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Abstract. Following the methodology of Azzalini, researchers have devel-
oped skew logistic distribution and studied its properties. The cumulative dis-
tribution function in their case is not explicit and therefore numerical meth-
ods are employed for estimation of parameters. In this paper, we develop a
new skew logistic distribution based on the methodology of Fernández and
Steel and derive its cumulative distribution function and also the character-
istic function. For estimating the parameters, Method of Moments, Modified
Method of Moment and Maximum likelihood estimation are used. With the
help of simulation study, for different sample sizes, the parameters are esti-
mated and their consistency was verified through Box Plot. We also proposed
a regression model in which probability of occurrence of an event is derived
from our proposed new skew logistic distribution. Further, proposed model
fitted to a well studied lean body mass of Australian athlete data and com-
pared with other available competing distributions.

1 Introduction

Simon’s (1955) work was the first to recognize that symmetric probability dis-
tributions do not properly represent the real data. He realized the importance of
skew distributions and their applications in sociology, economics, and in many
biological phenomenons. Of late, researchers are searching for a class of distri-
butions which can suitably represent the asymmetry inherent in the data. Azzalini
(1985), developed a new class of density functions by introducing a shape pa-
rameter λ, such that when λ = 0, it corresponds to standard normal density. Fur-
ther, Azzalini and Dalla Valle (1996), extended it to the multivariate case. Follow-
ing Azzalini (1985), many researchers introduced different skew distributions like
skew-Cauchy distribution (Arnold and Beaver (2000)), skew logistic distribution
(Wahed and Ali (2001)), skew Student’s t distribution (Jones and Faddy (2003)).
Lane (2004) fitted the existing skew distributions to insurance claims data. For
more applications of skew distributions see Ma and Genton (2004).

Fernández, Osiewalski and Steel (1995) developed an alternate procedure for
generating skew distributions. They defined a family of ν-spherical distributions
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and as an important special case, defined a class of distributions which allow mod-
eling skewness. Generalising this, Fernández and Steel (1998) developed skew dis-
tributions by introducing skewness into any unimodal and symmetric distribution
by using inverse scaling of the probability density function on both sides of the
mode. This inverse scaling does not affect the unimodality but controls the tail be-
haviour. They applied this procedure to obtain skew Student’s t distribution, which
displays both flexible tails and possible skewness each entirely controlled by sep-
arate scale parameters. Later on, Ayebo and Kozubowski (2003) studied a class
of skew continuous distributions on the real line arising from symmetric exponen-
tial power laws by incorporating inverse scale factors into positive and negative
orthants. In this class of distributions, skew and symmetric Laplace and normal
laws are included as special cases. They also studied the main properties of skew
exponential power laws and derived maximum likelihood estimates and discussed
their applications to finance theory.

Recently, Huang and Chen (2007) investigated the generalized skew symmetric
distributions by introducing a skew function in place of cumulative distribution
function (CDF), F(·), where a skew function G(·) is Lebesgue measurable and
satisfies 0 ≤ G(x) ≤ 1,G(x) + G(−x) = 1 almost everywhere in �. Chakraborty,
Hazarika and Ali (2012) introduced a skew function and developed a new skew
logistic distribution.

In mathematical terms Azzalini (1985) showed that if f is a density function
symmetric about 0, and G an absolutely continuous distribution function such that
G′ is symmetric about 0, then

g(x|λ) = 2f (x)G(λx), −∞ < x < ∞ (1.1)

is a density function for any real λ. He showed that, if f is standard normal density
and G its distribution function, then g(x|λ) is a skew normal random variable
with parameter λ. He studied the properties of this distribution and derived the
maximum likelihood estimates.

Following Azzalini (1985), Wahed and Ali (2001) developed a skew logistic
distribution by taking f (x) to be logistic density function and G(x) as its c.d.f.
and discussed some of its important characteristics. They observed that the CDF
of their skew logistic distribution with skew parameter, α, cannot be evaluated in a
closed form unless α = 0. They further observed that the mean and variance have
not in closed form but are finite and can be computed numerically for different
values of α.

Pewsey (2009) considered various issues of inference for the skew normal dis-
tribution and explained why the direct parametrization should not be used as a
general basis of estimation.

Arellano-Valle and Azzalani (2013) commented that “a problematic aspect of
this kind of formulation is that the parameters are not related to the moments or
cumulants in a simple way. The location parameter does not correspond to any
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quantity traditionally used to quantify location such as the mean or median, neither
it is related to them in a simple form, a fact which affects interpretation of this
parameter.”

Gupta, Chang and Huang (2002) studied the models in which f (·) is taken to
be the p.d.f. from one of the following distributions: normal, Student’s t , Cauchy,
Laplace, logistic, and uniform distribution, and G(·) is a distribution function such
that G is symmetric about 0.

Nadarajah and Kotz (2003) considered the models with f (·) as a normal p.d.f.
with zero mean, while G(·) is from one of the above continuous symmetric dis-
tributions. Multivariate skew-symmetric distributions have also been studied by
Gupta, Chang and Huang (2002) and Wang, Boyer and Genton (2004). The multi-
variate skew-Cauchy distribution and multivariate skew t-distribution are studied
by Arnold and Beaver (2000), and Gupta, Chang and Huang (2002), respectively.

Arellano-Valle, Gómez and Quintana (2003) considered a general class of
asymmetric univariate distribution. A key element in their construction is that the
distribution can be stochastically represented as a product of two random variables.

Gupta and Kundu (2010) considered two different generalizations of the logis-
tic distribution. They observed that the p.d.f. of the skew logistic distribution can
have different shapes with both positive and negative skewness depending on the
skewness parameter. Further, the distribution function, failure rate and different
moments cannot be obtained in explicit form.

Chakraborty, Hazarika and Ali (2012) following Huang and Chen (2007) con-
sidered [1 + sin(λx/2β)]/2 as G(x) and introduced a new skew logistic distribu-
tion and studied its properties. They obtained the CDF and the moments.

In this paper, we derive a skew logistic distribution using Fernández and Steel
(1998) methodology. An advantage of our methodology is that we can obtain ex-
plicit expression for the moments and obtain the characteristics function. We also
obtained the estimates of the skew parameter and scale parameter using three esti-
mation methods viz Method of Moments, Modified Method of Moments and Max-
imum Likelihood Method which are found to be consistent. It may be mentioned
that none of the earlier authors used the method of moments.

This paper is organized as follows. In Section 2, we give a methodology for
developing skew logistic distribution. In Section 3, we derive the properties such
as distribution function, survival, hazard function, cumulative generating function
and r th raw moment of the distribution. In Section 4, we estimate the parame-
ter using the Method of Moments, Modified Method of Moments and Method of
Maximum likelihood estimation. In Section 5, we present an algorithm for gen-
erating a skew logistic random variable and present a simulation study, whereas
data analysis comparability with the other competent models are presented in Sec-
tion 6. Section 7 gives some overview of skew logistic regression. The proofs of
the mathematical equations are presented in Appendix.
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2 Methodology

Consider a symmetric p.d.f. g(·) on �, then for any κ > 0, we obtain a skew density
f (·) as

f (x) =
⎧⎨
⎩ cg

(
x

κ

)
, if x < 0,

cg(xκ), if x ≥ 0,
(2.1)

where c, the normalization constant can easily be obtained as c = 2κ
1+κ2 .

It can be seen that when κ = 1, f (x) is symmetric at x = 0. When κ > 1, f (x)

is positively skewed and when κ < 1 it is negatively skewed. Hence, κ introduces
skewness into f (x) both positively and negatively, see Fernández and Steel (1998).

Let g be a symmetric logistic distribution with density

gX(x) = e−x/β

β · (1 + e−x/β)2 , −∞ < x < ∞, (2.2)

where β > 0 is the scale parameter. We follow the procedure of Fernández and
Steel (1998) and define:

Definition 2.1. A random variable X is said to have Skew Logistic Distribution
(SLD) with scale parameter β > 0 and skew parameter κ > 0, if the density func-
tion of X is of the form

f (x) = 2κ

1 + κ2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−x/(κβ)

β(1 + e−x/(κβ))2 , if x < 0,

e−xκ/β

β(1 + e−xκ/β)2 , if x ≥ 0.

(2.3)

We denote the distribution of X by SLD(κ,β) and write X ∼ SLD(κ,β).

3 Properties of SLD(κ,β) distribution

Let X ∼ SLD(κ,β) with density defined in (2.3), then c.d.f. of X is given by (see
Appendix A.1)

FX(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2κ2

1 + κ2

1

(1 + e−x/(κβ))
, if x < 0,

κ2

1 + κ2 + 2

1 + κ2

(
1

1 + e−xκ/β
− 1

2

)
, if x ≥ 0.

(3.1)

The Survival and hazard functions are

SX(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 − 2κ2

1 + κ2

1

(1 + e−x/(κβ))
, if x < 0,

2

1 + κ2

(
e−xκ/β

1 + e−xκ/β

)
, if x ≥ 0

(3.2)
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and

HX(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2κe−x/(κβ)

β((1 − κ2) + (1 + κ2)e−x/(κβ))(1 + e−x/(κβ))
, if x < 0,

κ

β

1

(1 + e−xκ/β)
, if x ≥ 0.

(3.3)

Remark 3.1.

1. If Xκ,β follows skew logistic distribution, then X1,β is logistic distribution.
2. If X ∼ SLD(κ,β), then Y = −X ∼ SLD( 1

κ
, β).

3. Let u ∼ U(0,1). Choose κ such that κ2

1+κ2 = u0, u0 ∈ (0,1) and a scale pa-
rameter β . Then

X =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βκ log
(

u

2u0 − u

)
, if 0 < u < u0,

β

κ
log

(
u0 + κ2(u − u0)

(1 − u)κ2

)
, if u0 ≤ u < 1

follows skew logistic distribution with parameter (κ,β).
4. Let X ∼ SLD(κ,β). The distribution of random variable X|X > 0 follows

half-logistic distribution with parameter (β/κ) and X|X < 0 it follows half-logistic
distribution with parameter (βκ).

5. In the case of skew logistic distribution derived in Jones and Faddy (2003),
the skew parameter, α changes the shape of the curve. In our proposed distribution
as the skew parameter κ changes, the shape of the curve changes and accommo-
dates more right tail as shown below.

Proposition 3.1. Consider a random variable X1 ∼ SLD(κ,β) and X2 ∼ SLλ

defined by Jones and Faddy (2003). Then following condition holds:

(i) For λ > 0 and 0 < κ < 1, X1 has thicker tail than X2.
(ii) For λ > 0 and κ > 1, X1 has thinner tail than X2.

(iii) For λ < 0, κ < 1 the X1 has thicker tail than X2.
(iv) For λ < 0, κ > 1 and λ + κ − 1 > (<)0 then X1 has thinner (thicker) tail

than X2.

Proof. The tail behaviour of two distributions can be compared by taking the lim-
iting ratio (LR) of their density (see Tse (2009), p. 60). Faster the ratio approaches
to zero (infinity) thinner (thicker) will be the tail of numerator density compared
with the denominator density. The limiting ratio of densities of random variables
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Figure 1 PDF of SLD for different value of κ .

X1 ∼ SLD(κ,β) and X2 ∼ SLλ is defined as

LR = lim
x→∞

fX1(x)

fX2(x)
= lim

x→∞
((2κ)/(1 + κ2))(e−κx/β/(β(1 + e−κx/β)2))

(2e−x/β)/(β(1 + e−x/β)2(1 + e−λx/β))

= lim
x→∞

(
κ

1 + κ2

)(
1 + e−x/β

1 + e−κx/β

)2(
1 + e−λx/β

e−x(1−κ)/β

)
.

(i) If λ > 0 and 0 < κ < 1, then LR → ∞ which means fX1(x) has thicker
tail than fX2(x).

(ii) For λ > 0 and κ > 1, then LR = 0 which implies fX1(x) has thinner tail
than fX2(x).

(iii) For λ < 0 and κ < 1, LR → ∞ which implies fX1(x) has thicker tail than
fX2(x).

(iv) For λ < 0, κ > 1 and λ+κ −1 > (<)0, LR = 0 (∞) which implies fX1(x)

has thinner (thicker) tail than fX2(x). �

See Appendix A.2 for detailed proof of above results.
The changes in the shape of the distribution for different values of κ are illus-

trated in Figure 1. As the scale parameter does not change the shape, β is fixed
at β = 0.01, say. It can be seen from Figure 1 that for κ < 1, the distribution is
right skewed and for κ > 1 it is left skewed. When κ tends to zero it tends to
uniform distribution. Moreover in Figures 2 and 3, density plot for different scale
parameters were shown.

Beside scale and skew parameter we can also introduce a location parameter
(θ ) thereby generalizing our proposed skew logistic model Y = X + θ , where X ∼
SLD(κ,β). Thus, the density of Y can be written as

f (x) = 2κ

1 + κ2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

e−(x−θ)/(κβ)

β(1 + e−(x−θ)/(κβ))2 , if x < θ ,

e−κ(x−θ)/β

β(1 + e−κ(x−θ)/β)2 , if x ≥ θ ,
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Figure 2 PDF of SLD for different value of β with κ = 0.5.

Figure 3 PDF of SLD for different value of β with κ = 1.5.

we express the above location family of skew logistic distribution as Y ∼
SLD(θ, κ,β). Further, irrespective of κ,β the mode(y0) of the random variable
Y is at θ .

Proposition 3.2. If Y ∼ SLD(θ, κ,β), then

E
(
(Y − θ)r

) = 2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
βr+1�(r + 1)

(j + 1)r+1

(
1

κr+1 + (−1)rκr+1
)
.
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3.1 Characteristic function (C.F.)

Using Taylor series expansion (see Appendix A.4) for (1 + z)−1 in (2.3), we get

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
ex/(βκ)(j+1), if x < 0,

2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
e−κx/β(j+1), if x ≥ 0.

(3.4)

The moment generating function of X is MX(t) = ∫ ∞
−∞ extf (x) dx. Therefore,

MX(t) = 2κ

(1 + κ2)β

×
∞∑

j=0

(−2
j

)(∫ 0

−∞
ext ex/(βκ)(j+1) dx +

∫ ∞
0

ext e−xκ/β(j+1) dx

)
(3.5)

= 2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)(
1

(t + (j + 1)/(βκ))
+ 1

(κ(j + 1)/β − t)

)
,

MX(t) = 2κ

(1 + κ2)

∞∑
j=0

(−2
j

)(
κ

βtκ + j + 1
+ 1

κ(j + 1) − tβ

)
.

Thus, the characteristic function of X takes the form

φX(t) = 2κ

(1 + κ2)

∞∑
j=0

(−2
j

)(
κ

iβtκ + j + 1
+ 1

κ(j + 1) − itβ

)
. (3.6)

3.2 rth moment of skew logistic distribution

From (3.4), the r th raw moment is

E
(
Xr) = 2κ

(1 + κ2)β

×
∞∑

j=0

(−2
j

)(∫ 0

−∞
xrex/(βκ)(j+1) dx +

∫ ∞
0

xre−xκ/β(j+1) dx

)

= 2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)(
(−1)rβr+1κr+1�(r + 1)

(j + 1)r+1 + βr+1�(r + 1)

κr+1(j + 1)r+1

)
,

E
(
Xr) = 2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
βr+1�(r + 1)

(j + 1)r+1

(
1

κr+1 + (−1)rκr+1
)
.
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Hence, first four raw moments are given as

E(X) = 2β

(
1 − κ2

κ

)
loge 2, (3.7)

E
(
X2) = κβ2

1 + κ2

(
κ3 + 1

κ3

)
π2

3
, (3.8)

E
(
X3) = 9κβ3ς(3)

(1 + κ2)

(
1

κ4 − κ4
)

where ς(s) =
∞∑

j=0

1

(j + 1)s
, (3.9)

E
(
X4) = 7κπ4β4

15(1 + κ2)

(
1

κ5 + κ5
)
, (3.10)

V(X) = κβ2

1 + κ2

(
κ3 + 1

κ3

)
π2

3
−

(
2β

(
1 − κ2

κ

)
loge 2

)2

. (3.11)

It is observed from the Figure 4 that the mean is a decreasing function of κ . The
skewness is a decreasing function of κ , and it varies from 1.540 to −1.540 as κ

Figure 4 The variation of the four measures: (a) E(X), (b) V(X), (c) Skewness(X) and
(d) Kurtosis(X).
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varies from 0 to ∞. It is interesting to note that the range of achievable skewness
obtained by our proposed distribution is the same to that of Wahed and Ali (2001)
and is higher than the range of achievable skewness for skew normal distribution

which is (−
√

2/π(4/π−1)

(1−2/π)3/2 ,
√

2/π(4/π−1)

(1−2/π)3/2 ) ≈ (−0.9953,0.9953). Therefore, it is clear
that the proposed skew logistic distribution will be more flexible than the skew
normal distribution for data analysis purpose (see Gupta and Kundu (2010)). The
kurtosis of our proposed model attains a maximum value of 6.58370 as κ tends to
either 0 or ∞.

3.3 Quantile functions

The quantile function of order γ , xγ , can be derived by inverting the c.d.f. given
in (3.1),

xγ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

βκ log
(

γ

2u0 − γ

)
, if 0 < γ < u0,

β

κ
log

(
u0 + κ2(γ − u0)

(1 − γ )κ2

)
, if u0 ≤ γ < 1.

By choosing γ = 0.5, the median of the SLD(κ,β) can be given as

median(X) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β

κ
log

(
3 − κ2

1 + κ2

)
, if κ < 1,

βκ log
(

1 + κ2

3κ2 − 1

)
, if κ > 1.

4 Estimation of parameters

4.1 Method of Moments

Let the first two sample moments be m1 and m2. Equating them with the first two
raw moments of skew logistic distribution (3.7) and (3.8) and eliminating beta, we
obtain

m2

m2
1

= (2κ̃)/(1 + κ̃2)(κ̃3 + 1/κ̃3)π2/6

(2((1 − κ̃2)/κ̃) loge 2)2 ,

m2

m2
1

= (2κ̃)/(1 + κ̃2)(κ̃3 + 1/κ̃3)π2/6

4((1 − κ̃2)/κ̃)2(loge 2)2 , (4.1)

m2

m2
1

= (κ̃6 + 1)π2

12(1 − κ̃2)2(1 + κ̃2)(loge 2)2

putting q = 12(loge 2)2

π2 , equation (3.1) reduces to
(
1 − κ̃2)2(

1 + κ̃2)
q

m2

m2
1

= κ̃6 + 1



258 D. V. S. Sastry and D. Bhati

which gives (
m2q

m2
1

− 1
)
κ̃6 − m2q

m2
1

κ̃4 − m2q

m2
1

κ̃2 +
(

m2q

m2
1

− 1
)

= 0. (4.2)

The roots of the above sixth order polynomial are shown in the Appendix A.3. It
can be observed that of the six roots, two are imaginary, two are negative and the
remaining two are reciprocal to each other. These two roots are√

1

2
+ b

2a
−

√−3a2 + 2ab + b2

2a
(4.3)

and √
1

2
+ b

2a
+

√−3a2 + 2ab + b2

2a
, (4.4)

where a = (
m2q

m2
1

− 1) and b = m2q

m2
1

.

One of the above roots estimates κ and the other will estimate the reciprocal
of κ . Which of the above roots estimate κ or (inverse of κ) depends upon “a.” It
can be shown that

1. b − a = 1,
2. if a < 0, then (4.3) estimates κ ,
3. if a > 0, then (4.4) estimates inverse of κ .

By substituting the estimated value of κ̃’s in (3.7), we obtain β̃ , the estimate of
scale parameter β .

4.2 Modified Method of Moments

Assume x+
i = xi · Ixi≥0 and x−

i = xi · Ixi<0, where I(·) is an indicator function.
Then,

E(X|X ≥ 0) =
n∑

i=1

x+
i /s+,

(4.5)

E(X|X < 0) =
n∑

i=1

x−
i /s−,

where s+ = ∑n
i=1 I(xi≥0) and s− = ∑n

i=1 I(xi<0), also from Remark 3.1(4) in Sec-

tion 3, we know X|X ≥ 0 ∼ half-Logistic(β
κ
) and X|X < 0 ∼ half-Logistic(βκ)

therefore

E(X|X < 0) = −2βκ2 loge(2),
(4.6)

E(X|X ≥ 0) = 2β

κ2 loge(2).
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Solving equations (4.5) and (4.6), we obtain

κ̆ =
(
−

∑n
i=1(x

−
i /s−)∑n

i=1(x
+
i /s+)

)1/4

,

(4.7)

β̆ = 1

2 loge 2

(
−

n∑
i=1

(
x−
i

s−
)

·
n∑

i=1

(
x+
i

s+
))1/2

.

It is important to note that the above method of estimation hinges upon the
requirement that the conditional expectation equal with the corresponding condi-
tional sample means, where the conditioning events are X ≥ 0 and X < 0. Special
care needs to be taken while applying this method, because κ and β cannot be
estimated if the samples contain only negative values or only positive values.

4.3 Maximum likelihood estimation

Let x = (x1, x2, . . . , xn) be a random sample of size n from SLD(κ,β). Then, the
likelihood L

L =
(

2κ

β(1 + κ2)

)n n∏
i=1

e−x−
i /(κβ)

(1 + e−x−
i /(κβ))2

· e−κx+
i /β

(1 + e−κx+
i /β)2

.

Taking the logarithms

l = n log(κ) − n log
(
1 + κ2) − n logβ + 2n log 2 −

∑n
i=1 x−

i

κβ
− κ

∑n
i=1 x+

i

β
(4.8)

− 2
n∑

i=1

log
(
1 + e−x−

i /(κβ)) − 2
n∑

i=1

log
(
1 + e−κx+

i /β)
.

Differentiating the log-likelihood defined in (4.8) partially w.r.t. κ and β , we get

∂l

∂κ
= n

κ
− 2κn

1 + κ2 +
∑n

i=1 x−
i

κ2β
−

∑n
i=1 x+

i

β

− 2

κ2β

n∑
i=1

(
x−
i e−x−

i /(κβ)

1 + e−x−
i /(κβ)

)
+ 2

β

n∑
i=1

(
x+
i e−κx+

i /β

1 + e−κx+
i /β

)
,

∂l

∂β
= −n

β
+

∑n
i=1 x−

i

κβ2 + κ
∑n

i=1 x+
i

β2

− 2

κβ2

n∑
i=1

(
x−
i e−x−

i /(κβ)

1 + e−x−
i /(κβ)

)
− 2κ

β2

n∑
i=1

(
x+
i e−κx+

i /β

1 + e−κx+
i /β

)
.

The maximum likelihood estimates of κ and β can be obtained by solving the
above two log-likelihood equations using numerical methods by searching for
global maximum on the log-likelihood surface.
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5 Simulation study

For given values of parameters κ (>0) and β (>0), a simulation algorithm for
generating SLD random variables consists of the following steps:

Step 1. Compute u0 = κ2

1+κ2 .
Step 2. Generate uniform random variable u from U(0,1).
Step 3. If 0 < u ≤ u0, then x = −βκ loge(

2κ2

u(1+κ2)
− 1).

Step 4. If u0 < u < 1, then x = −β
κ

log( (1−u)(1+κ2)

(1−κ2)+u(1+κ2)
).

In order to assess the estimation methods under several scenarios for different
values of κ,β , a simulation study is being carried out using nlm() optimization
package in R-language. The values for κ and β are κ0 = 0.3,0.7,1.2,1.5 and
β0 = 0.4,0.9 and 1.5. Samples are drawn with sizes n = 25, 50 and 100. For each
sample size, N = 1000 replicas, that is, simulated values for the SLD distribution
were generated.” The point estimates were obtained with the method of moments
(MM), modified method of moments (MMM), and method of maximum likelihood
(MLE) and are presented in Table 1. For these, bias and mean square error(mse),
defined as

bias(�̂) = 1

N

N∑
i=1

(�̂i − �0) and mse(�̂) = 1

N

N∑
i=1

(�̂i − �0)
2,

where �̂i is the estimated value of � = (κ,β) obtained in ith replicas and �0 is
true value of parameter, are calculated and presented in Table 1.

It can be observed that, the MM estimator is negatively biased for both κ and
β under each scenario. It can also be noted that MM gives the worst estimates for
larger value of κ say 1.2 and 1.5 and for any value of β . The MMM seems to be
better estimate as the bias is reduced in absolute value. Moreover, for κ < 1 MMM
estimator is positively biased and for κ > 1 bias is negative. The MLE of both κ

and β are biased.
In Figure 5, Box Plots of estimated values of κ for different N = 1000 have

been presented for different scenarios and it can be clearly seen that MLE performs
relatively better for any choice of κ and β compared to MM and MMM estimator.

Further, in Figure 6, consistency of the estimator were shown by considering
different sample sized, decreasing inter quartile range of boxplots gives an evi-
dence that all three estimators for both κ and β are consistent. One can also infer
that MLE perform better than the others in almost all scenarios.

6 Data analysis

In this section, we try to illustrate the better performance of the above proposed
model by fitting the distribution to a data set on lean body mass of Australian ath-
letes see Cook and Weisberg (1994), see Table 2. Further, we compare our model
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Table 1 Bias and MSE of κ̂ and β̂ obtained from different estimation methods

Method of Moments Modified Method of Moments Maximum likelihood methods

κ β n bias(κ̂) mse(κ̂) bias(β̂) mse(β̂) bias(κ̆) mse(κ̆) bias(β̆) mse(β̆) bias(κ̃) mse(κ̃) bias(β̃) mse(β̃)

0.3 0.4 25 −0.07537 0.03893 −0.09018 0.08383 0.22833 0.05421 −0.02102 0.01574 −0.04705 0.01576 −0.07089 0.02980
50 −0.05870 0.02879 −0.06581 0.06035 0.23654 0.06080 −0.00969 0.01014 −0.01505 0.00387 −0.02190 0.00767

100 −0.04344 −0.04344 −0.04812 0.04071 0.24253 0.06099 −0.00509 0.00452 −0.00812 0.00146 −0.01152 0.00309

0.7 0.4 25 −0.05234 0.03469 −0.03364 0.01501 0.13334 0.02447 −0.00753 0.00526 −0.00458 0.01216 −0.01413 0.00484
50 −0.00837 0.00885 −0.00890 0.00462 0.13553 0.02133 −0.00425 0.00248 −0.00096 0.00492 −0.00684 0.00233

100 −0.00008 0.00287 0.00037 0.00199 0.13760 0.02046 0.00033 0.00130 0.00087 0.00238 −0.00136 0.00123

1.2 0.4 25 −0.63371 0.52567 −0.66997 0.48709 −0.09590 0.01916 −0.00688 0.00522 0.02408 0.02903 −0.01291 0.00488
50 −0.59883 0.48099 −0.69598 0.51573 −0.10466 0.01569 −0.00175 0.00252 0.00500 0.01342 −0.00469 0.00241

100 −0.51710 −0.51710 −0.73199 0.55873 −0.10356 0.01276 −0.00146 0.00115 0.00332 0.00592 −0.00299 0.00112

1.5 0.4 25 −0.86272 0.76472 −0.77947 0.61907 −0.26276 0.08303 −0.00284 0.00603 0.04532 0.05855 −0.01003 0.00544
50 −0.83996 0.71216 −0.79391 0.63456 −0.27128 0.08034 −0.00135 0.00263 0.02063 0.02640 −0.00563 0.00238

100 −0.83195 0.69494 −0.79750 0.63800 −0.27360 0.07806 −0.00208 0.00128 0.00202 0.01105 −0.00366 0.00120

0.3 0.9 25 −0.08452 0.04049 −0.22253 0.43697 0.22630 0.05368 −0.05186 0.08035 −0.05073 0.01605 −0.16832 0.15122
50 −0.05981 0.02766 −0.15679 0.29109 0.23141 0.05774 −0.04209 0.04892 −0.02050 0.00471 −0.06991 0.04650

100 −0.03480 0.01787 −0.08722 0.19063 0.24436 0.06165 −0.00942 0.01986 −0.00483 0.00139 −0.01928 −0.01928

0.7 0.9 25 −0.03966 0.02488 −0.05718 0.06516 0.13222 0.02360 −0.01602 0.02946 −0.00862 0.01046 −0.03084 0.02703
50 −0.00898 0.00804 −0.02216 0.02358 0.13732 0.02179 −0.00728 0.01396 −0.00100 0.00477 −0.01549 0.01266

100 −0.00396 0.00283 −0.00372 0.00886 0.13549 0.13549 −0.00262 −0.00262 −0.00261 0.00231 −0.00569 0.00613

1.2 0.9 25 −0.65236 0.55441 −1.48091 2.39788 −0.10064 0.01972 −0.00967 0.02414 0.01751 0.03057 −0.02330 0.02306
50 −0.59720 0.48046 −1.56549 2.61240 −0.10293 0.01520 0.00019 0.01241 0.00136 0.01300 −0.00609 0.01184

100 −0.49982 0.33331 −1.66773 2.88536 −0.10255 −0.10255 −0.00100 0.00563 0.00596 0.00639 −0.00470 0.00530

1.5 0.9 25 −0.85439 0.74755 −1.75819 3.14147 −0.25881 0.08212 −0.01702 0.02778 0.04399 0.05862 −0.02961 0.02521
50 −0.84381 0.71845 −1.78011 3.19042 −0.26391 0.07599 −0.01411 0.01325 0.03137 0.02594 −0.02120 0.01230

100 −0.83593 0.70167 −1.79685 3.23908 −0.27449 0.07862 −0.00216 0.00686 0.01094 0.01224 −0.00681 0.00633
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Table 1 (Continued)

Method of Moments Modified Method of Moments Maximum likelihood methods

κ β n bias(κ̂) mse(κ̂) bias(β̂) mse(β̂) bias(κ̆) mse(κ̆) bias(β̆) mse(β̆) bias(κ̃) mse(κ̃) bias(β̃) mse(β̃)

0.3 1.5 25 −0.06234 0.03730 −0.25415 1.18623 0.22241 0.05183 −0.11074 0.22305 −0.04942 0.01523 −0.27647 0.40789
50 −0.06081 0.02946 −0.26503 0.87792 0.23600 0.05958 −0.05014 0.12853 −0.01624 0.00405 −0.09365 0.11399

100 0.24332 0.06130 −0.01747 0.05988 −0.00585 −0.00585 −0.03492 −0.03492 −0.00585 0.00151 −0.03492 0.04389

0.7 1.5 25 −0.03640 0.02740 −0.09817 0.17732 0.13635 0.02504 −0.02987 0.07908 −0.00224 0.01058 −0.05173 0.07200
50 −0.01278 0.00973 −0.03010 0.07173 0.13492 0.02114 −0.00954 0.03706 −0.00317 0.00500 −0.02189 0.03426

100 −0.00137 0.00295 −0.00917 0.02613 0.13717 0.02033 −0.00927 0.01741 −0.00053 0.00238 −0.01540 0.01605

1.2 1.5 25 −0.64767 0.54841 −2.48045 6.71985 −0.09632 0.01973 −0.01430 0.07535 0.02068 0.03373 −0.03592 0.07025
50 −0.58757 0.46249 −2.63028 7.36345 −0.10110 0.01479 0.00132 0.00132 0.00912 0.01430 −0.01034 0.03117

100 −0.49016 0.31794 −2.79495 8.08152 −0.10101 0.01219 −0.00857 0.01625 0.00870 0.00601 −0.01326 0.01565

1.5 1.5 25 −0.85835 0.756505 −2.90868 8.60468 −0.26409 0.084725 −0.02880 0.08134 0.04305 0.06793 −0.05600 0.07312
50 −0.83692 0.70695 −2.96876 8.87763 −0.27037 0.07952 −0.01619 0.03898 0.01367 0.02466 −0.02975 0.03667

100 −0.83517 0.70052 −2.99611 9.00591 −0.27123 0.07670 −0.00462 0.01801 0.01014 0.01240 −0.00956 0.01678
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Figure 5 Box plot for various κ and β under different methods of estimation.

with other available skew distribution like general skew logistic GSL(μ,σ,λ,α)

proposed by Asgharzadeh et al. (2013), the skew logistic distribution SL(μ,σ,λ)

by Wahed and Ali (2001), skew normal distribution SN(μ,σ,λ) proposed by
Azzalini (1985), and skew-t distribution ST(μ,σ,λ,α) by Azzalini and Capitanio
(2003). The goodness of fit for above mentioned model are tested through log like-
lihoods, the Kolmogorov–Smirnov (KS) statistics. The following Table 3 presents
the parameter of the model their log likelihoods, the Kolmogorov–Smirnov (KS)
statistics with corresponding p-values. It can be seen from the Table 3 that log like-
lihood values of our model is closed to SL and GSL but higher than other models.
But it may be interesting to note that the KS statistics of our model is lowest com-
pare to other model and with highest p-value this confirms the better performance
of our model.

From Table 3, loglikelihood value for SLD(κ,β) is closed to SL and GSL
whereas higher than the other models but the KS statistics for SLD(κ,β) is lowest
compared to all other distribution and having largest p-value.

7 Skew logistic regression

In many real situations, the response variable is qualitative in nature instead of
quantitative which can be measure by Indicator variable 1(0). In statistical litera-
ture, logistic regression proves to be an effective tool for modelling situations for
prediction of probability of occurrence of an event, in which several predictor vari-
ables either numerical or categorical can be used. Extensive application of Logistic
regression can be found in medical and social science.
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Figure 6 Box plot for representing consistency of estimators for various sample size n for different κ and β .
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Table 2

63.32 58.55 55.36 57.18 53.2 53.77 60.17 48.33 54.57 53.42
68.53 61.85 48.32 66.24 57.92 56.52 54.78 56.31 62.96 56.68
62.39 63.05 56.05 53.65 65.45 64.62 60.05 56.48 41.54 52.78
52.72 61.29 59.59 61.7 62.46 53.14 47.09 53.44 48.78 56.05
56.45 53.11 54.41 55.97 51.62 58.27 57.28 57.3 54.18 42.96
54.46 57.2 54.38 57.58 61.46 53.46 54.11 55.35 55.39 52.23
59.33 61.63 63.39 60.22 55.73 48.57 51.99 51.17 57.54 68.86
63.04 63.03 66.85 59.89 72.98 45.23 55.06 46.96 53.54 47.57
54.63 46.31 49.13 53.71 53.11 46.12 53.41 51.48 53.2 56.58
56.01 46.52 51.75 42.15 48.76 41.93 42.95 38.3 34.36 39.03

Table 3 Log-likelihoods, Kolmogorov–Smirnov statistics and corresponding p-values

Distributions Parameters LL KS p-values

SLD θ̂ = 56.05, κ̂ = 1.11190, β̂ = 3.781194 −333.715 0.059 0.961
SL μ̂ = 57.148, σ̂ = 3.990, λ̂ = −0.389 −333.557 0.071 0.712
GSL μ̂ = 55.356, σ̂ = 0.671, λ̂ = −0.057, α̂ = 0.133 −333.265 0.069 0.715
Logistic μ̂ = 55.101, σ̂ = 0.389 −334.013 0.072 0.658
Skew normal μ̂ = 54.895, σ̂ = 6.887, λ̂ = 8.706 × 10−6 −334.865 0.080 0.642
Skew-t μ̂ = 59.085, σ̂ = 7.233, λ̂ = −0.903, α̂ = 9.924 −333.738 0.072 0.711

If Yi ∼ Bin(ni,pi), where the numbers of Bernoulli trials ni are known and the
probabilities of success pi are unknown. Logistic regression proposes that for each
i, there is a set of predictor variables x1,i , . . . , xk,i such that

log
(

pi

1 − pi

)
= α0 + α1x1i + · · · + αkxki (7.1)

or equivalently

pi = 1

1 + eα0+α1x1i+···+αkxki
, (7.2)

where α0, α1, . . . , αk are regression coefficients. For our skew logistic distribution
the pi’s are

pi = 2κ

1 + κ2

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ zi

−∞
e−t/(κβ) dt

β(1 + e−t/(κβ))2 , if zi < 0,

κ

2
+ 1

κ

∫ zi

0

e−κt/β dt

β(1 + e−κt/β)2 , if zi ≥ 0.

(7.3)
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Note that (7.1) and (7.2) are contained as particular cases of (7.3) if κ = 0. The
integral in (7.3) can be expressed similarly as in (3.1)

pi =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2κ2

1 + κ2

1

(1 + e−zi/(κβ))
, if zi < 0,

κ2

1 + κ2 + 2

1 + κ2

(
1

1 + e−ziκ/β
− 1

2

)
, if zi ≥ 0,

(7.4)

where zi = α0 + α1x1i + · · · + αkxki . Further (7.3) is a general case over standard
logistic regression as it contains one more parameter κ .

8 Further comments

As suggested by one of the referees, we can explore the possibility of our proposed
model to item response data, such data are asymmetric in nature and therefore one
can find application in medical science, finance, insurance etc.

Bazan, Branco and Bolfarine (2006) proposed a asymmetric function using the
skew normal distribution (Azzalini (1985)) and consequently a new item char-
acteristics curve (ICC). They introduced a skewness parameter associated to the
item which can be interpreted as penalised parameter. The skew link proposed by
Bazan, Branco and Bolfarine (2006) use the skew normal family of distribution.

In the context of binary regression, symmetric links do not always provide good
fits for some data sets. This is specifically true when the probability of a given
response approaches zero at a faster rate then it approaches to one see Chen, Dey
and Shao (1999). For such cases Samejima (1997) indicated the necessity of con-
sidering departure from normal assumption in developing psychometric theories
and methodologies indicating that asymmetric ICC are more appropriate for mod-
elling human item response behaviour. Samejima (1997, 2000) derived a skew
logistic IRT model, and Logistic Positive Exponent (LPE) family.

Bolfarine and Bazan (2010) presented a Bayesian estimation procedure for the
two skew logistic IRT models using Markov Chain Monte Carlo Methodology
(MCMC).

It may be noted that our model proposed distribution applies to those variables
which are continuous. However one can explore deriving the new IRT model using
our skew logistic distribution for IRT model as a link function.

Appendix

A.1 Cumulative distribution function

Proof of c.d.f. (3.1). For x < 0,

FX(x) = 2κ

1 + κ2

∫ x

−∞
e−t/(κβ) dt

β(1 + e−t/(κβ))2 .
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Assuming e−t/(κβ) = p and t = −βκ loge p

FX(x) = 2κ

(1 + κ2)

∫ e−x/κβ

∞
p

β(1 + p)2

(−κβ

p

)
dp

= 2κ2

1 + κ2

∫ ∞
e−x/κβ

1

(1 + p)2 dp

= 2κ2

1 + κ2

1

(1 + e−x/(κβ))

as x → −∞, FX(x) → 0.
For x > 0,

FX(x) = 1 − 2κ

1 + κ2

∫ ∞
x

e−tκ/β

β(1 + e−tκ/β)2 dt.

Assuming e−tκ/β = u ⇒ t = −β logu
κ

FX(x) = 1 −
∫ 0

e−xκ/β

2κu

(1 + κ2)β(1 + u)2

(−β

κ

)
1

u
du

= 1 −
∫ e−xk/β

0

2

(1 + κ2)(1 + u)2 du

= 1 − 2

1 + κ2

(
− 1

1 + u

)e−xk/β

0

= 1 − 2

1 + κ2

(
1 − 1

1 + e−xκ/β

)

= κ2

1 + κ2 + 2

1 + κ2

(
1

1 + e−xκ/β
− 1

2

)

as x → ∞, FX(x) → 1.
Further, it is right continuous and a non-decreasing function satisfying the con-

ditions (i) limx→−∞ FX(x) = 0 and (ii) limx→∞ FX(x) = 1. Therefore, FX(x) is
a cumulative distribution function. �

A.2 Limiting ratio

(i) For λ > 0,0 < κ < 1

lim
x→∞

(
1 + e−λx/β) = lim

x→∞
(
1 + e−κx/β) = 1

and

lim
x→∞

(
e−(1−κ)x/β) = 0.
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Hence,

LR = lim
x→∞

(
κ

1 + κ2

)(
1 + e−x/β

1 + e−κx/β

)2(
1 + e−λx/β

e−x(1−κ)/β

)
→ ∞, as x → ∞.

Thus, for λ > 0 and 0 < κ < 1, X1 has thicker tail than X2.
(ii) For λ > 0, κ > 1

lim
x→∞

(
1 + e−λx/β) = 0, lim

x→∞
(
1 + e−κx/β) = 1

and

lim
x→∞

(
e−(1−κ)x/β) = ∞,

LR = lim
x→∞

(
κ

1 + κ2

)(
1 + e−x/β

1 + e−κx/β

)2(
1 + e−λx/β

e−x(1−κ)/β

)
= 0 as x → ∞.

Thus, for λ > 0, κ > 1, X1 has thinner tail than X2.
(iii) For λ < 0, κ < 1

lim
x→∞

(
1 + e−λx/β) = lim

x→∞
(
1 + e−κx/β) = ∞

and

lim
x→∞

(
e−(1−κ)x/β) = 0,

LR = lim
x→∞

(
κ

1 + κ2

)(
1 + e−x/β

1 + e−κx/β

)2(
1 + e−λx/β

e−x(1−κ)/β

)
→ ∞ as x → ∞.

Thus, for λ < 0, κ < 1, X1 has thicker tail than X2.
(iv) For λ < 0, κ < 1 and λ + κ − 1 > (<)0

lim
x→∞

(
1 + e−λx/β) = lim

x→∞
(
1 + e−κx/β) = ∞

and

lim
x→∞

(
e−(λ+κ−1)x/β) = 0 (∞),

LR = lim
x→∞

(
κ

1 + κ2

)(
1 + e−x/β

1 + e−κx/β

)2(
1 + e−λx/β

e−x(1−κ)/β

)
→ ∞ (0) as x → ∞.

Thus, λ < 0, κ < 1 and λ + κ − 1 > (<)0, X1 has thinner (thicker) tail than X2.

A.3 The roots of the polynomial

From (4.2), (
m2q

m2
1

− 1
)
κ̃6 − m2q

m2
1

κ̃4 − m2q

m2
1

κ̃2 +
(

m2q

m2
1

− 1
)

= 0
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assuming a = (
m2q

m2
1

− 1), b = m2q

m2
1

and κ̃2 = y, we have

ay3 − by2 − by + a = 0

⇒ a
(
y3 + 1

) − by(y + 1) = 0

⇒ a(y + 1)
(
y2 − y + 1

) − by(y + 1) = 0

⇒ (y + 1)
(
a
(
y2 − y + 1

) − by
) = 0

⇒ (y + 1)
(
ay2 − (a + b)y − a

) = 0

⇒ y = −1,
(
ay2 − (a + b)y − a

) = 0

⇒ y = −1, y = a + b ± √
(a + b)2 − 4a2

2a

⇒ x = ±i, x = ±
√

1

2
+ b

2a
+

√−3a2 + b2 + 2ab

2a
,

x = ±
√

1

2
+ b

2a
−

√−3a2 + b2 + 2ab

2a
.

Hence two roots are imaginary and two are negative.

A.4 Taylor series expansion

We know from series expansion of

(1 + z)−2 =
∞∑

j=0

(−2
j

)
zj , 0 < z < 1.

For x < 0, 0 < ex/(βκ) < 1, therefore

(
1 + ex/(βκ))−2 =

∞∑
j=0

(−2
j

)
exj/(βκ).

Similarly, for x > 0, 0 < e−κx/β < 1, hence

(
1 + e−κx/β)−2 =

∞∑
j=0

(−2
j

)
e−κxj/β.

By substituting the above expression in (2.3), we get

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
ex/(βκ)(j+1), if x < 0,

2κ

(1 + κ2)β

∞∑
j=0

(−2
j

)
e−κx/β(j+1), if x ≥ 0.
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Further, using the above expansion the c.d.f. in (3.1) can be rewritten as

FX(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2κ

1 + κ2

∞∑
r=0

∞∑
s=0

(−1

r

)
1

s!
(
− xr

κβ

)s

, if x < 0,

κ2 − 1

κ2 + 1
+ 2

1 + κ2

∞∑
r=0

∞∑
s=0

(−1
r

)
1

s!
(
−κxr

β

)s

, if x ≥ 0.
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