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Abstract 

Autonomy is a key factor in remote robotic explo- 
ration and there is significant activity addressing the 
application of autonomy to remote robots. It has be- 
come increasingly important to have simulation tools 
available to test the autonomy algorithms. While 
indus1;rial robotics benefits from a variety of high 
quality simulation tools, researchers developing au- 
tonomous software are still dependent primarily on 
block-world simulations. The Mission Simulation Fa- 
cility I(MSF) project addresses this shortcoming with 
a simiilation toolkit that will enable developers of 
autonomous control systems to  test their system’s 
performance against a set of integrated, standard- 
ized simulations of NASA mission scenarios. MSF 
provides a distributed architecture that connects the 
autonomous system to a set of simulated components 
replacjng the robot hardware and its environment. 

1 Introduction 

Exploration of remote environments using robotic 
systems is a very challenging task. The physical 
robot has not only to withstand the hostile elements 
of the mvironrnent, it also needs to  demonstrate high 
levels of autonomy to accomplish its tasks without 
continuous human’ control or intervention; - - 

The typical human-robot interaction scenario for an 
explorafion rover on Mars is strongly affected by the 
communication issue: scientists on earth can only 
communicate with the Martian rover once a day, with 
a limited bandwidth and for a period of one to  two 
hours. Communication becomes even a greater is- 
sue for planets farther away from earth like Europa. 
On Earth, the exploration of some remote places like 
the ocean under the Arctic ice faces similar prob- 
lems. Therefore, besides the development of ground 
tools to help scientists plan, test and visualize re- 
mote science experiments, the rover needs autonomy 
to perform tasks without direct human control. To 
accomplish critical science missions, the rover needs 
to be able to explore an unstructured world and to 
make decisions based on on-board sensors. In ad- 
dition, the rover has to be capable of adapting its 

mission to unanticipated events in order to maximize 
the science return and ensure rover safety. 
Research in autonomy for robotic platforms used in 
remote exploration is therefore critical for the suc- 
cess of missions. However, this research area faces 
problems when it comes to  testing new autonomy 
concepts: 

0 Custom simulators provide.usually only testbeds 
for individual algorithms without the context of 
an integrated robotic mission. 

e Access to hardware is either very costly or not 
available at all and even if the hard ware is avail- 
able, time and resource constraints limit test 
scenarios to  just a few environments. In addi- 
tion, it is difficult to control the parameters of 
the test and the experiments are therefore hard 
to repeat. 

To support autonomy research for robotic systems, 
the Mission Facility (MSF) project was started in 
2001. 

1.1 MSF Goals 

The goal of MSF is t o  develop a simulation frame- 
work and suite of simulation tools to support re- 
search in autonomy for remote exploration. Such 
a system will allow-developers of autimomous soft- 
ware to test their models in a high-fidelity simulation 
and evaluate their system’s performance against a set 
of integrated, standardized simulations. Currently 
there is a big gap between autonomy software at the 
research level and software that is ready for mission 
insertion. It is our vision that MSF will bridge this 
gap by providing researchers with high-fidelity sim- 
ulations of mission scenarios to  test their software in 
a realistic, complex environment. 

Software simulations have become very common and 
many high fidelity models exist in the robotics com- 
munity. However, it is currently very difficult to 
combine models of different origin into an integrated 
simulation because the various models may be tied 
to a specific operating system or computer language. 
MSF is designed to  connect these models through 
the Mission Simulation Toolkit (MSTK), a soft- 



ware package comprising 1) a framework for connect- 
ing and synchronizing distributed software models, 
2) generic interfaces abstracted from the transport 
layer, and 3) a set of basic components needed for a 
simulation. 

1.2 Scope and Applications 

The MSF architecture is designed to  support multi- 
ple mission platforms (e.g. planetary robots, space- 
craft, underwater vehicles), but the initial focus is 
on supporting simulations in the domain of plane- 
tary rovers. A rover simulation would most likely in- 
clude a terrain model, site information (such as col- 
oration and mineral composition), an environment 
model (sun position, lighting, temperature, etc), a 
rover including a kinematic model and on-board sen- 
sorii, and some scientific instruments. It is up to 
the user to decide what granularity of models best 
suits the purpose of his simulation. For example, 
a user who is mainly concerned with collecting sci- 
entific data may not require a sophisticated rover 
model because he may not care how the rover gets 
from one point of interest to  another. On the other 
hand, a user who is developing a trajectory genera- 
tor may want to  control individual wheels of a rover. 
,IISF provides both high and low level interfaces to 
a number of standard models. Figure 1 shows the 
concepts of MSF distributed simulation relying on a 
common communication framework t o  connect mod- 
els and autonomous software. 

Figure 1: Overview of the Mission Simulation Fa- 
cility (MSF). 

2 Proposed Framework 

The realization of the goals mentioned in the previ- 
ous section requires the construction of the following 
components: 
A dist r ibuted archi tecture  that implements a 

communication layer. 

A set of models allowing the simulation of robots, 
environment and science instruments. 

Scenario representation through the description 
of robot systems and their environment. 

Databases used both as a source of data for the 
model and as storage for the result of the simu- 
lation. 

These components (except databases which are not 
yet treated by the MSF team) are described in the 
following sections. 

2.1 Distr ibuted architecture 

The MSF architecture is derived from two main 
requirements: t o  support distributed simulation 
on multiple platforms and to ensure extensibility 
through an open architecture. 

Mult iple  platform support. The users of the 
MSF (autonomy developers) typically develop their 
tools in a variety of environments, for example, a 
Lisp program under Solaris on a Sun workstation or 
a C++ program under Linux on an Intel PC. In addi- 
tion, the target systems for the autonomous software 
(the rover control software) are also developed on 
different operating systems and hardware platforms. 
Such software could for example rely on a partic- 
ular flavor of Linux running on a PC-104 Pentium 
board, or could be a dedicated embedded system 
running VxWorks. The MSF project does not intend 
to develop dl the simu!ation c0rnponent.s but rather 
will take advantage of existing tools. To minimize 
the adaptation, each particular software component 
should be usable by MSF on the original platform 
for which it  was developed. 

Open architecture. MSF is a general purpose 
testbed for mission simulation rather than a specific 
simulator, which implies that different sets of compo- 
nents will be used for different scenarios or different 
domains. For example, one might use a kinemat- 
ics model for a rover and a fluid dynamics model 
for an underwater vehicle. In addition, a compo- 
nent should be usable in multiple scenarios, which 
means that the same rover kinematics model should 
be usable for various rovers with particular payloads 
driving in different environments. Finally, it should 
be possible to  replace a component of a certain type 
with another that performs the same function but a t  
a different level of fidelity. A simple kinematics rover 
simulator could be sufficient to test high level auton- 
omy concepts like path planning while a dynamics 
rover simulator including accurate soil-wheel interac- 
tions may be required to  test an autonomous control 
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Figure 2: MSF simulation with several components communicating through common interfaces. 

system for the mobility of the rover’. It is therefore 
essential that MSF define clear interfaces between 
the components to facilitate swapping components 
included in the MSF toolkit with those developed at 
other research institutions. 
A way to  satisfy the above requirements is to have 
a distributed architecture where components com- 
municate with each other using a common trans- 
port layer. MSF is built on top of the standard- 
ized High Level .4rchitecture (HLA)’ which is an ar- 
chitecture for simulation reuse and inter-operability 
developed by the Defense Modeling and Simulation 
Office (DMSO). MSF currently uses the Runtime In- 
frastructure (RTI) - a software implementation of 
HLA - freely distributed by DMSO. The HLAIRTI 
provides MSF the following services: 

Multi-platform support: IRIX, Solaris, Linux, 
Win32 and VxWorks 

developed on top of the HLA, the Federate ToolKit 
(FTK). FTK is responsible for the integration of 
Communication entities with the Runtime Infras- 
tructure. The communication objects and messages 
defining the MSF interface are easily designed using 
the Unified Modeling Language (UML) and all the 
necessary C+ 4- code to  use these communication en- 
tities can be automatically generated. 
Figure 2 gives an example of an hfSF simulation with 
several interconnected components. Two separate 
rover autoncmy software executions are pwticipatisg 
in the simulation: Rover A software is provided by a 
lab having a complete rover architecture (and proba- 
bly a real rover) from the high level control down to 
the hardware control; Rover B software comes from 
a lab - working only on high level autonomous algo- 
rithms and does not have hardware control. %hen 
Rover A software is sending commands .. to  its - actu- 
ators (e.g. motorl.start(speed, duration)), the com- 
mands axe routed to the simulator rather than go- 
ing to  real hardware. The Kinematics Simulator 
accepts such commands and computes the behav- 
ior of the rover on the terrain regarding these in- 
puts. When Rover B is issuing a high level command 
to its base controller (e.g. roverB.moveto(position, 
obstacle-avoidance=on)), the Generic Rover model 
catches this message and produces motor commands 

(:++ and Java bindings 
Choice of transport protocol: TCP (reliable) or 
IJDP (fast) 
Publish/Subscribe scheme 

Communication through objects or messages 
F’arious time management schemes for sirnula- 
tion svnchronization - 

for a simple model of a rover causing it to move To facilitate the integration of components in an 
from one location to another while avoiding obsta- MSF based simulation, an abstraction layer has been - cles. These motor commands can be processed by 

‘This latter case is however not directly addressed by MSF the Same Kinematics Simulator that is used for con- 
in its first phase 

Standard 1516 - in September 2000 

trolling Rover -4. The same type of scheme is used 

in Figure 2 (the figure does not show the full path 

2The HLA was approved as an open standard through the 
Institu1,e of Electrical and Electronic Engineers (IEEE) - IEEE when instruments! generalized as 



of information flow). In addition to the Kinematics 
and Instruments models, a Power Resource model 
is participating in the simulation. Its function is to 
monitor the load of each actuator as well as the power 
generated by solar panels and to compute the power 
remaining in the rover batteries. The power output 
of t,he solar panels depends on the orientation of the 
solar panels relative to the sun. The position of the 
pariels is provided by the kinematics model and the 
sun’s position is delivered by a another component 
computing the Ephemerides. This example shows 
how different components are reusable for different 
scenarios, and how the definitions of the networked 
MSF interfaces removes all the dependencies between 
the components. 

2.2 Simulation Models 

MSF makes it possible to replace robotic hardware 
and environments with simuIated components, which 
implies having a library of models of the robots them- 
selves and of various environments representative of 
future missions. The interaction of a rover model 
with its environment involves several elements. For 
example, when the robot moves to a new location, 
the motors drive the wheels, which in turn move 
over the terrain according to the forces of gravity 
and terrain shape. The robot obtains engineering 
data through its sensors, and on-board science in- 
struments collect data from the virtual environment. 
Robotic instruments such as a rock grinder may also 
interact with the environment. 

The models for a simulation could be built at very 
different levels of sophistication. For example the 
model of a rover driving over some terrain could work 
with the assumption of a flat surface and perfect mo- 
tion, or could involve a full dynamic system including 
wheel slippage. The next paragraph briefly presents 
different approaches. 

Level of simulation. The purpose of the science 
robotic system is to explore its surroundings by ac- 
tively taking measurements. Figure 3 depicts a num- 
ber of modules composing a rover software architec- 
ture with flows of two types of information: action 
(output) and sensing (input). In this simplified ex- 
ample, the Goal Decomposer on the Rover Auton- 
om;{ side hands tasks to a Path Planner, which in 
turn interacts with a Locomotion Controller. The 
latter is communicating with the rover hardware, 
sending commands to actuators and obtaining pro- 
prioceptive sensor data. On the side labeled “Science 
Autonomy” in the figure, the world is sensed using 
a cxnera controlled by a Vision System that feeds 
an Image Interpreter module. The latter supplies in- 
formation to high level World Analysis algorithms. 
In real autonomous systems. the flow of commands 

and sensory inputs are closely connected. For exam- 
ple, the obstacle avoidance algorithm takes actions 
based on the information provided by the obstacle 
detection algorithm. While there is a fair amount 
of cross-over of information between the science and 
rover autonomy, generally more sensory input data 
is directed to  the science autonomy side and much of 
the output is concerned with the functioning of the 
Rover Autonomy. The simulator could be hooked at 
any of these levels of the rover architecture on each 
side, and not necessarily at the same level for each 
area of specialization. 
It is interesting to note that in general it is easier 
to build a simulator that connects at the low level 
of the “action flow” and at the high IeveI of the 
“sensing flow”. On the “action flow” side, building 
a simulator that sends low level commands to the 
actuators is easier because: 1) access to  hardware is 
less dependent of the rover software architecture and 
2) the simulator does not need to replace some be- 
haviors of the rover (e.g. obstacle avoidance in the 
example above). In contrast, a simulator could more 
easily feed the high level modules of “sensing flow 
because”: 1) the simulator knows the truth model 
and thus can directly provide high level information 
about the scene (for example, there is a big rock in 
front of the rover) and 2) an accurate instrument 
model that takes into account physical laws (illumi- 
nation, material texture, etc) is difficult t o  build. 

Figure 3: Various level of simulation possible for a 
hierarchical robot software architecture. 

MSF is being built incrementally, so our initial fo- 
cus is on creating a strong infrastructure and provid- 
ing a toolkit that includes only a few simple models. 
Once the infrastructure is in place, new models of 
higher fidelity or models that address different do- 
mains will be added. Currently MSF depends on &I 
existing kinematics simulator for the rover mechan- 



its (controlled by low level inputs like wheel speed) 
and feeds control algorithms with high level infor- 
mation coming from the truth model (like ”this rock 
contains carbonates”). Section 3 briefly presents the 
components used in the current MSF implementa- 
tion. Ongoing collaborations will provide improved 
models for terrain generation, dynamics simulation 
and science instruments. 

Required Components. MSF is a general frame- 
work for connecting multiple components to  build 
various types of simulations. In this sense, MSF 
does not enforce the use of a particular set of simu- 
lators, and lets the user build to meet his own needs. 
However, it is possible to  identify the components 
required for a minimal planetary simulation: 

Environment Generation. -4n environment 
model is essentially composed of a terrain 
surface with attached properties. The data 
can either be generated on the fly by a ter- 
rain server, or precomputed and stored in a 
database. Ideally the data will be generated by 
terrain models from a set of input parameters 
(location, resolution, type of terrain, rock 
density, etc.) but real terrain data can be used 
as well in certain situations (MSF currently uses 
data collected during various Mars mission and 
Earth field tests). An environment model may 
also comprise data representing atmospheric 
conditions, celestial body positions, and soil 
composition, etc. 

Robot Behavior. The robot model represents 
mainly the mechanical behavior (positions of 
robot parts in response to  commands to effec- 
tors) because i t  is the most significant from a 
high level point of view. 
From a high level point of view, the most sig- 
nificant representation of the rover model is the 
mechanical behavior, which determines the posi- 
tions of robot and its effectors. The robot model 
also needs to include other resources including 
proprioceptive sensors, power, computation and 
communication. Depending on the level of au- 
tonomy being tested, the model may also include 
generic robot capabilities such as obstacle avoid- 
ance. Finally, it is critical for the robot simu- 
lation to represent and handle failures because 
they play an important role in robot autonomy. 

Instrument Models. Instrument models provide 
autonomy developers data from the robot’s en- 
vironment, feeding their algorithms. Again, de- 
pending on the level of autonomy being tested, 
these data products could be the raw data an 
instrument normally returns (e.g. a photo- 
realistic image) or pre-processed information 

(e.g. the response from a spectrometer system: 
“there is carbonate in this rock”). MSF will 
provide models for generic instruments includ- 
ing cameras and spectrometers. Complete in- 
strument packages as those intended to  fly on 
future mission may be added to the library as 
the models become available. 

Data Analysis. Tools for collecting and analyzing 
data from simulation runs are fundamental to 
evaluate autonomous software. The HLA com- 
munication layer and the tools developed for 
it make it easy to collect all information ex- 
changed between MSF components. One of the 
first qualitative evaluation tool used in MSF is 
a 3D graphic environment allowing the user to 
follow robot behaviors in a simulated world. Be- 
side showing graphics objects having a physical 
counterpart, the 3D environment provide visual- 
ization on non visible parameters like the torque 
on a motor, or the field of view of a camera. 

2.3 Scenario description 

’Because MSF is a general simulation platform rather 
than a specific simulator, it needs to be configurable 
for different scenarios. In general, a scenario com- 
prises of the robotic systems description, the environ- 
ment description, and some simulation specific pa- 
rameters. The robot description defines the kinemat- 
ics (or dynamics) parameters of the robot’s mechan- 
ical structure, the actuators, various instruments 
composing the payload3 and several resource mod- 
ules (e.g. battery, memory). The environment is 
composed of the following: 1) a reference to the ter- 
rain data that will be used to compute the kinematics 
of the rover, 2) the data inferred by the instruments, 
3) the type of atmosphere and other environmen- 
tal parameters, 4) the location of the mission (which 

-planet,latitu-de’-and longitude) and 5) the epoch of 
the simulation. 
No parameters regarding robots or environment are 
encoded in any MSF component. Instead, the com- 
ponents obtain their specifications from the scenario 
description file when a new simulation is initiated. A 
component defined in such a way will then produce 
simulated results on the basis of an external descrip- 
tion. The scenario description file could in fact be 
a set of files, each referenced in a main file. Such 
a setup creates a unique parameter, the file URL, 
defining completely a specific scenario in a MSF sim- 
ulation. MSF currently uses a file description that 
is a proprietary extension of the Robot File Format 

3Proprioceptive sensors, such as the incremental counter of 
a DC motor, are considered part of the actuator. Low level 
control between a DC motor and its controller is not simulated 
at the leve! of accuracy that MSF addresses. 



used by VirtualRobot, which does not contain all the 
capabilities listed above. MSF plans to use an XML 
scenario description with a dedicated DTD. This will 
prcivide a description of the simulation that is human 
readable (and editable) with the bonus of having ex- 
isting graphical editors to modify the file and the 
nec:essary tools to  parse it. In addition, tools to ex- 
change XML files over the network are widely avail- 
able, which is important for a distributed simulation. 
To ensure coherency, all the MSF components par- 
ticipating in a simulation read the same scenario de- 
scription file. However, each component extracts 
only the information relevant to its domain. For 
example, the kinematics simulator identifies all the 
dimensional parameters of a rover, while the instru- 
ment model only needs to get the rover’s name. Hav- 
ing a single source for describing the scenario is crit- 
ical for software configuration management and test- 
ing. A seemingly simple change to the model robot 
such as increasing the power of the motors, for exam- 
ple, affects multiple software components: the power 
model, dynamic simulator, abstract reasoning layer, 
and possibly the visual representation, to  name a 
few. Without limiting the scenario description to 
one file, the resulting simulation could become un- 
manageable to verify and distribute. 

3 Results: a first MSF instantiation 
with three components 

3.1 Conditional exec 

3.2 Kinematic  s imulat ion 
3.3 Visualization 

4 Conclusion and Future developments 

In this paper, MSF has been presented as a simula- 
tion framework for autonomy research that makes it 
possible to integrate available models of robotics sys- 
tem.s with autonomy software. The distributed ar- 
chitsectwe that implements the communication layer 
enables researchers to run their models on the in- 
tended platforms. The toolkit provides users a facile 
method to create communication entities, that con- 
nect their software with other models participating 
in it simulation, through specification in UML. A li- 
brary of simple and advanced models of robots, sci- 
ence instruments and environment allows users to 
create a simulation for a particular scenario. It is 
our hope that this library will grow as more and more 
users will use MSF and make their models available 
to other research groups. We are also hopeful that 
the flexible design and ease of use will make MSF 
attractive to a large community of users interested 
in creating simulations in robotics and autonomy. 


