robust to data noise and scale inconsistence.
Our framework addresses the potential solution to many open
issues of spectral clustering. Our simplex representation ob-
jective function is derived in a natural way and solved via a
novel algorithm. The projected gradient method was accel-
erated via a combination of auxiliary variable and Newton
root finding algorithm. Empirical experiments on both syn-
thetic and real data sets demonstrate the effectiveness of our
method.

In the future, we have two further research directions.
First, we will try to encode label information in our graph

(a) Accuracy

DataSets k-means NMF NCut STSC SSR
AR 0.133 0.143 0.158 0.130 0.324
AT&T 0.664 0.678 0.698 0.685 0.763
JAFFE 0.789 0.774 0.795 0.813 0.902
MNIST 0.641 0.636 0.647 0.693 0.796
PIE 0.229 0.241 0.234 0.186 0.325
UMIST 0.475 0.457 0.443 0.394 0.514
Abalone 0.508 0.519 0.465 0.481 0.513
Ecoli 0.497 0.486 0.481 0.476 0.502
Scale 0.517 0.535 0.536 0.541 0.579

(b) NMI

DataSets k-means NMF NCut STSC SSR
AR 0.321 0.317 0.376 0.353 0.536
AT&T 0.846 0.848 0.858 0.856 0.892
JAFFE 0.848 0.837 0.863 0.872 0.913
MNIST 0.665 0.654 0.676 0.681 0.731
PIE 0.537 0.528 0.531 0.524 0.553
UMIST 0.667 0.657 0.653 0.598 0.713
Abalone 0.115 0.133 0.123 0.118 0.147
Ecoli 0.678 0.684 0.687 0.668 0.695
Scale 0.129 0.089 0.107 0.118 0.147

(c) Purity

DataSets k-means NMF NCut STSC SSR
AR 0.137 0.142 0.160 0.145 0.344
AT&T 0.712 0.724 0.737 0.725 0.750
JAFFE 0.817 0.812 0.811 0.803 0.913
MNIST 0.641 0.636 0.667 0.693 0.796
PIE 0.259 0.277 0.257 0.231 0.369
UMIST 0.545 0.527 0.517 0.487 0.564
Abalone 0.481 0.474 0.468 0.463 0.494
Ecoli 0.546 0.564 0.575 0.568 0.583
Scale 0.667 0.658 0.655 0.632 0.684

Table 3: Clustering Results on Benchmark Data Sets

construction, and therefore extend our framework to semi-
supervised case. In the literature, there have been extensive
work in semi-supervised graph learning [Kulis et al., 2005;
Huang et al., 2013b]. In terms of our framework, we may
consider using `2,1 norm in Eq. (7) to take advantage of struc-
tural sparsity instead of flat sparsity. Second, we may further
look into how to improve the clustering performance after we
get the similarity graph, prior work include [Huang et al.,
2013a].
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