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A NEW SIMPLICIAL VARIABLE DIMENSION ALGORITHM
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A new simplicial variable dimension restart algorithm is introduced to solve the nonlinear
complementarity problem on the product space S of unit simplices. The triangulation which
underlies the algorithm differs from the triangulations of S used thus far. Moreover, the number
of rays along which the algorithm can leave the arbitrarily chosen starting point is much larger.
More precisely, there is a ray leading from the starting point to each vertex of S. In case S is the
product of n one-dimensional unit simplices the alogrithm is similar to the octahedral algorithm
on R" having 2" rays. Also, the accuracy of an approximate solution in the terminal simplex of
the algorithm is in general better than for the other algorithms on S. Computational results will
show that the number of iterations for the new algorithm is much less. The examples concern the
computation of equilibria in noncooperative games, exchange economies and trade models.

Key words: Nonlinear complementarity problem, triangulation, vector labelling.

1. Introduction

To compute fixed points of continuous functions from the product space S of N
unit simplices §"%={x e R¥"|L¢ ) =1}, j=1,..., N, in van der Laan and
Talman [5] a simplicial variable dimension algorithm was introduced. This algorithm
is a generalization of an algorithm introduced in van der Laan and Talman [2]
solving fixed point problems on a unit simplex. Such a variable dimension algorithm
subdivides the set on which the problem is defined into simplices, labels the vertices
of the simplices and searches for a simplex which yields an approximate solution
to the problem. Starting from an arbitrary point a path of adjacent simplices of
varying dimension is generated until such a simplex is found. To guarantee the
existence of such a simplex the vertices on the boundary must satisfy a so-called
properness condition. Recently in van der Laan, Talman and Van der Heyden [7]
the algorithm on S was generalized for general labellings in order to solve the
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nonlinear complementarity problem on S. Typically this problem has solutions on
the boundary of S. The number of one-dimensional sets (rays) along which the
algorithm in [7] can leave the initial point is equal to the number of variables, Zil
(m+1). In case N =1, n, = n, there is a ray leading from the initial point to each
of the n+1 vertices of S". Due to the underlying so-called Q-triangulation of S
these rays are broken lines. It would be more natural to have straight lines from
the starting point to the vertices of S".

The basic algorithm on S with proper labelling was adapted to a class of algorithms
for computing zero points {or fixed points) of continuous functions from R" to R"
in van der Laan and Talman [4]. The so-called (n+1)-ray and 2n-ray algorithm
are special cases of this class where there are n+1 and 2n rays resp. to leave the
arbitrarily chosen starting point in R".

Subsequently Wright [13] introduced the 2"-ray or octahedral algorithm. To solve
the nonlinear complementarity problem (NLCP) with lower and upper bounds both
the 2n-tay and 2"-ray algorithm were adapted in [6]. The set C" on which this
problem is defined can be seen as the product space of n one-dimensional simplices.
In case of the 2"-ray algorithm there is a ray from the starting point to each of the
2" vertices of C”. Due to the underlying K'-triangulation (see [11]) these rays are
again broken lines.

In this paper we present a simplicial variable dimension algorithm to solve the
nonlinear complementarity problem on S with rays leading from the starting point
to each of the H}i] (n;+ 1) vertices of S. The new triangulation of S which underlies
the algorithm is called the V-triangulation and induces rays which are straight lines
from the starting point to the vertices of S. In addition the algorithm allows for
generalized labellings. The new algorithm, which we call the product-ray algorithm,
generates a sequence of adjacent simplices of varying dimension of the V-triangula-
tion until an approximating simplex is found. This path is followed by alternating
replacement steps in the triangulation and linear programming pivoting steps in a
system of Zﬁl__l (n;+1)+1 equations. This system differs from the system of equations
used in the algorithm on S described in [7]. When N =1 the system is equivalent
to the latter system, although the path of generated simplices differs since another
triangulation underlies the algorithm. For N> 1, however, the systems are not
equivalent. As will be argued below, the accuracy of the approximate solution at
the terminal simplex of the new algorithm is typically better than the accuracy of
such a solution for the algorithm described in [7]. So, to find an approximate
solution with a given accuracy, we may expect that the new algorithm needs fewer
restarts and therefore less function evaluations. Computational results for three
different applications confirm that the new algorithm performs better even in the
case N =1, The first application concerns the computation of Nash equilibrium
vectors in noncooperative N-person games. The second application deals with a
pure exchange economy and the last one with an international trade model.

The paper is organized as follows. In Section 2 a description of the V-triangulation
of the unit simplex is given. Section 3 describes the V-triangulation of the product
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space S of unit simplices and gives the path of points followed by the algorithm to
find an approximate solution of the NLCP on S. A comparison is made with the
algorithm described in [7]. Section 4 describes the steps of the algorithm to follow
this path. Some variants of the triangulation are discussed in Section 5. Special
attention is drawn to the case N = 1 when S is a unit simplex. Finally, computational
results are given in Section 6.

2. The V-triangulation of the unit simplex

The problem discussed in this section is the so-called nonlinear complementarity
problem (NLCP) on the n-dimensional unit simpiex S". This problem can be stated
as follows:

let z be a continuous function from S" into R"*! satisfying x"z(x) =0 for all x
in $”. Find an x* in §" such that z(x*) <0,

This problem is equivalent to the Brouwer fixed point problem on S".

To solve the fixed point problem on S” two so-called simplicial variable dimension
restart algorithms have been developed by van der Laan and Talman, see [2, 3].
These algorithms differ in the underlying triangulation of S”, the so-called Q- and
the U-triangulation resp. The latter triangulation is a triangulation of the affine hull
of §" and does not triangulate (the boundary of) S”. These algorithms were developed
for solution points in the interior of S”".

In general the NLCP on $" can have solutions on the boundary of S". Van der
Laan, Talman and Van der Heyden [7] introduced a simplicial algorithm to solve
the NLCP on §". The Q-triangulation underlies the algorithm and the algorithm
allows for movements on the boundary of S". A drawback lies in the underlying
triangulation. Let i be the index in the set {1, ..., n+1} for which z,(v) = max, z,(v),
where v is the arbitrary starting point of the algorithm. For the moment we assume
that this index is unique. Then the i-th component of v is initially increased and
exactly one other component of v is decreased with the same amount in order to
stay in §" and to utilize the Q-triangulation of S". More precisely, the one-
dimensional piecewise linear set A({i}) along which the algorithm leaves the starting
~ point v when z,(v) = max,, z,(v) connects v with the vertex e(i) of §” by increasing
the i-th component of v to one and by successively decreasing the j-th component
until zero for j=i+1,...,n+1,1,...,i~1. This is illustrated for n =2 in Fig. 2.1.

If z;(x) is maximal for all x in S" for some index i, the algorithm proposed in
[7] ends with the vertex e(i) of S" which is an exact solution for the NLCP. An
increase of the i-th component of v for which z;(v) is maximal is obvious but the
decrease with the same amount of exactly one other component of v seems to be
arbitrary. A decrease of all the other components of v to compensate the increase
of v; is more natural. When the U-triangulation underlies the algorithm these other
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e(3)

(1) e(2)

Adj2))

Fig. 2.1. The one-dimensional sets fi({i}), i=1,...,n+1], of the algorithm proposed by van der Laan,
Talman and Van der Heyden, n =2. A({i}) connects v and e(i), i=1,...,n+1.

components are all decreased with the same amount. However this triangulation
does not triangulate the boundary sets of S” and is therefore not suitable for use
in a simplicial algorithm for solving the NLCP on S”. In this section we will propose
a new triangulation which combines the advantages of both the Q- and U-triangula-
tion in the sense that it triangulates S itself and therefore also the boundary of 5"
and that it induces one-dimensional sets A({i}) connecting v and the vertex e(i) of
S" along which all the components v, of v, j # i, are simultaneously decreased. This
triangulation of S” which we call the V-triangulation is generalized in Section 3 to
a new triangulation of the product space § of unit simplices being the base for a
new simplicial variable dimension restart algorithm for solving the NLCP on S.

The V-triangulation of S" is such that along the induced sets A({i}) connecting
vande(i),i=1,...,n+1,the components v, of v, j # i, are proportionally decreased
to zero so that A{{i}) is just the convex hull of v and e(i), ie I,4,={1,...,n+1}.
For n =2 the sets A({i} are illustrated in Fig. 2.2.

A proportional decrease of the components v; of v, j# i, seems most natural if
z;(v) = max, z,(v) since if z;(x}=max, z,(x) for all x in $" a direct movement is
made from v to e(i) being the solution of this NLCP. Now, for T# I, let A(T)
be the convex hull of the point v and the vertices (1), i € T. If not z;(x) = max, z,(x)
for all x in S” the simplicial algorithm based on the V-triangulation of §” will
approximately generate points x in A(T) such that z,(x) = max, z,(x) for all k in
T, for varying T, until an approximate solution is found. For rn =2 the sets A(T),
T< 1,44, are illustrated in Fig. 2.3.

We will now describe the V-triangulation of S" in detail. The triangulation is
such that each nonempty set A(T), T< I,.,, is subdivided into f-dimensional
simplices or t-simplices where  is the cardinality of the set 7, i.e. t=|T].
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e(3)
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e(l) e(2)
Fig. 2.2. The one-dimensional sets A({i}) induced by the V-triangulation, n =2,
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Fig. 2.3. The sets A(T), T< IL,,,, induced by the V-triangulation of §”, n=2.

Formally, for proper subsets T of I, the set A(T) is defined by
A(T)=co({v}, {e(i)lie T})

where co(-) means the convex hull. If v lies in the convex hull of the e(i)’s, ie T,
we define A(T) to be empty. Observe that the dimension of a nonempty A(T)
equals £ =|T].

To triangulate these nonempty regions A(T), T < I,,,, we introduce the projection
p(K) of v on the boundary face S"(K)={xe S$"|x,=0, ig K} of §", for nonempty
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proper subsets K of I,,,,, defined by

1+]K°
I l Uy, heK\KO,
( z ‘Dk+|Ko|)
keK
ph(K)= 1- Z Ur
kK heko
( Z 'Uk+|KO|)
keK
0, he K,

where K° is the set {h e K|v, =0}. Other projections will be discussed in Section
5. We define p(#) = v. Furthermore, let y(T)=(v,,..., ¥i—1) be a permutation of
the ¢t elements of T.

Definition 2.1. For T< I, ., the set A(y(T)) is given by

-1
A(y(T))={xeS"lx=v+ Y aq(y;) with 0 a,_;=-- -SaOSI}
i=0

where q(y;), i=0,...,t—1, is given by

Q(71)=P({'YO, R | 'YI})—p({YO, ey ‘)/i—l})'

Observe that g(y,) = e(yo) — v. For n =2, some sets A(y(T)), T< I,,,, are illus-
trated in Fig. 2.4.

e(3)

AL 12)
e(1) e(2)

Fig. 2.4. Some regions A(y{T)}, T< I,4,, in §", n=2.
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A(T) is the union of A(y(T)) over all permutations y(T) of the t elements of
T. The rank of the matrix Q(y(T))=[q(vo),..., q(7vi—1)] is less than ¢ if and only
if

v,=0 forall heT

The rank of this matrix is independent of the permutation y(7T) and A(T) is
nonempty if and only if the rank of the matrix Q(y(T)) is equal to ¢ which coincides
with the condition that v does not lie in the convex hull of e(i), ie T. The number
of 1-dimensional regions A({i}) is equal to n-+1 but in the case that v is a vertex
of S" this number is n. In the sequel we restrict ourselves to sets A(y(T)) having
dimension . Each nonempty A(T), T'c I, is triangulated by first triangulating
A(y(T)) in t-simplices for each permutation y(T) of the ¢ elements of T and then
taking the union over all permutations. Take some integer m >0, m™' will be the
grid size of the triangulation.
Definition 2.2. For T< I, the set G(y(T)) is the set of t-simplices o (", w(T))
with vertices y',..., y**! such that
(i) y'=v+Y,.ral(i)m™'q(i) for nonnegative integers a(i), i€ T, such that 0 <
alyi-)<- -<a(y)sm-1;
(i) =(T)=(my,...,m) is a permutation of the ¢ elements of T such that for
alli=1,...,t—1:p’>pif a(y—) = a(y;) where m, = vy,_, and 7, =y;;
(iii) y™ =y +mq(m), i=1.... ¢

It is clear that if A(T) is nonempty G(y(T)) is a triangulation of A(y(T)) and
that the union G(T) of G(y(T)) over all permutations y(T) of the elements of T
triangulates A(T) and finally that the union G of G(T) over all sets T induces a
triangulation of S". We call this triangulation the V-triangulation. For n =2 and
m=2, G is illustrated in Fig. 2.5.

e(3)

e(1) e(2)

Fig. 2.5. The V-triangulation of S", n =2, with grid size 1.
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The algorithm will now follow a sequence of adjacent t-simplices of G(y(T))
for varying T such that their common facets are T-complete. In the next definition
we allow T to be equal to I,4,.

Definition 2.3. For g=t—1, t, where t =|T|, T < I,4,, a g-simplex a(y',...,y*"")
is T-complete if the system of linear equations

E()e 5l )0

where e(k) denotes the k-th unit vector in R"*! and e =Y.} e(k), has a solution
AFi=1,..., g+, u¥, kg T,and B* with A¥=0,i=1,...,g+1,and u¥=0,kg T.

Asolution A¥,i=1,...,g+1, u}, kg T, and B* will be denoted by (A*, u*, B*).
For g=t—1 we assume that the system (2.1) has a unique solution with A¥>0,
i=1,...,t and w¥>0, k€ T, and that for g =1 at most one variable of (A%, u*)
is equal to zero (nondegeneracy assumption).

Definition 2.4, A T-complete (¢ —1)-simplex o (y',...,y"), T< I, is complete if
forallxeo:x, =0, heT.

Observe that we again allow T to be equal to I,,.,. A complete simplex yields an
approximate solution x*=Y|_ A¥y' as is shown at the end of this section.

Since a T-complete t-simplex has at most two T-complete facets and since a facet
of a t-simplex in A(y(T)) is a facet of at most one other t-simplex in A(y(T)), we
obtain that the T-complete f-simplices in A(y(T)), for given permutation y(T) of
T, T<cl,.,, T#0, determine sequences of adjacent simplices with T-complete
common facets. Let o(y', w(T)) and &(7', #(T)) be two adjacent t-simplices in
G(y(T)) with common facet 7 opposite vertex y?, 1sp=i+1, then & can be
obtained from o as given in Table 1 where the (n+1)-vector a is given by a; = a(i),
ieT, and ¢;=0, ig T

When moving from o to & we say that a replacement step is made with the vertex
y?. Each sequence is either a loop or has two end points. An end point is either a
T {k}-complete t-simplex in A(y(T)) for some k¢ T, or a T-complete f-simplex
with a T-complete facet in bd(A(y(T)). If an end point o (y', #(T)) in A(v(T)) is

Table 1

p is the index of the vertex to be replaced

7' #(T) a
p=1 yr+m=iq(m) (my, ey m, ) a+e(m)
1<p<t+1 »' (1o s Tpeas Ty Tpgyve e s Ty) a

p=1(+1 yi=mlgq(m,) (7w m, e, ) a-—elm)
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a Tu{k}-complete t-simplex for some kg T, then either o is complete if v, =0
for all hg Tu{k} or o is a Tu{k}-complete facet of exactly one Twu {k}-
complete (¢t+1)-simplex & in A(Tu {k}). More precisely & is the (¢+1)-simplex
Gy, m(Tu{k}) in A(y(Tu{k})) where y(TU{k})=(vo,...,V:i-1,k) and
7(Tu{k)=(m,...,m, k) and is therefore an end point of a sequence of
adjacent T wuw{k}-complete (¢+1)-simplices in A(y(Tu{k})) with Tu{k}-
complete common facets. The next lemma describes when a facet of the ¢-
simplex o(y', w(T)) in A(y(T)) lies in the boundary of A(y(T)).

Lemma 2.5. Let o(y', w(T)) be in G(y(T)) and 7 the facet of o opposite vertex y*,
1<p=<t+1. Then 7 lies on the boundary of A(y(T)) if and only if
(i) p=1:m =y, and a(m)=m-1,
(ii) 1<p<t+l:im,_y=%Yio, m, =y forsomei1<i<t—1, anda(m,_,)=a(m,);
(ili) p=t+1: 7 =y and a(m7,)=0.

The lemma follows immediately from the definitions of G(y(T))} and A(y(T)).
If o(y', w(T)) in A(y(T)) is an end point of a sequence with a T-complete facet
T opposite vertex y”, 1s p<t+1, then in case (i) 7 is a T-complete (¢ —1)-simplex
in $"(T)={xeS8"|x,=0,hgT} and therefore complete. In case (ii) 7 is a T-
.complete facet of exactly one other t-simplex, say &, in A(T). More precisely, &
is the t-simplex a(y', #(T)) in A(5(T)) where (T)= (Yo, --» Vi2s Vis Yiz1s+«+»
Y1) and #(T)=(my, ..., Tp_z, Ty, Mp—1, ..., ), and is therefore an end point of
asequence of adjacent T-complete t-simplices in A(%(T)) with T-complete common
facets. In case (iii) the T-complete facet 7 lies in A(T\{A}), with h =47, so that r
is the (t—1)-simplex &(y', w(T\{h})) in A(y(T\{h})) where y(T\{h})=
(Yoy-vrs vi—2) and #w(T\{h})=(m,,..., m_,). Therefore 7 is an end point of a
sequence of adjacent T\{h}-complete (¢t —1)-simplices in A(y(T\{h})) with T\{h}-
complete common facets. In the case |T|=1 we have 7={v} and there is no such
sequence.

In this way the T-complete t-simplices in A(y(T)), T< I, can be linked
together for varying T to obtain sequences of adjacent simplices of varying
dimension. Each sequence is either a loop or has two endpoints. Exactly one end
point is the zero-dimensional simplex o(v) whereas all other end points are complete
simplices. Therefore there is one sequence which connects the starting point v with
a complete simplex. This sequence is followed by the algorithm, starting for T =@
in the point v, by performing alternating linear programming pivot steps in the
linear system (2.1) and replacement steps in the triangulation. As soon as by an Lp.
pivot step in (2.1) a w,, k& T, becomes zero, the current t-simplex o(¥*, #(T)) is
Tu {k}-complete and if o is not complete an l.p. pivot step is made in the linear
system (2.1) with (z7(y""?), 1)T where y"*? is the vertex of the unique (¢+1)-simplex
& in A(Tu {k}) having o as a facet opposite this vertex. On the other hand, if for
some he T a T-complete facet 7 in A(T\{h}) is generated, then the unit vector
(e'(h), 0)7 is reintroduced in the linear system (2.1). This completes the description
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of the algorithm to find, within a finite number of iterations, a complete simplex in
the V-triangulation of S” with grid size m™".

The algorithm in fact traces a piecewise linear path of points in $" from the
starting point v to an approximate solution which lies in the complete simplex
generated by the algorithm. More precisely, let Z be the piecewise linear approxima-
tion of z with respect to the underlying V-triangulation, i.e. if xe o(y!,...,y™"")
so that x =Z;: A;p' for certain nonnegative numbers A;, i=1,...,t+1, such that

Zf:ll A;=1, then

t+1

Z(x) = El Az(y').

The set of solutions (A, u, B) of the linear system (2.1) with respect to a ¢-simplex
o in A(T) determine a line segment of points £, £=Y, A,y in o satisfying

2(R)=B—p ifkeT , (2.2)

The end point of a line segment of points in o is characterized by either A, =0 for
some p, 1<p<t+1, or u, =0 for some k& T. In the first case x =¥, A’ lies in the
facet 7 opposite the vertex y? of o. Then x is an approximate solution if 7 is
complete or an end point of a line segment in either the unique t-simplex in A(T)"
sharing 7 with o or in 7 itself if 7 lies in A(T\{h}) for some he T. On the other
hand, if at an end point x in ¢ w, =0 for some k& T, then x is an approximate
solution if o is complete or x is an end point of a line segment of points in the
unique (¢ +1)-simplex in A(Tw {k}) having o as a facet. Therefore, the line segments
of points induced by (2.1) for the sequence of adjacent simplices generated by the
algorithm can be linked together to a piecewise linear (p.1.) path from v to an
approximate solution. For an X on this path holds that for some T< I,,, X lies in
A(T) and satisfies according to (2.2)

Z,(X)=max z;(x) forall heT.
J

Since A(T) is the set of points x in S™ for which the components x;, k£ T, are
(relatively to the point ») equal to each other and are relatively smaller than the
other components of x, the p.l. path followed by the algorithm can be interpreted
as follows. Initially the component v, of v having maximal z-value is increased and
all other components of v are proportionally decreased. In general, points X are
generated for which the components %, not having maximal z-value are (relatively
to v) equal to each other and are relatively smaller than the components X, of %
for which Z,(X)=max;Z;(X). As soon as (on the path) z.(X) becomes equal to
max; z;(%), z(x) is kept equal to max; Z;(x) while x, is relatively increased away
from the components x; of x not having maximal Z-value. If, however, X, for which
7,(%) =max; Z;(X) becomes (relatively to v) equal to the %’s not having maximal
Z-value, x, is kept relatively equal to these x;’s and Z,(x) is decreased away from
max; z(x). An approximate solution x* has been found when 2 (x*) <max; z,(x*)
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implies x§=0 for all ke I,,,. Such a point can therefore be considered as an
approximate solution. If the accuracy of the approximate solution is not good
enough, the algorithm can be restarted in x* with a smaller grid size in the hope
that within a few iterations a better approximation is found. This process of restarting
can be continued until the desired accuracy has been reached. We remark that if
the Q-triangulation of S" underlies the algorithm a restart has to be made in a grid
point of this triangulation. Typically, an approximate solution is not a grid point
and must be rounded off for example to the nearest grid point. For a further
comparison with the algorithm of [7] we refer to the end of Section 3.

3. The V-triangulation of the product space S of unit simplices and the path of points
followed by the product-ray algorithm

The problem to be considered in the rest of the paper is the Non-Linear Com-
plementarity Problem on the product space S of N unit simplices (NLCP on S).
More precisely, let S™,...8" be N unit simplices, then S is equal to H;il S,
Furthermore, let z be a continuous function from S into R™*™, where M =Y n,
satisfying xz;(x)=0, j=1,..., N, for all x=(x,,..., xy) in S, with x; € ", j € I.
The NLCP on S consists of finding a point x* for which z(x¥)=
(z:(x*),...,zny(x*))=<0. Again this problem is equivalent to the Brouwer fixed
point problem on S. To solve the latter problem, in van der Laan and Talman [5]
simplicial variable dimensional restart algorithms with Z;il (n;+1) rays to leave
the arbitrary starting point v were introduced based on the Q-triangulation as well
as the U-triangulation of S. However both triangulations have the same disadvan-
tages as on 8", Therefore we will generalize the V-triangulation introduced in Section
2 to a triangulation of S. This V-triangulation of S will give rise to a new simplicial
variable dimension restart algorithm on .S with HJZ . (n;+1) one-dimensional sets
(rays) to leave the arbitrary starting point v. More precisely, there is exactly one
ray to each vertex of S and the algorithm leaves v along one of these rays depending
on which component of z;(v), j=1,..., N, is maximal. Initially the corresponding
components of v are increased whereas all the other components of v are propor-
tionally decreased. Note the similarity with the algorithm described in section 2.
The algorithm which we call the ]| j': . (m;+1)-ray or simply the product-ray algorithm
is described in Section 4 while this section will describe in detail the V-triangulation
of § which underlies the algorithm. To do so we need some more notation. The
( ’,:1 (n;-+1)+ k)-th component of a point x in .S or the k-th component of a vector
x; in §" will be denoted by x; .. Moreover, the index Z’;:] {n;+1) + k will be denoted
by (j, k) for simplicity. For j=1,..., N the index set I(j) is the set {(j, 1),...,
(j, ny+1)}, and I is the union of I(j) over all j in Iy. A vertex of S is denoted by
e(I°) where I =1(j)nI° consists of exactly one element of I(j), je I, and is
defined by .

ej,,,(I°)={ 1 if (j, h)yel®,

0 otherwise.



330 T.M. Doup, A.J.J. Talman / A new simplicial algarithm to find equilibria

For such an index set I° the one-dimensional set A(I°) is defined by A(J°) =
co({v, e(I°)}) unless v equals e(I%). The sets A(I°) are the rays connecting v and
all the vertices of S along which the product-ray algorithm can leave v. Notice that
the number of rays is indeed equal to ]'[J.Ii, (n;+1) unless v equals a vertex of S in
which case the number of rays is one less. The algorithm will leave v along the ray
from v to the vertex e(T°) of S if 2, (v) = max;, yer(;y za(v) for all je Iy, where
Tj-’ ={(}j, ¥)}. In general the algorithm to be described in section 4 will approximately
follow points x in S such that for some subset T of I with T;=TnI(j)#@ for all
je€ Iy holds that both z;;(x)=max, z,;(x) for all (j,h)eT, je Iy, and x lies in
A(T) being the convex hull of v and the vertices e(T*) of S for which T is a subset
of T.

Definition 3.1. For T g I, with |T;|=1, je Iy, the set A(T) is equal to
A(T)=conv({v}, {e(T")|T°< T,|Tj| =1, j € In}).

For the case §=S8'x S' some sets A(T) are illustrated in Fig. 3.1. When v lies
in the convex hull of vertices e{(T°), T°<= T, we define A(T) to be empty. The
dimension of a nonempty set A(T) is equal to {=|T|— N+1. To describe the
V-triangulation of S we first subdivide each nonempty A(T') in subsets A(T°, y(T"))
where T° and T' partition T such that |T§|=1 for all je Iy and where y(T") is a
permutation vector (y,(TY),...,v~(T")) of the set T' with (TH=
((j, k), .-+ 5 (s ki) a permutation of the ¢(f) elements of the set T;. For simplicity,

0 A2 0
0 7 !
! AU (L2220 1
AN
AG(L2. 2D
v
AE2 220
AN
AN
! 0
0 1
1 1
0 0

Fig. 3.1. The sets A(T), f?}[?l, of S=5"'xS"



T.M. Doup, A.J.J. Talman / A new simplicial algorithm to find equilibria 331

the unique element of T) is denoted by (j, ki). The subsets A(T°, ¥»(T") are
determined by first defining projections of (the starting point) ¢ on the boundary
faces of S.
For K< the projection p(K) of v on the boundary set S(K)=
{xe S|x,=0,(j, k)& K} is defined as follows. For j=1,..., N,
pi(K)=v ifK;,=8,

and otherwise, if ¥4\ k<1,

1+|KY| . 0
Uiks L hye KAK,,
£ _sarlry i PSR
(ki K;
(K) 1= ¥ v
Pin =y lhkeK, . = g0
Y g HK U hre K.
{iLkleK,
| 0, {j,h12g K,

and if ¥ 5. tin =1,
Uin s e 1]
1+,K;‘)I, U, he KA\KS,
pinlK) = 1
lHIK}’I’
0, (j, h g K,

(U, e Ky,

where K; = I(j)~ K and K{={(j, hYe I(j)|t,, = 0}. Other projections are discussed
in Section 5.

Definition 3.2. For Tc I, the set A(T", y(T")) is given by
AT, y(T‘))={xe Slx=v+8g(T)+ ¥ ali hiq(i h)}
Gk T
for nonnegative numbers B and a(i, h), (i, h) e T', such that for each je Iy,
O<a(jkl;,)s <a(jk)=sp=l,
where the (N + M )-vectors g(T") and q(i, h), (i, h)e T', are given by
g(T) =e(T) ~v
and for h=1,...,1()), je Iy,
qU, kb =p(T O{G kD, o Gy kDD = p(T GG KD, -, G koD,

Observe that g;(j, k) =0 for all i #j. The set A(T) is the union of A(T", y(T"))
overall T" and permutation vectors y(T') of T' = T\ T". Some subsets A( T, y(T"))
are illustrated in Fig. 3.2 for the case N=2, n;=1 and n,=1.
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1 0
0 1
0 0
1 1
\
AN U2D(2.2))

1 ADM2)210)) 0
o - 1
1 1
0 0

Fig. 3.2. The subsets A(T®, y(TY) of §=5"x§".

The dimension of A(T®, y(T")) is less than t=|T|~ N+1if and only if (j, k)e T
implies v;, =0. The dimension of A(T®, ¥(T")) is independent of T° and y(T")
and is equal to the rank of the matrix Q(T°, y(T")) consisting of the ¢ columns
g(T® and q(i, k), (i, h)e T'. In the sequel we will restrict ourselves to the sets
A(T®, ¥(T") having dimension &

The V-triangulation of § is obtained by first triangulating each A(T®, y(T?)) in
t-simplices. Let m™" again be the grid size, with m a positive integer.

Definition 3.3. The set G(T°, y(T")) is the collection of t-simplices o(y*, 7(T))
with vertices y',..., y"*! such that

(i) y'=v+bm™'q(T)+ % 1y a(i, )m™'q(i, h) for nonnegative integers b
and a(i, h), (i, h)e T', such that for all je Iy, 0<a(j, ki) < - <a(j,ki)<b<
m-—1,;

(i) m(T)={(m,...,m) is a permutation of the t elements consisting of T° and
the ¢t — 1 elements of T" such that: if, for some j € Iy, a(j, k}) = b this implies p'> p
where 7, = (j, k¥}) and 7, = T, and if, for some j € I, a(j, k{) = a(jj, ki_,) for some
i, 2 i=<1t(j), this implies p'> p where m, = (j, k¥}) and m, = (j, ki_,);

(i) y™*'=y'+mg(m), i=1,...,¢

The set G(T°, y(T")) is a triangulation of A(T®, y(T")) and the union G(T) of
G(T®, y(T") over all T° and y(T") triangulates A(T). Finally, the union G of
G(T) over all subsets T of I such that |T;|=1, j € Iy, induces a triangulation of S.
We call this triangulation G the V-triangulation of S. For N=2, n,=1, n,=1 and
m =2 the V-triangulation is illustrated in Fig. 3.3.
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Fig. 3.3. The V-triangulation of S=5"x §' when m ™' =%

We remark that the V-triangulation of S is similar to the K'-triangulation of R”"
proposed in Todd [11] in case n,=1 for all je Iy. The product-ray algorithm
generates a path of points £ in S, starting in v and terminating with an approximate
solution, such that for some T< I, ¥ lies in A(T) and

Za(X)= max Z,(x) forall (heT
: iy lejy -

where 7 is the piecewise linear approximation of z with respect to the V-triangulation
with grid size m™'. This path is followed by alternating replacement steps in the
triangulation and linear programming pivot steps in a linear system. This system is
induced by the equations above. Let oy, ..., ¥*™"), g=r—1, 1, be a g-simplex in
A(T)containing X so thatthereare Ay,..., Ap = O,E‘f*; A =1,forwhich=Y, Ay,
then the equations above are equivalent to

g+1 .
T Az =B ifUhIeT,
i1

i

g+l i
2oAzay)=g (i hET
i=1

where B, = max, Z,;(£). We call such a g-simplex T-complete.

Definition 3.4. For g=1—1, t, where t=|T]— N+1, 2 g-simplex a(y',..., ¥*"") is
T-complete if the system of linear equations

o z(,v“)) (e(j, k)) _¥ ,(a(j)) :(9)
El Ai( 1 +(j,k§!:zr Hak 0 ‘,":1 B 0 1)’ (3.1)
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where e(j, k) denotes the (Z‘,’:1 (n;+ 1)+ k)-th unitvector in RN*™ and &(j) =
"l e(j,h), has a solution A¥=0, i=1,...,g+1, u%=0, (j,k)¢T, and B},
j=1,..., N

Observe that the system (3.1) has (g+1)+(N+M —|T|)+ N columns, so when
g=t~1=|T|- N, the system has N+M+1 columns and for g=¢ one column
more. A solution A¥, i=1,...,8+1, uk, (j, k)& T, B}, je Iy, will be denoted by
(A%, w*, B%).

Nondegeneracy assumption 3.5, For g=1¢—1 the system (3.1) has a unique solution
(A%, w™*, B*) with A¥>0, i=1,..., 1, and u%>0, (j, k)& T, and for g =1t at most
one variable of (A*, u*) is equal to zero.

Under this assumption o(v) is T°-complete with T ={(j, k§)} with (j, k{) the
unique index for which z;.4(v)=max, z;,(v), j=1,..., N.

The algorithm now starts with o(v) for T = T° and follows a sequence of adjacent
t-simplices in A(T) for varying T, T< I, such that their common facets are T-
complete. The algorithm terminates as soon as a complete simplex has been gen-
erated.

Definition 3.6. A T-complete (¢ —1)-simplex o(y',...,y") is complete if for all x
inox;;,=0forall (i, h)¢ T.

A complete simplex o yields an approximate solution x*=Y¥,_, A¥y' where
(A*, u*, B*) is the corresponding solution to the linear system (3.1) with respect to
o. At such a point x* we have from (3.1) that 7, (x*) = B¥ if x> 0 and Z; . (x*) < ¥
if x}fk =u,

Lemma 3.7. Let >0 be such that max|z,(x) —z,,(y)| < e for all x and y in the
same simplex o of the V-triangulation of S. Let o* be a complete simplex and ler x*
be as above, then we have

—e<Bf<e jely
Bf—e<z,(x*)<Bf+e whenx} >0,

Zi(x*)<Bf+e when x}i=0.

The proof follows from the fact that x¥7z(x*)= B} for all j€ Iy. The steps of
the algorithm and the proof that the algorithm indeed finds a complete simplex
within a finite number of steps are given in Section 4.

There it will be shown that the T-complete t-simplices o(y', #(T)) in A(T) form
sequences of adjacent simplices having T-complete common facets. Each sequence
not being a loop has two end points. An end point of a sequence in A(T) is either
a Tu{(j, k)}-complete simplex o or a simplex with a T-complete facet 7 in the
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boundary of A(T). In the first case 7 is either complete or a facet of a unique
(t+1)-simplex in A(TU{(j, k)}) being an end point of a sequence of adjacent
simplices in A(T U {(j, k)}) with T U {(j, k)}-complete common facets. In the second
case the facet 7, if not complete, is a (1—1)-simplex in A(T\{({ h)}) for some
(i, h) e T being therefore an end point of adjacent (¢ — 1)-simplices in A(T\{(i, h)})
with T\{(i, h)}-complete common facets. The 0-simplex o(v) is an end point of a
sequence of adjacent 1-simplices in A(T") with T°-complete common facets. The
sequences in A(T) for varying T< I, |T;|=1 for all j € Iy, can therefore be linked
together to form sequences of adjacent simplices of varying dimension. Exactly one
sequence connects o'(v) with a complete simplex and this sequence is followed by
the product-ray algorithm starting in v.

The set of solutions (A, p, B) of (3.1) with respect to a T-complete t-simplex
a(p',...,y""") in A(T) yields a line segment of points % in o for which %= I\,
and

Zu(X)=B; If(jkeT,
Zj_k(f) ‘_"ﬁj — Mk if (], k)E T,

where w;,. =0, (j, k)2 T. An end point x of such a line segment is characterized by
A, =0 for some p, I<sp=<r+1, or by u;, =0 for some (j, k)2 T. In the first case x
lies in the facet r of o opposite the vertex y”. Then x is an approximate solution
if 7'is complete, otherwise x is an end point of a line segment either in 7 if 7 lies
in A(T\{(i, h)}) for some (i, h) € T or in the unique ¢-simplex & in A(T) also having
7 as a facet. If at an end point x p;x =0 for some (j, k) # T then x is an approximate
solution if ¢ is complete or an end point of a line segment in the unique
(t+1)-simplex in A(T u{{j, k)}) having o as a facet.

The algorithm therefore in fact generates a piecewise linear path of points X in
A(T) for varying T, starting with T =T and leading to an approximate solution,
satisfying Z; (%) = max, Z; () for all (j, h) € T. Notice that for each T, T < I, the set
A(T) is the set of points x in S for which the components x;,, (j, k)£ T, are
(relatively to the point v) equal to each other and relatively smaller than the other
components of x. The p.l. path of the new algorithm can therefore be interpreted
as follows. Initially, for each j the component v;;, of v for which z,,(v) = max, z;,(v)
is increased whereas all the other components of v are (simultaneously) propor-
tionally decreased. In general the product-ray algorithm generates points £ in S for
which the components ¥, not having maximal Z-value are (relatively to the starting
point v) equal to each other and relatively smaller than the components £, of x
having maximal Z-value. When Z;, (%) becomes equal to max, Z;,(¥) for some (j, k),
then Z(x) is kept equal to this maximum and x;, is (relatively to v) increased
away from the components x,; of x not having maximal Z-value. If, however, at £
on the path a component &, having maximal Z-value becomes relatively equal to
the components ¥;, of ¥ not having maximal Z-value, x,; is kept relatively equal
to these ¥;,’s and Z,(x) is decreased away from max, 3, (x).
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Finally, if %, =0 for all indices (i, h)e I for which Z;, (%) <max, Z;(X), then %
is an approximate solution and the p.l. path terminates. If the accuracy of the
approximation is not good enough the algorithm can be restarted in X with a smaller
grid size to obtain a better approximation.

Since Z approximates z the p.l. path followed by the algorithm approximates (a
path of) points x in S such that for some T< I x lies in A(T) and satisfies

z,(x) =max, z;;(x) forall (jh)eT

An apparent difference between the product-ray algorithm and the algorithm of [7]
is that the new algorithm starts by increasing for each je Iy the component v;, of
v; having the largest z-value. These increases are combined with a proportional
decrease of all the other components of ». The algorithm of [7], however, only
increases the component v;, of the whole (M + N)-vector v that has the largest
z-value (instead of the largest z-value). This initial increase of one component is
combined with a decrease with the same amount of exactly one other (arbitrary)
component of v;. In other words, in the new algorithm more information of the
z-value is used to adapt the variables and the adaptation of the variables is much
more natural.

A second difference of both algorithms concerns the accuracy of the z(x*)’s at
an approximate solution x™. As shown in Lemma 3.7 the estimation of the accuracy
of the z;(x*)’s is the same for all j. This result differs from the estimated accuracy
of z(x*) at an approximate solution obtained from the algorithm of [7]. For the
latter algorithm only for one j € Iy z;(x*) can be shown to be accurate. More precisely,
the algorithm of [7] follows a piecewise linear path of points % in |T]-dimensional
regions /{(T) based on the Q-triangulation of S for varying index sets T in I with
|T;| < m+1, je Iy, such that

Z (%)= (?}.?2(1 Z,(%) forall (jk)eT

The algorithm starts in v with T consisting of the (unique) index (j, k) for which
z;x(v) = max(u) z,,(v), and terminates with an approximate solution x* as soon as
for some je Iy either Z;,(x*) = max Z,,(x*) or x¥, =0 for all (j, k) € I(j). So, at x*
there is for each g in Iy, g #, at least one index (g, I} in I(g) with

x>0 and Zg,,(x*)<(?}l';1§1§,-,h(x*).

This might give a poor accuracy, especially if x}, is rather small. Recall that for
the new algorithm we have at an approximate solution x*

%, (x*) =max,, ,(x*) for all (j, k) with x},>0.

Both features, a better accuracy at an approximation solution and a more natural
adaptation of the variables, should make the new algorithm more attractive than
the algorithm of [7], especially when a good accuracy is required and several restarts
have to be made. These theoretical arguments are confirmed by the computational
results given in Section 6.
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4. The steps of the product-ray algorithm on the product space S of unit simplices

In this section we describe in detail the steps of the product-ray algorithm for
finding a complete simplex which approximates a solution to the NLCP on S.
Starting with the zero-dimensional simplex o(¢) the algorithm generates a sequence
of adjacent T-complete ¢-simplices in A(T) for varying T< I, |T|= 1, je Iy. until
a complete simplex is generated. Under Assumption 3.5 the T-complete r-simplices
a(y', m(T)) in A(T", y(T")) form for given T" and y(T') sequences of adjacent
t-simplices with common T-complete facets. Let a(y', #(T)) and &(#', #(T)) be
two adjacent t-simplices in A(T", y(T")), then #', #(T) and & are obtained from
¥', #(T) and o according to Table 1, described in Section 2, where p is the index
of the vertex of o opposite the common facet of o and &, a,,, = ali, h) for (i, h)e T',
a,,=b for (i,h)e T", and a,, =0 for (i, h) 2 T. Each sequence is either a loop or
has two end points. An end point of such a sequence is either a Tu {(j, k)}-complete
t-simplex for some (j, k)€ T or a T-complete t-simplex with a T-complete facet in
the boundary of A(T?, y(TY). If an end point o(3', #(T)) of a sequence in
A(T®, y(T")) isa Tu{(j, k)}-complete t-simplex for some ( j, k)& T, then o is either
complete or a Tu{(j, k)}-complete facet of exactly one (t+1)-simplex & in
A(Tu{(j, k)}.

Lemmad.l. AT {(J, k)}-complete t-simplexo(v', w(T) in A(T°, y(T")) is complete
if and only if v, =0 for all (i, h)e Tu{{j, k)}.

When o is not complete, o is a Tu{(j, k)}-complete facet of exactly one
(t+1)-simplex & in A(TU{(j, k)}). More precisely, & is the (t+1)-simplex &(y',
(T u{(j, kK)}) in A(T®, (T O {(j, k)D) with

'Yh(Tl), h ;é]’

TG k ={ | o :
T AGED = (G Gk, Gk, b=

and

W(TU{(L k)})=(7T1, crey Ty (]7 k))

Proof. Suppose that o is a Tu{(J, k)}-complete t-simplex in A(T®, y(T")) such
that v, =0 for all (i, h) € Tu{(j, k)}. We have to show that o is complete, i.e. that
for all x in o x,, =0 holds for all (i, k)2 TU{(J, k)}. Let x lie in o, then x also
lies in A(T® y(T")), so that there exist nonnegative numbers B and a(g, /),
(g, 1)e T, such that

x=v+Bg(T+ T elgDglgD (4.1)

{(gleT

with 0 a(g, k§,)) < - -<a(g kf)<B=<1forall ge Iy. Since q;»(g 1) =0, (g, e
T', and g u(T°)=-vy, for all (i h)g Tu{(j, k)} we obtain, for all (i h)e
Tu{(j, k)},

Xin = Uin(l -B). (4.2)
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Therefore v;, = 0 for all (i, k)2 T U {(}, k)} implies x;, =0 for all (i, k)& TU{(J, k)}
and x in o.

Now suppose that o is complete, i.e., for all x in a, x;;, =0, (i, h) & T U{(j, k)}.
In particular y}, =0 for all (i, h)  TU{(j, k)}. For x = y' equation (4.1) holds with
B=b/m<1, so that, according to equation (4.2), v;, =0 for all (i, h) & Tu{(j, k)}.
This completes the first part of the proof.

Now suppose that o is not complete. Then there is an index (g, I) 2 T w{(j, k)}
such that v,; >0 and A(TU{(j, k)}) is non-empty. Consequently, there is a unique
(t+1)-simplex & in A(TU{(j, k)}) having o as a facet. From the definition of
G(Tu{(j, k)} it follows immediately that &=o(y', (#(T), (j, k))) and lies in
A(T®, (T O {(j, K)1).

So, if o is not complete, it is a facet of an end point of a sequence of adjacent
(t+1)-simplices in A(T®, y(T'U{(j, k)})) with TuU{(j, k)}-complete common
facets.

If an end point of a sequence of adjacent t-simplices in A(T’, y(T")) with
T-complete common facets is a t-simplex o(y', 7(T)) with a T-complete facet in
the boundary of A(T?, ¥(T")) then this facet is either a facet of exactly one other
t-simplex &(y", #(T)) in A(T) or it lies in the boundary of A(T). Notice that the
boundary of A(T) is equal to

bd A(T)= U A(T\{(i, h)})u S(T).

{(i,h)eT
ITil>1

Lemma 4.2. A facet 7 opposite the vertex y” of a t-simplex a(y*, w(T)) in A(T®, y(T"))
lies in the boundary of A(T®, y(TY) iff

(a) p=1:m=Tandb=m—1,

(b) 1<p<t+1: mpy=(j, ki-,), m,=(j, k}) for certain je Iy and i, 2<i<1(j),
and a(m,-,)=a(m,); or m,y=T°, m,=(j, k{) for certain je Iy and b= a(m,);

(c) p=t+1: m=(j, ki;) for certain je Iy and a(m,)=0.

The lemma follows immediately from the definitions of G(T° y(T')) and
A(T®, y(TY).

Ifthe T-complete facet T opposite vertex y* of o(y', m(T)) liesinbd A(T®, y(T")),
then = lies in S(T) since 7= T° and b=m—1, and is therefore complete.

Lemma 4.3. If, for some p, 1 <p <t+1, the facet 7 opposite vertex y”, of (y", w(T))
lies in bd A(T®, v(T")), then 7 is a facet of exactly one other t-simplex in A(T). More
precisely, if i>1, with i given by Lemma 4.2b, & is the t-simplex 6(y', #(T)) in
A(T®, 5(T")) where (T") and 7(T) are given by

‘yh(Tl)a h :'é.]’

T = e Gk G G L o
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and
ﬁ(T)"‘—'("ﬂ'l, ces Tp—2,y Tp, Tp—tseeny 7T,.L

If i=1, then & is the t-simplex G(y', #(T)) in A(T", y(T")) where T°, y(T") and
#(T)are given by

rfo _‘{ Tg, h;ﬁja
h™— . 1. .
{(Jy kl)}, h =Ja

’yh(Tl)y h?éjw

T‘:{ o |
=Gk, G e G ), =),

and

7_I'(T)=(TT\, cre wp—Z) TO, (Ja kC’)), ﬂ'p‘t-la DERR} 7"()'

The proof of this lemma also follows immediately from the definitions of
A(T®, y(T")) and G(T®, y(T")). In the case i>1, & is an end point of a sequence
of adjacent -simplices in A(T°, #(T")) having T-complete common facets whereas
in the case i=1, o is an end point of a sequence of adjacent t-simplices in
A(T®, y(T")) having T-complete common facets.

Lemma 4.4. If the facet T opposite vertex ' of o(y', 7#(T)) lies in bd A(T®, y(T")
and T'#@, then 7 lies in A(T\{(i, h)}) with (i, h) ==, More precisely, 7 is the
(t=1)-simplex a(y', w(T\{(i, 1)})) in A(T®, y(T'\{(i, k)})) where y and = are given
by

Y (T, J#i,

‘Y( \{(l )}) ((’, k'l)a resy (is k:(i)—l))’ .’= i;

and
W( T‘\{(ir h)}) = (7711 ceey Wt—-l)-

The (¢+—1)-simplex & is therefore an end point of a sequence of adjacent (t—
1)-simplices in A(T®, y(T'\{(i, h)})) having T\{(i, h)}-complete common facets.
In the special case that T' =g so that the boundary of A(T®, y(9)) consists of the
points v and e( T?), the facet 7 is the 0-dimensional simplex o(v) being T°-complete
with T?={(j, k{)}, j € In, where (j, k) is the unique index in I(;) for which

Zy(v) = Jmax zn(v), jeln.
L

In case v=e(T"), the 0-simplex o(v) is complete and v solves the NLCP on S. If
v is not equal to e(T°), then o(v) is a T°-complete facet of exactly one 1-simplex
& in A(T®). More precisely, & is the 1-simplex G(y', 7(T°)) in A(T®, y(@)) with
y'=v and #(T°=(T").
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Therefore, the T-complete t-simplices in A(T), T I, |7}| =1, je Iy, form sequen-
ces of adjacent ¢-simplices with T-complete common facets for varying T. Exactly
one sequence connects the 0-dimensional simplex o(v) with a complete simplex
whereas all other sequences are either loops or connect two complete simplices. To
find a complete simplex, the product-ray algorithm follows the sequence which
connects v with a complete simplex by starting in v and making alternating linear
programming pivot steps in (3.1) and replacement steps in the triangulation. When,
by an Lp. pivot step in (3.1), w;« becomes zero for some (j, k)£ T, the current
o(y', w(T)) is either complete or a facet of a (t+1)-simplex & in A(TU{(j, k)})
as described above. In the latter case the algorithm continues by determining & and
making an Lp. pivot step in (3.1) with the vector (z"(y'*?), 1)T where y*** is the
vertex of & opposite o. If, by an lp. pivot step, A, becomes zero for some p,
1=<p=t+1, the facet T of o opposite the vertex y? is T-complete. Then 7 is either
a facet of exactly one other t-simplex & in A(T) or 7 lies in the boundary of A(T).
In the first case the algorithm continues by determining & as described above and
making an Lp. pivot step with (z7(7), 1)T where 7 is the vertex of & opposite 7. In
the second case  is either complete or a (¢ —1)-simplex & in A(T\{m,}). If 7 is not
complete the algorithm continues by determining & as described above and by
making an L.p. pivot step with the vector (e™(mr,), 0)".

Since the number of simplices and faces of the triangulation is finite and no
simplex is generated more than once, the algorithm generates, starting at v, within
a finite number of steps a complete simplex. When the accuracy of the approximate
solution induced by the complete simplex is not good enough, the algorithm can
be restarted in this point with a finer grid size for the V-triangulation in the hope
that the next approximation will be found in a small number of iterations and is
more accurate (see also Lemma 3.7).

The steps of the algorithm described above can be summarized as follows.

Step 0: Let (j, k{) be the (unique) index for which z;.(v) = max, z,,(v), j € In.
Set T°=T={(1,k),..., (N, kN)}. If v=e(T°) then o(v) is complete and the
algorithm terminates with an exact solution, else set T' =0, t=1,y'=v, 7(T) =(T"),
o=0(y,m(T), p=2,b=0,a,=0,(, ) e\, =1, w=z,4(v) = z,.(v), (J, k) &
T, and B;=z;,;(v), j€ In.

Step 1: Calculate z(y?). Perform an Lp. pivot step by bringing (z”(y?), 1)" in the

system
til ,\i(z(yi)>+ 5w (e(j, k)) _ ﬂ(é(d’)) =<Q>
i=t e = 1/

1 GkeT 0
If, for some (j, k) # T, u; becomes equal to zero then go to step 3. Otherwise A
becomes equal to zero for some p, p # p.
Step 2: If p=1, b=m—1 and m, = T° then the facet of o opposite the vertex y'
is complete and the algorithm terminates.

iz

i=p

P
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If 1<p<t+1, and if for some je Iy either m,_,=(j,ki_,), =, =(j, k) and
a(m,-1) = a(m,) for some ie{2,...,t(j)} or my_y=T°, m,=(j, k}) and b=a(m,),
then o becomes & and y(T"), T® and T' are adapted as given in Lemma 4.3, and
return to step 1 with 7 the index of the new vertex of o.

If p=t+1, m=(j ki;) and a(m)=0 then set t=r—1, T'=T\{(j, ki, )},
(i, h) = (j, kl;)), y(T"') becomes y(T'\{(j, kl;)}) and o becomes & as given in
Lemma 4.4, and go to step 4.

In all other cases o(y', w(T)) and a are adapted according to Table 1. Return
to step 1 with p the index of the new vertex of o.

Step 3: If v;, =0 for all (i, k)2 Tu{(j, k)} then o is a complete simplex and the
algorithm terminates. Otherwiseset t=¢+1, T' = T' U {(j, k)}, while y(T") becomes
y(T'U{(j, k)}) and o becomes & as given in Lemma 4.1. Return to step 1 with j
the index of the new vertex of o.

Step 4: Perform an l.p. pivot step by bringing (e (i, h), 0)" in the system

o (z(yY) e(j k) & é(j))__(())
i§1Ai< 1 )+ (j.kz)sT ”j’k< 0 ) j;ﬁj( 0/ \1/

Gk} #(ih)

If, for some (j, k)£ T, (j, k) # (i, h), p;, becomes equal to zero then go to step 3.
Otherwise return to step 2 with p the index of the vertex for which A, becomes zera.

5. Some variants of the V-triangulation of S and S”

In Section 3 the subsets A(T), T<I and |Tj|=1, je Iy, were defined as the
convex hull of the point v and the vertices e(T°) of S with T°= T and |T}|=1,
j=1,..., N. In fact A(T) is the convex hull of {v} and the boundary face S(T)=
{xe S| X =0 for all (j, k) & T}. To triangulate A(T) this set is subdivided in subsets
A(TC, y(TY) with T°A T'=9, T°UT'=T, |Tj|=1 for all je Iy, and with y(T")
a permutation vector of the elements of T'. Each set A(T", y(T")) is determined
by the projections p(K) of the point v on S(K), K < T, defined by p;(K)=y if
K; =0 and otherwise, if ¥ ; j\cx, Uik <1,

. )
WKL . GWeKAK,

Y utK]]

(KK,

Pj,h(K)"-'< 1- X Uk

— R () h)eK], (5.1)
Y vst|K]]
(iLk)eK;
Lo, Ui We K,

and, in the case ¥, ;)cx, Uk =1
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UL/ UNS WK,
1+IK;)F (J, h)EKJ\K]s
1
pin(K)=q —— - (§ 0
b 1+IKJO|’ (],h)EKJ,
Os (]sh)EKJa

where Kj°={(j, he KjIUJ-,,, =0}, j=1,..., N. We call this projection the relative
projection of » on S(K) since for each j the ratio between p;,(K) and v, is
independent of A, (j, k) e K\ K}, whereas the p;,(K)’s, (j, h) € K7, are all equal to
each other, However, one can take any point in S(K) as the projection of v on
S{K). Interesting projections different from (5.1) are the following three projections,
where again pi(K) =y, if K;=@, i=1, 2, 3:

W ppe={MIEE TG

0 if (j,h) 2K,
v+ (-3 v)/|K| if(j,h)eKand 3 y,<l
X, UkIEK;
()  p(K)=11/|K]| if(j,heKand ¥ yu=1,
(j,k)eKj
0 if (j, h) 2K,

and

(3) pi,h(K)={

where lexicomin(K;) is equal to (J, k) if k is the first index in the set {1,..., n;+1}
with (j, k) in K, j=1,..., N. The projection p'(K) projects the point v on the
barycenter of S(K) and p' is therefore called the barycenter projection. The projec-
tion p*(K) projects v on the point in S(K) which is nearest to v and is called the
orthogonal projection. Finally, the projection p*(K) projects v on a certain vertex
e(K") of S with K' < K. We call p* the vertex projection. Similarly to the definition
of the A(T®, y(T'))’s given in Section 3 we can define subsets A'(T°, y(T")) of
A(T) based on the projections p'(K), i=1,2,3.

1 if (j, h)=lexcicomin(K;),
0 otherwise,

Lemma 5.1. The dimension of A'(T°, y(T")), i=1, 2, is less than t=|T|-N+1 if
and only if v, =0 for all (j, k)¢ T. The dimension of A*(T®, y(T")) is less than
t=|T|— N+1 ifand only if v;, =0 for all (j, k)& T or for some j € I there is at least
one index i, 1<i< t(j), such that ki_, <ki. Moreover, A(T)=A*(T° v(T") with
T® and y(T") such that for all jkh>k{> > k.

In general each projection yields a different triangulattion of the sets A(T) and
therefore a different triangulation of S. The triangulation induced by the projection
p’ will be called the V'-triangulation of S, i=1, 2, 3. For N=1, n;=2 and m =2,
the V-, V'-, V2, and the V’-triangulation of S are illustrated in the Figures 5.1-5.4.
Observe that the V>-triangulation of S" coincides with the triangulation of the unit
simplex proposed in Tuy, Thoai and Muu [12].
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e(3)

e() e(2)

Fig. 5.1. The V-triangulation of S", n =2, having relative projections and grid size m™'=4.

e(3)

e(1) e(2)

Fig. 5.2. The V'-triangulation of §", n =2, having barycentrical projections and grid size m™' =1.
The relative projections, however, seem to be the most natural ones. It follows from
Section 2 that when $=S8" the set A(T), T< I, is equal to

A(T)={xe R""|x=(1-b)v+by with ye S*(T),0sb=1},

so that

A(T)={xeS"[x=v+ Y Av(i),TAS1,A=0,i€ T}

ieT i
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e(3)

e(t) e(2)

Fig. 5.3. The V2-triangulation of §", n =2, having orthogonal projections and grid size m~!=4.

e{3}

e(l) / e(2)

Fig. 5.4. The V3-triangulation of 8", n =2, having vertex projections and grid size m™' =1,

with o(i) = e(i)—v, i € I,,,. Therefore the regions A(T), T < I,,,, are similar to the
regions A(T) defined in van der Laan and Talman [2] for their basic algorithm on
S" with respect to the matrix Q. This matrix induces the so-called Q-triangulation
of §”. In the same way we could define a triangulation with respect to the matrix
V=[v(1),...,v(n+1)]. However this triangulation does not triangulate $” but
only its affine hull. When v is equal to the barycenter of S, this triangulation
coincides with the U-triangulation of the affine hull of S" proposed in [10] (see
also [3]). The disadvantage of these triangulations is that approximate solutions
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can only be obtained from full dimensional simplices even if the (real) solution lies
on the boundary of S".

The V-triangulation presented in Section 2 is however a triangulation of §" itself
so that each S$"(T), T < I,4,, is also triangulated. This makes it possible to terminate
with lower-dimensional simplices on the boundary of S§”". In general this will yield
a better approximate solution. Moreover, if the starting point lies on the boundary
of §" fast movements on the boundary are possible. Finally we remark that the
steps of the algorithm presented in Section 4, applied to S=S", are similar to the
steps of the basic algorithm on $" with the Q- or the U-triangulation. The only
difference lies in the definition of the regions A(T), T< I,.,, and the triangulation
of each A(T) (see also Section 2). Theoretically, any consistent triangulation of the
A(T)’s could underly the algorithm. However, triangulations which are easy to
implement and which are not based on projections are not known to the authors.
The same statements can be made for the general case N> 1. If n;=1 for all j, the
V2-triangulation coincides with the V-triangulation. This case is illustrated in Figure
3.3. The V'-triangulation and the V>-triangulation of §*x §* are illustrated in the

Figures 5.5 and 5.6 respectively, for m™' =4,

6. Computational results

The algorithm presented in Section 4 has been applied to the noncooperative
N-person game, to a pure exchange economy, and to an international economy.

We will first give a short description of the noncooperative N-person game. Let
I'=(Ii41,. ., Iy, @1, ..., an) be a 2N-tuple with I, +1 the index set of strategies
of person j and a;:I'»> R,, where I’=Hj]i, L1, jeIn. A vector s=(sy,-..,SN)
in I' denotes for player je Iy that he plays his s;-th pure strategy; g;(s) is the loss
for player j if strategy s € I’ is played. A vector x = (x;,..., xy)€ S with S = ]—[;:1 S
denotes a mixed strategy vector of the game. Let p;(x) be the expected loss of player
j with mixed strategy vector x € S, then we have

N
pi(x)= ZI' a;(s) ‘Il Xis» JE€In. (6.1)

The expected loss m; ,(x) of player j when he plays his k-th pure strategy is given
by

N
mj,k(x) = ZP aj(s) ‘1;11 X5, k€ In,+1 , J€In. (6.2)
sk i)

It follows from (6.1) and (6.2) that

n+1

pi(x)= kZ=;1 ;1M e (). (6.3)
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00—
-0 -0

(o 0l = B
(==}

Fig. 5.5. The V!'-triangulation of $'x §' having barycentrical projections and grid size m™' =%,

-0 0O =
-0~

oO-—-0-—
O =-—0

Fig. 5.6. The V>-triangulation of §!x S* having vertex prajections and grid size m™' =1.
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A mixed strategy vector x*€ S is a Nash equilibrium of I' if p;(x*) — my(x*) =<0
for all ke I.+,, j € In. Let z be the function from S to []/L, R”*! defined by

Zr(x)=p(x) —my(x), kel jely, (6.4)
then according to (6.3) we have, for all xe S,
X z(x)=0, jely.

A solution x*€ S of the NLCP with the function z defined as in (6.4) is a Nash
equilibrium of I" and conversely. The algorithm presented in Section 4 has been
applied to three noncooperative N-person games and compared to the algorithm
given in [7]. In each application both algorithms are started in the barycenter of S
with a gridsize of m™" =1 for the product-ray algorithm and with a gridsize vector
(1/(n,+1),...,1/(ny +1)) for the algorithm described in [ 7], the sum-ray algorithm.
When a complete simplex is found the grid is refined with a factor of two and the
algorithm is restarted in the approximate solution for the V-triangulation and in
the grid point closest to the approximate solution for the Q-triangulation. The grid
refinement is stopped when the accuracy of the approximate solution is less than
107'°. For each round with the new algorithm the total number of linear programming
steps, the total number of function evaluations up to that round and the accuracy
of the approximate solution are given in a table. Since for the algorithm in [7] the
number of rounds is much larger to obtain the same accuracy, only the results with
corresponding accuracy are given.

Throughout this section we will use the following notations,
v: round number of the algorithm.
LP: accumulated number of linear programming steps.
FE: accumulated number of function evaluations.
E: accuracy of the approximate solution:

E* =max zi.(x”) with x* the approximate solution in round v.
S

Game 1. Three players with each player two strategies, N =3, n;=1, j& Iy. The
elements a;(s) are given in Table 2.

Table 2

The elements a;(s), s€ I', j€ Iy. The number in the (j, k)-th row and the
(&, ix,)-th column denotes the loss for player j when he plays his k-th
pure strategy and for h =1, 2 player k;, plays his i;,-th pure strategy with
ky, k,#j and k, <k,

Game 1 (1, 1) (1,2) 2,1 (2,2)

(LD
(1,2)
(2,1)
(2,2)
3.1
(3,2)

oo AN oo
0 ON R OB
LS I S S 9
—_ 0 L W
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The solution of this game is x*=(4, %, 1,% 3, 1)7. The computational results are
given in Tables 3 and 4.

Table 3.
Results of gams 1 for the product-ray algorithm

» LP FE E
1 12 12 6-1072
2 21 20 3-1072
3 38 34 9.107%
4 46 42 71077
5 54 50 5.107%
6 70 64 <1070
Table 4

Results of game 1 for the sum-ray algorithm of [7]

v LP FE E
3 22 24 3:1072
4 34 35 3-1073
7 66 69 21074

11 125 126 81077

14 163 162 9.1077

18 206 205 <10~

Game 2. Three players with each player three strategies, N =3, n;=2, j € Iy. The
elements a;(s) are given in Table 5 (see van der Laan and Talman [5]).

The game has as solution x*=(3,%,0,0,1,0;0,% 1)". The results are given in
Table 6 and 7.

Table §
The ¢lements a(s), se I, je Iy (see Table 2)

Game2 (1,1) (1,2) (1,3) (2,1) (2,2) (2,3) 3,0 (3,2) (3,3

(1,1) 2 3 4 2 3 3 4 1 5
(1,2) 1 1 4 3 4 i 6 8 2
1,3) 4 7 2 4 5 5 3 6 4
(2,1) 5 6 7 4 8 9 3 5 1
(2,2) 1 1 3 3 2 1 2 2 4
(2,3) 2 3 6 5 3 6 7 5 8
3, 1) 1 3 5 1 6 2 1 2 4
(3,2) 2 6 5 3 3 7 8 5 5
(3,3) 5 2 2 4 6 5 8 1 3
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Table 6

Results of game 2 for the product-ray algorithm
v LP FE E

1 14 15 <107%
Table 7

Results of game 2 for the sum-ray algorithm

v LP FE E
1 22 21 4-10710
2 29 29 1-1071°
3 33 34 <10710

Game 3. Four players with each player two strategies, N =4, n;=1, je Iy. The
elements a;(s) are given in Table 8.

The solution found for this game is x*=(},%1,0;1,0;% H".

Table 8

The elements a,(s), s€ I', j € Iy. The number in the (j, k)-th row and the (ik,s ixys i, )-th column denotes
the loss for player j when he plays his k-th pure strategy and for h=1, 2, 3 player k, plays his i, -th
pure strategy with k,, k,, ky#j and k, <k, <k,

Game 3 (L, (4L,14,2) (1,2,1) (1,2,2) (2,4,1) (2,4,2) (2,2,Da (2,2,2)
Ly 3 3 4 2 3 3 4 1
(1,2) 4 1 4 3 1 1 6 8
(2, 1) 4 6 2 4 5 3 3 6
(2,2) 5 2 7 4 8 6 3 5
(3, 1) 1 6 3 3 3 3 1 2
(3,2) 2 2 6 5 4 6 3 5
4,1) 6 3 5 1 3 2 3 2
4,2) 2 6 5 3 4 7 i 5

The results are given in Tables 9 and 10.

The second problem concerns a pure exchange economy. Suppose that n+1 is
the number of commodities and H the total number of economic agents. Let
p € R"1\{0}, then the j-th agent is assumed to respond to this vector of prices by
a vector of excess demands

(zi(p),...,zhalp)), j=1,...,H.

Table 9
Results game 3 for the sum-ray algorithm

v LP FE E

1 9 11 2-107"
24 25 <107'*
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Table 10
Results game 3 for the sum-ray algorithm
v LP FE E
1 5 6 4107
18 117 127 <1070
We assume that each z{, i=1,...,n+1, j=1,..., H, is homogeneous of degree

zero; this permits us to restrict ourselves to prices on the n-dimensional unit simplex.
For each individual we have the budget constraint

pZ/(p)=0, j=1,...,H,

and furthermore we assume that each excess demand function is continuous on the
simplex S". Itis quite easy to show that an economy model satisfying the assumptions
mentioned above has a price vector p* such that

H
z(p*) =T zI(p*)=<0, i=1,...,n+1
i=1

Such a price vector is called an equilibrium price vector. An equilibrium price vector

p*is asolution of the NLCP on S” with z the excess demand function and conversely.
We will consider the following exchange model. The j-th agent has an initial

endowment w;; >0 of commodity i, i=1,...,n+1, and has a utility function given

by

n+1

l/aj
w=(T axn) " xerm,
i=1

with a;;>0, j=1,...,H, i=1,,..,n+1, and g;<1, j=1,..., H This yields the
following excess demand functions

n+i
Bt Liees WikPk

pbfzn+la pl_bi—wj’i’ j=1,...,H, i=1,...,n+1,
i k=1 "kFk

z{(p)=
with b;=(1-g)7",j=1,..., H. Note that b; is strictly positive for all je Iy.

We have applied the algorithm presented in Section 2 to the three pure exchange
economies given in Scarf [9] and again compared it to the algorithm described in
[7] with the Q-triangulation. Both algorithms were run in exactly the same way as
for the previous example and. with terminating accuracy 107°. The data of the three
economies can be found in Scarf [9].

Economy 1. 5 commodities and 3 consumers, i.e. n =4 and H =3,

The results are given in Tables 11 and 12.

Economy 2: 8 commodities and 5 consumers, i.e. n=7 and H=35.

The results are given in Tables 13 and 14.
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Economy 3: 10 commodities and 5 consumers, i.e. n=9 and H=5.
The results areé given in Tables 15 and 16.

Table 11

Results of economy 1 with the V-triangulation of S”

v LP FE E

1 4 6 210!
2 9 12 3-10°
3 20 24 2-107!
4 25 30 9.1073
5 29 35 3-107¢
6 33 40 71078
7 37 45 7-107%
8 41 50 <107°
Table 12

Results of economy 1 with the Q-triangulation of S"

v LP FE E
1 5 6 2-10!
2 19 21 3.10°
4 40 44 21071
6 56 62 1-1072
9 77 86 2-107*

11 91 102 7+10°¢

14 115 128 5-1078

18 138 155 <107°

Table 13

Results of economy 2 with the V-triangulation of S"

v LP FE E
1 7 9 9.10°

2 16 19 2-10°

3 36 40 9.1072
4 45 50 3-1073
5 52 58 4107
6 59 66 1-1073
7 67 75 21077
8 76 85 1-107°
9 86 96 <107

We will now give a short description of an economy with a block diagonal pattern
mentioned earlier by Mansur and Whalley [8] and more recently by van der Laan
[1]. The notation has been changed slightly to make it applicable on the product
space S=H;il 8" of unit simplices.
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Table 14
Results of economy 2 with the Q-triangulation of S"

v LP FE E
1 8 9 9. 10°
2 36 38 1-10°
3 53 56 1-107!
6 101 107 5.1073
8 130 138 3107
10 160 170 1-107°
13 203 216 2-1077
17 261 278 1-107°
18 279 297 <107°
Table 15

Results of economy 3 with the V-triangulation of 8"

v LP FE E
1 9 11 210
2 21 24 4-10°
3 36 40 6107
4 49 54 1-107!
5 65 71 61073
6 83 90 2107
7 97 105 4107
8 114 123 2:1078
9 125 135 1-107°

10 138 149 <107°

Table 16

Results of economy 3 with the Q-triangulation of §"

v LP FE E
1 10 11 1-10t
2 27 29 1-10°
3 44 47 4-107!
4 63 67 2-107¢
7 118 125 3-107°
9 167 176 1-107*

12 242 254 4-107%

15 317 332 5.1078

17 350 367 2-107°

18 373 391 <107°
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There are N —1 countries with N —1 subsets of consumers (agents) denoted by
A, ..., An-1, with lAj|<00,j=1,..., N —1. There are N —1 groups Gj, j€ In_1,
of non-common goods and there is one group Gy of common goods. The non-
common goods in group G; are owned by the agents in A; and are traded only
among the agents in A;, j=1,..., N—1. We may think of an international trade
model with N —1 countries, in which case the commodities in group G; are the
domestic goods of country j, j=1,..., N~1, and the commodities of group Gy
are traded internationally,

Suppose there are n; non-common goods in G, indexed by (j, 1), ..., (j, n),
j€ly_y, and (ny+1) common goods indexed by (N, 1),...,{N,ny+1). So the
total number of goods is M +1 with M=Z;il n;. Now for any pe RYT1\{0}, let
z'(p) be the total excess demand of the agents in A;, given the price vector p. In
the following we write p=(p,,..., Pn-1, P~v). Then

zl(p)=0 fork=1,...,n; and i#j, N

and z/(p)=z'(p;, pn) forall j=1,..., N—1. Now the equilibrium problem (EP)
is to find an equilibrium price vector, i.e. a vector p*=(p¥,..., p%_,, pE)e RM*,
where R™*! is the subset of RY*! such that for all pe RM*!, (p; Pn) has at least
one positive element for each j=1,..., N1, such that

(@) zj(p*)=zi(pf, p%)=0, j=1,...,N—1,

and
N-1 N-1
(®) 2 zh(p*)= L zi(pf, k) =0.
J=1 j=1

Under certain assumptions, see e.g. van der Laan [1], we can prove the existence
of spch an equilbrium price vector. Note that for all Jjeln_y, pJ-szf(pj, PN) T
pnzh(p, Pn) =0, pe RM™. We will use the structure of (EP) to formulate the
problem on the product space of unit simplices S=H}11 S Let x={(x,,...,xn)
be a vector in S then we define price vectors y/=(yi, y4) e R" x RMv*1 j=
1,...,N—-1, by

Vie=Xu, k=1,...,m,
and
Yk = X1 XN k=1,..., 1y +1.
Now we define 7(x) = (5,(x), .. S En(x) el R by
ka(yj), k=1,...,n,

fj,k(x)z n,+1 ) ) j=1,...,N-1
hZ XnnZhn(y7), k=nj+1,
=1
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and

N-1
Fnp(x) =0 '21 (), k=1,...,nn+1,
i<
for some 0<a <(N-1)"%

Clearly, Z(x*)=0 if and only if (%%,...,%%_y, x%) in T[).;' R X S"™ is an
equilibrium price vector, where %= x}/x} e, k=1,..,m, j=1,...,N-L

We will apply the algorithm in Section 3 to the same problems given in van der
Laan [1] and again compare the results with the algorithm described in [7] for the
Q-triangulation of S.

Both algorithms were run in exactly the same way as for the noncooperative
N-person game problem except that the initial gridsize of the V-triangulation is set
to m~'=4, the initial gridsize of the Q-triangulation is set to (1/(n;+1),...,
1/(nn+1))/2, and the terminating accuracy is 10~". The computational results are
given in Table 17, where the first column denotes the number of common goods
(ny+1) and the second column the number of countries. Each country has two
non-common goods. The third and fourth column give the accumulated numbers
of L.p. steps and function evaluations for the new algorithm with the V-triangulation,
while the last two columns give the same numbers for the algorithm described in
[7] with the Q-triangulation,

Table 17

Results international trade model for the product-ray and the sum-ray algorithm

Number of Number of Product-ray alg. Sume-ray alg.
commong goods  countries —_———
FE LP FE LP
2 2 54 47 130 117
3 85 78 196 184
4 97 90 284 271
5 128 121 340 328
3 2 56 49 170 158
3 87 80 258 245
4 95 88 296 285
5 109 102 414 403
4 2 67 60 242 229
3 107 100 315 302
4 118 111 378 365
5 145 138 471 458
5 2 79 72 286 273
3 99 92 415 402
4 145 138 406 393
5 182 175 587 574
6 2 89 82 426 412
3 144 136 458 445
4 195 188 580 569
5 221 214 784 773




T.M. Doup, A.JJ. Talman | A new simplicial algorithm 1o find equilibria 355

Concluding, the computational results suggest that the number of function evalu-
ations and linear programming steps for the new algoritm are substantially lower
than for the algorithm described in [7] although the results for the latter algorithm
can be improved by using the so-called U-triangulation of the affine hull of §” or
S in case of the two economic problems. Then also the approximate solution can
be taken as the starting point of the next round. Even then the number of function
evaluations is larger when compared with the new algorithm (see Talman[10, p. 84]).
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