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Abstract: In this study, a new smoothing nonlinear penalty function for constrained optimization
problems is presented. It is proved that the optimal solution of the smoothed penalty problem is
an approximate optimal solution of the original problem. Based on the smoothed penalty function,
we develop an algorithm for finding an optimal solution of the optimization problems with inequality
constraints. We further discuss the convergence of this algorithm and test this algorithm with three
numerical examples. The numerical examples show that the proposed algorithm is feasible and
effective for solving some nonlinear constrained optimization problems.
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1. Introduction

Consider the following constrained optimization problem:

(P) min f (x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

x ∈ Rn,

where the functions f , gi : Rn → R, i ∈ I = {1, 2, . . . , m}, are continuously differentiable functions.
Let X0 = {x ∈ Rn | gi(x) ≤ 0, i ∈ I} be the feasible solution set and we assume that X0 is

not empty.
For a general constrained optimization problem, the penalty function method has attracted many

researchers in both theoretical and practical aspects. However, to obtain an optimal solution for the
original problem, the conventional quadratic penalty function method usually requires that the penalty
parameter tends to infinity, which is undesirable in practical computation. In order to overcome the
drawbacks of the quadratic penalty function method, exact penalty functions were proposed to solve
problem (P). Zangwill [1] first proposed the l1 exact penalty function

F1(x, ρ) = f (x) + ρ
m

∑
i=1

g+i (x), (1)

where ρ > 0 is a penalty parameter, and g+i (x) = max{0, gi(x)}, i = 1, 2, . . . , m. It was proved that
there exists a fixed constant ρ0 > 0, for any ρ > ρ0, and any global solution of the exact penalty
problem is also a global solution of the original problem. Therefore, the exact penalty function methods
have been widely used for solving constrained optimization problems (see, e.g., [2–9]).
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Recently, the nonlinear penalty function of the following form has been investigated in [10–13]:

Fk(x, ρ) =

[
f (x)k + ρ

m

∑
i=1

(g+i (x))k

] 1
k

, (2)

where f (x) is assumed to be positive and k ∈ (0,+∞). It is called the k-th power penalty function
in [14,15]. Obviously, if k = 1, the nonlinear penalty function Fk(x, ρ) is reduced to the l1 exact
penalty function. In [12], it was shown that the exact penalty parameter corresponding to k ∈ (0, 1] is
substantially smaller than that of the l1 exact penalty function. Rubinov and Yang [13] also studied
a penalty function as follows:

ψk
ρ(x, c) = [ f (x)− c]k + ρ

m

∑
i=1

g+i (x), (3)

where c ∈ R such that f (x)− c > 0 for any x ∈ Rn, and k ∈ (0, + ∞). The corresponding penalty
problem of (P) is defined as

(Pρ) min ψk
ρ(x, c) s.t. x ∈ Rn.

In fact, the original problem (P) is equivalent to the problem as follows:

(P′) min [ f (x)− c]k

s.t. gi(x) ≤ 0, i = 1, 2, . . . , m,

x ∈ Rn.

Obviously, the penalty problem (Pρ) is the l1 exact penalty problem of problem (P′) defined as (1).
It is noted that these penalty functions F1(x, ρ), Fk(x, ρ) (0 < k ≤ 1) and ψk

ρ(x, c) are not
differentiable at x such that gi(x) = 0 for some i ∈ I, which prevents the use of gradient-based
methods and causes some numerical instability problems in its implementation, when the value of the
penalty parameter becomes large [3,5,6,8]. In order to use existing gradient-based algorithms, such as a
Newton method, it is necessary to smooth the exact penalty function. Thus, the smoothing of the exact
penalty function attracts much attention [16–24]. Pinar and Zenios [21] and Wu et al. [22] discussed
a quadratic smoothing approximation to nondifferentiable exact penalty functions for constrained
optimization. Binh [17] and Xu et al. [23] proposed a second-order differentiability technique to the l1
exact penalty function. It is shown that the optimal solution of the smoothed penalty problem is an
approximate optimal solution of the original optimization problem. Zenios et al. [24] discussed an
algorithm for the solution of large-scale optimization problems.

In this study, we aim to develop the smoothing technique for the nonlinear penalty function (3).
First, we define the following smoothing function qk

ε,ρ(t) by

qk
ε,ρ(t) =


0 if t ≤ 0,
2m2ρ2

9ε2 t3k if 0 ≤ t ≤
(

ε
mρ

) 1
k ,

tk +
ε

3mρ
e−

mρ
ε tk+1 − 10ε

9mρ
if t ≥

(
ε

mρ

) 1
k ,

where 0 < k < +∞, ρ > 0 and ε > 0. By considering this smoothing function, a new
smoothing nonlinear penalty function is obtained. We use this smoothing nonlinear penalty function
that is able to convert a constrained optimization problem into minimizations of a sequence of
continuously differentiable functions and propose a corresponding algorithm for solving constrained
optimization problems.
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The rest of this paper is organized as follows. In Section 2, we propose a new smoothing penalty
function for inequality constrained optimization problems, and some fundamental properties of its
are proved. In Section 3, an algorithm based on the smoothed penalty function is presented and its
global convergence is proved. In Section 4, we report results on application of this algorithm to three
test problems and compare the results obtained with other similar algorithms. Finally, conclusions are
discussed in Section 5.

2. Smoothing Nonlinear Penalty Functions

In this section, we first construct a new smoothing function. Then, we introduce our smoothing
nonlinear penalty function and discuss its properties.

Let qk(t) : R→ R be as follows:

qk(t) =

{
0 if t ≤ 0,
tk if t ≥ 0,

where 0 < k < +∞. Obviously, the function qk(t) is C1 on R for k > 1, but it is not C1 for 0 < k ≤ 1. It is
useful in defining exact penalty functions for constrained optimization problems (see, e.g., [14,15,21]).
Consider the nonlinear penalty function

Fk
ρ (x, c) = [ f (x)− c]k + ρ

m

∑
i=1

qk(gi(x)), (4)

and the corresponding penalty problem

(NPρ) min Fk
ρ (x, c) s.t. x ∈ Rn.

As previously mentioned, for any ε > 0 and ρ > 0, the function qk
ε,ρ(t) is defined as:

qk
ε,ρ(t) =


0 if t ≤ 0,
2m2ρ2

9ε2 t3k if 0 ≤ t ≤
(

ε
mρ

) 1
k ,

tk +
ε

3mρ
e−

mρ
ε tk+1 − 10ε

9mρ
if t ≥

(
ε

mρ

) 1
k ,

where 0 < k < +∞.
Figure 1 shows the behavior of qk(t) and qk

ε,ρ(t).
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Figure 1. The behavior of qk(t) and qk
ε,ρ(t).

In the following, we discuss the properties of qk
ε,ρ(t).
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Lemma 1. For 0 < k < +∞ and any ε > 0, we have

(i) qk
ε,ρ(t) is continuously differentiable for k > 1

3 on R, where

[qk
ε,ρ(t)]

′ =


0 if t ≤ 0,
2km2ρ2

3ε2 t3k−1 if 0 ≤ t ≤
(

ε
mρ

) 1
k ,

ktk−1 − 1
3

ktk−1e−
mρ
ε tk+1 if t ≥

(
ε

mρ

) 1
k .

(ii) lim
ε→0

qk
ε,ρ(t) = qk(t).

(iii) qk(t) ≥ qk
ε,ρ(t), ∀t ∈ R.

Proof. (i) First, we prove that qk
ε,ρ(t) is continuous. Obviously, the function qk

ε,ρ(t) is continuous

at any t ∈ R\
{

0, ( ε
mρ )

1
k

}
. We only need to prove that qk

ε,ρ(t) continuous at the separating points:

0 and ( ε
mρ )

1
k .

(1) For t = 0, we have

lim
t→0−

qk
ε,ρ(t) = lim

t→0−
0 = 0, lim

t→0+
qk

ε,ρ(t) = lim
t→0+

2m2ρ2

9ε2 t3k = 0,

which implies
lim

t→0−
qk

ε,ρ(t) = lim
t→0+

qk
ε,ρ(t) = 0 = qk

ε,ρ(0).

Thus, qk
ε,ρ(t) is continuous at t = 0.

(2) For t = ( ε
mρ )

1
k , we have

lim
t→
[
( ε

mρ )
1
k

]− qk
ε,ρ(t) = lim

t→
[
( ε

mρ )
1
k

]− 2m2ρ2

9ε2 t3k =
2ε

9mρ
,

lim
t→
[
( ε

mρ )
1
k

]+ qk
ε,ρ(t) = lim

t→
[
( ε

mρ )
1
k

]+
[

tk +
ε

3mρ
e−

mρ
ε tk+1 − 10ε

9mρ

]
=

2ε

9mρ
,

which implies

lim
t→
[
( ε

mρ )
1
k

]− qk
ε,ρ(t) = lim

t→
[
( ε

mρ )
1
k

]+ qk
ε,ρ(t) =

2ε

9mρ
= qk

ε,ρ

(
(

ε

mρ
)

1
k

)
.

Thus, qk
ε,ρ(t) is continuous at t = ( ε

mρ )
1
k .

Next, we will show that qk
ε,ρ(t) is continuously differentiable, i.e., [qk

ε,ρ(t)]′ is continuous. Actually,

we only need to prove that [qk
ε,ρ(t)]′ is continuous at the separating points: 0 and ( ε

mρ )
1
k .

(1) For t = 0, we have

lim
t→0−

[qk
ε,ρ(t)]

′ = lim
t→0−

0 = 0, lim
t→0+

[qk
ε,ρ(t)]

′ = lim
t→0+

2km2ρ2

3ε2 t3k−1 = 0,

which implies
lim

t→0−
[qk

ε,ρ(t)]
′ = lim

t→0+
[qk

ε,ρ(t)]
′ = 0 = [qk

ε,ρ(0)]
′.

Thus, [qk
ε,ρ(t)]′ is continuous at t = 0.
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(2) For t = ( ε
mρ )

1
k , we have

lim
t→
[
( ε

mρ )
1
k

]−[qk
ε,ρ(t)]

′ = lim
t→
[
( ε

mρ )
1
k

]− 2km2ρ2

3ε2 t3k−1 =
2k
3

(
ε

mρ

) k−1
k

,

lim
t→
[
( ε

mρ )
1
k

]+[qk
ε,ρ(t)]

′ = lim
t→
[
( ε

mρ )
1
k

]+
(

ktk−1 − 1
3

ktk−1e−
mρ
ε tk+1

)
=

2k
3

(
ε

mρ

) k−1
k

,

which implies

lim
t→
[
( ε

mρ )
1
k

]−[qk
ε,ρ(t)]

′ = lim
t→
[
( ε

mρ )
1
k

]+[qk
ε,ρ(t)]

′ =
2k
3

(
ε

mρ

) k−1
k

=

[
qk

ε,ρ

(
(

ε

mρ
)

1
k

)]′
.

Thus, [qk
ε,ρ(t)]′ is continuous at t = ( ε

mρ )
1
k .

(ii) For ∀t ∈ R, by the definition of qk(t) and qk
ε,ρ(t), we have

qk(t)− qk
ε,ρ(t) =


0 if t ≤ 0,

tk − 2m2ρ2

9ε2 t3k if 0 ≤ t ≤
(

ε
mρ

) 1
k ,

10ε

9mρ
− ε

3mρ
e−

mρ
ε tk+1 if t ≥

(
ε

mρ

) 1
k .

When 0 ≤ t ≤
(

ε
mρ

) 1
k , let u = tk. Then, we have 0 ≤ u ≤ ε

mρ . Consider the function:

G(u) = u− 2m2ρ2

9ε2 u3, 0 ≤ u ≤ ε

mρ
,

and we have

G′(u) = 1− 2m2ρ2

3ε2 u2, 0 ≤ u ≤ ε

mρ
.

Obviously, G′(u) > 0 for 0 ≤ u ≤ ε
mρ . Moreover, G(0) = 0 and G( ε

mρ ) =
7ε

9mρ . Hence, we have

0 ≤ qk(t)− qk
ε,ρ(t) ≤

7ε

9mρ
.

When t ≥
(

ε
mρ

) 1
k , we have

0 < qk(t)− qk
ε,ρ(t) =

10ε

9mρ
− ε

3mρ
e−

mρ
ε tk+1 ≤ 10ε

9mρ
.

Thus, we have

0 ≤ qk(t)− qk
ε,ρ(t) ≤

10ε

9mρ
.

That is,
lim
ε→0

qk
ε,ρ(t) = qk(t).

(iii) For ∀t ∈ R, from (ii), we have

qk(t)− qk
ε,ρ(t) ≥ 0,
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which is qk(t) ≥ qk
ε,ρ(t).

This completes the proof.

In this study, we always assume that c < 0 and |c| is large enough, such that f (x)− c > 0 for all
x ∈ Rn. Let

Fk
ε,ρ(x, c) = [ f (x)− c]k + ρ

m

∑
i=1

qk
ε,ρ (gi(x)) , 0 < k < +∞. (5)

Then, Fk
ε,ρ(x, c) is continuously differentiable at any x ∈ Rn and is a smooth approximation of

Fk
ρ (x, c). We have the following smoothed penalty problem:

(NPε,ρ) min Fk
ε,ρ(x, c) s.t. x ∈ Rn.

Lemma 2. We have that

0 ≤ Fk
ρ (x, c)− Fk

ε,ρ(x, c) ≤ 10ε

9
, 0 < k < +∞ (6)

for any x ∈ Rn, ε > 0 and ρ > 0.

Proof. For any x ∈ Rn, ε > 0, ρ > 0, we have

Fk
ρ (x, c)− Fk

ε,ρ(x, c) = ρ
m

∑
i=1

(
qk(gi(x))− qk

ε,ρ(gi(x))
)

.

Note that

qk(gi(x))− qk
ε,ρ(gi(x)) =


0 if gi(x) ≤ 0,

[gi(x)]k − 2m2ρ2

9ε2 [gi(x)]3k if 0 ≤ gi(x) ≤
(

ε
mρ

) 1
k ,

10ε

9mρ
− ε

3mρ
e−

mρ
ε [gi(x)]k+1 if gi(x) ≥

(
ε

mρ

) 1
k ,

for any i ∈ I.

By Lemma 1, we have

0 ≤
m

∑
i=1

(qk(gi(x))− qk
ε,ρ(gi(x))) ≤ 10ε

9ρ
,

which implies

0 ≤ ρ
m

∑
i=1

(qk(gi(x))− qk
ε,ρ(gi(x))) ≤ 10ε

9
.

Hence,

0 ≤ Fk
ρ (x, c)− Fk

ε,ρ(x, c) ≤ 10ε

9
.

This completes the proof.

Lemma 3. Let x∗ and x∗ρ be optimal solutions of problem (P) and problem (NPρ), respectively. If x∗ρ is a
feasible solution to problem (P), then x∗ρ is an optimal solution for problem (P).

Proof. Under the given conditions, we have that

0 < [ f (x∗ρ)− c]k = Fk
ρ (x∗ρ , c) ≤ Fk

ρ (x∗, c) = [ f (x∗)− c]k, 0 < k < +∞.
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Therefore, f (x∗ρ)− c ≤ f (x∗)− c, which is f (x∗ρ) ≤ f (x∗).
Since x∗ is an optimal solution and x∗ρ is feasible to problem (P), which is

f (x∗ρ) ≥ f (x∗).

Therefore, x∗ρ is an optimal solution for problem (P).
This completes the proof.

Theorem 1. Let x∗ρ and x∗ε,ρ be the optimal solutions of problem (NPρ) and problem (NPε,ρ), respectively, for
some ρ > 0 and ε > 0. Then, we have that

0 ≤ Fk
ρ (x∗ρ , c)− Fk

ε,ρ(x∗ε,ρ, c) ≤ 10ε

9
, 0 < k < +∞. (7)

Furthermore, if x∗ρ satisfies the conditions of Lemma 3 and x∗ε,ρ is feasible to problem (P), then x∗ε,ρ is an optimal
solution for problem (P).

Proof. By Lemma 2, for ρ > 0 and ε > 0, we obtain

0 ≤ Fk
ρ (x∗ρ , c)− Fk

ε,ρ(x∗ρ , c)

≤ Fk
ρ (x∗ρ , c)− Fk

ε,ρ(x∗ε,ρ, c)

≤ Fk
ρ (x∗ε,ρ, c)− Fk

ε,ρ(x∗ε,ρ, c)

≤ 10ε

9
.

That is,

0 ≤ Fk
ρ (x∗ρ , c)− Fk

ε,ρ(x∗ε,ρ, c) ≤ 10ε

9
,

and

0 ≤
{
[ f (x∗ρ)− c]k + ρ

m

∑
i=1

qk(gi(x∗ρ))

}
−
{
[ f (x∗ε,ρ)− c]k + ρ

m

∑
i=1

qk
ε,ρ(gi(x∗ε,ρ))

}

≤ 10ε

9
. (8)

From the definition of qk(t), qk
ε,ρ(t) and the fact that x∗ρ , x∗ε,ρ are feasible for problem (P), we have

m

∑
i=1

qk(gi(x∗ρ)) =
m

∑
i=1

qk
ε,ρ(gi(x∗ε,ρ)) = 0.

Note that f (x∗ε,ρ)− c > 0, and from (8), we have

0 < [ f (x∗ε,ρ)− c]k ≤ [ f (x∗ρ)− c]k.

Therefore, f (x∗ε,ρ)− c ≤ f (x∗ρ)− c, which is f (x∗ε,ρ) ≤ f (x∗ρ).
As x∗ε,ρ is feasible to (P) and by Lemma 3, x∗ρ is an optimal solution to (P), we have

f (x∗ε,ρ) ≥ f (x∗ρ).

Thus, x∗ε,ρ is an optimal solution for problem (P).
This completes the proof.
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Definition 1. A feasible solution x∗ of problem (P) is called a KKT point, if there exists a µ∗ ∈ Rm such that
the solution pair (x∗, µ∗) satisfies the following conditions:

∇ f (x∗) +
m

∑
i=1

µ∗i ∇gi(x∗) = 0, (9)

µ∗i gi(x∗) = 0, gi(x∗) ≤ 0, µ∗i ≥ 0, i ∈ I. (10)

Theorem 2. Suppose the functions f , gi (i ∈ I) in problem (P) are convex. Let x∗ and x∗ε,ρ be the optimal
solutions of problem (P) and problem (NPε,ρ), respectively. If x∗ε,ρ is feasible to problem (P), and there exists a
µ∗ ∈ Rm such that the pair (x∗ε,ρ, µ∗) satisfies the conditions in Equations (9) and (10), then we have that

0 ≤ [ f (x∗ε,ρ)− c]k − [ f (x∗)− c]k ≤ 10ε

9
, 0 < k < +∞. (11)

Proof. Since the functions f , gi (i ∈ I) are continuously differentiable and convex, we see that

f (x∗) ≥ f (x∗ε,ρ) +∇ f (x∗ε,ρ)
T(x∗ − x∗ε,ρ), (12)

gi(x∗) ≥ gi(x∗ε,ρ) +∇gi(x∗ε,ρ)
T(x∗ − x∗ε,ρ), i = 1, 2, . . . , m. (13)

After applying the conditions given in Equations (9), (10), (12) and (13), we see that

f (x∗) ≥ f (x∗ε,ρ) +∇ f (x∗ε,ρ)
T(x∗ − x∗ε,ρ)

= f (x∗ε,ρ)−
m

∑
i=1

µ∗i ∇gi(x∗ε,ρ)
T(x∗ − x∗ε,ρ)

≥ f (x∗ε,ρ)−
m

∑
i=1

µ∗i

[
gi(x∗)− gi(x∗ε,ρ)

]
= f (x∗ε,ρ)−

m

∑
i=1

µ∗i gi(x∗)

≥ f (x∗ε,ρ).

Therefore, f (x∗)− c ≥ f (x∗ε,ρ)− c > 0. Thus,

[ f (x∗ε,ρ)− c]k ≤ [ f (x∗)− c]k ≤ [ f (x∗)− c]k + ρ
m

∑
i=1

qk(gi(x∗)) = Fk
ρ (x∗, c).

By Lemma 2, we have

Fk
ρ (x∗, c) ≤ Fk

ε,ρ(x∗, c) +
10ε

9
.

It follows that

[ f (x∗ε,ρ)− c]k ≤ Fk
ε,ρ(x∗, c) +

10ε

9

= [ f (x∗)− c]k + ρ
m

∑
i=1

qk
ε,ρ(gi(x∗)) +

10ε

9

= [ f (x∗)− c]k +
10ε

9
. (14)

Since x∗ε,ρ is feasible to (P), which is

f (x∗) ≤ f (x∗ε,ρ),
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then
f (x∗)− c ≤ f (x∗ε,ρ)− c,

and, by f (x∗)− c > 0, we have

0 < [ f (x∗)− c]k ≤ [ f (x∗ε,ρ)− c]k. (15)

Combining Equations (14) and (15), we have that

[ f (x∗)− c]k ≤ [ f (x∗ε,ρ)− c]k ≤ [ f (x∗)− c]k +
10ε

9
,

which is
0 ≤ [ f (x∗ε,ρ)− c]k − [ f (x∗)− c]k ≤ 10ε

9
, 0 < k < +∞.

This completes the proof.

3. Algorithm

In this section, by considering the above smoothed penalty function, we propose an algorithm to
find an optimal solution of problem (P), defined as Algorithm 1.

Definition 2. For ε > 0, a point x∗ε ∈ X0 is called an ε-feasible solution to (P), if it satisfies gi(x∗ε ) ≤
ε, ∀i ∈ I.

Algorithm 1: Algorithm for solving problem (P)

Step 1: Let the initial point x0
1. Let ε1 > 0, ρ1 > 0, 0 < γ < 1, β > 1 and choose a constant

c < 0 such that f (x)− c > 0, ∀x ∈ X0, let j = 1 and go to Step 2.
Step 2: Use x0

j as the starting point to solve the following problem:

(NPεj ,ρj) min
x∈Rn

Fk
εj ,ρj

(x, c) = [ f (x)− c]k + ρj

m

∑
i=1

qk
εj ,ρj

(gi(x)) .

Let x∗εj ,ρj
be an optimal solution of (NPεj ,ρj) (the solution of (NPεj ,ρj) we obtained by the BFGS

method given in [25]).
Step 3: If x∗εj ,ρj

is ε-feasible for problem (P), then the algorithm stops and x∗εj ,ρj
is an

approximate optimal solution of problem (P). Otherwise, let
ρj+1 = βρj, εj+1 = γεj, x0

j+1 = x∗εj ,ρj
and j = j + 1. Then, go to Step 2.

Remark 1. From 0 < γ < 1, β > 1, we can easily see that as j → +∞, the sequence {εj} → 0 and the
sequence {ρj} → +∞.

Theorem 3. For k > 1
3 , suppose that for ε ∈ (0, ε1] and ρ ∈ [ρ1,+∞), the set

arg min
x∈Rn

Fk
ε,ρ(x, c) 6= ∅. (16)

Let {x∗εj ,ρj
} be the sequence generated by Algorithm 1. If lim

‖x‖→+∞
f (x) = +∞ and the sequence

{Fk
εj ,ρj

(x∗εj ,ρj
, c)} is bounded, then {x∗εj ,ρj

} is bounded and the limit point of {x∗εj ,ρj
} is the solution of (P).

Proof. First, we prove that {x∗εj ,ρj
} is bounded. Note that

Fk
εj ,ρj

(x∗εj ,ρj
, c) = [ f (x∗εj ,ρj

)− c]k + ρj

m

∑
i=1

qk
εj ,ρj

(gi(x∗εj ,ρj
)), j = 0, 1, . . . . (17)
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From the definition of qk
ε,ρ(t), we have

ρj

m

∑
i=1

qk
εj ,ρj

(gi(x∗εj ,ρj
)) ≥ 0. (18)

Suppose, on the contrary, that the sequence {x∗εj ,ρj
} is unbounded and without loss of generality

‖x∗εj ,ρj
‖ → +∞ as j → +∞, and f (x∗εj ,ρj

) − c > 0. Then, lim
j→+∞

[ f (x∗εj ,ρj
) − c]k = +∞, and from

Equations (17) and (18), we have

Fk
εj ,ρj

(x∗εj ,ρj
, c) ≥ [ f (x∗εj ,ρj

)− c]k → +∞, j = 0, 1, . . . ,

which contradicts with the sequence {Fk
εj ,ρj

(x∗εj ,ρj
, c)} being bounded. Thus, {x∗εj ,ρj

} is bounded.
Next, we prove that the limit point of {x∗εj ,ρj

} is the solution of problem (P). Let x∗ be a limit
point of {x∗εj ,ρj

}. Then, there exists the subset J ⊂ N such that x∗εj ,ρj
→ x∗ for j ∈ J, where N is the set of

natural numbers. We have to show that x∗ is an optimal solution of problem (P). Thus, it is sufficient
to show (i) x∗ ∈ X0 and (ii) f (x∗) ≤ infx∈X0 f (x).

(i) Suppose x∗ /∈ X0. Then, there exists θ0 > 0 and the subset J′ ⊂ J, such that gi′(x∗εj ,ρj
) ≥ θ0 > 0

for any j ∈ J′ and some i′ ∈ I.

If θ0 ≤ gi′(x∗εj ,ρj
) <

(
εj

mρj

) 1
k , from the definition of qk

ε,ρ(t) and x∗εj ,ρj
is the optimal solution

according j-th values of the parameters εj, ρj for any x ∈ X0, we have

[ f (x∗εj ,ρj
)− c]k +

2m2ρ3
j θ3k

0

9ε2
j

≤ Fk
εj ,ρj

(x∗εj ,ρj
, c)

≤ Fk
εj ,ρj

(x, c) = [ f (x)− c]k,

which contradicts with ρj → +∞ and εj → 0.

If gi′(x∗εj ,ρj
) ≥ θ0 ≥

(
εj

mρj

) 1
k or gi′(x∗εj ,ρj

) ≥
(

εj
mρj

) 1
k ≥ θ0, from the definition of qk

ε,ρ(t) and x∗εj ,ρj
is

the optimal solution according j-th values of the parameters εj, ρj for any x ∈ X0, we have

[ f (x∗εj ,ρj
)− c]k + ρjθ

k
0 +

εj

3m
e
−

mρj
εj

θk
0+1
−

10εj

9m
≤ Fk

εj ,ρj
(x∗εj ,ρj

, c)

≤ Fk
εj ,ρj

(x, c) = [ f (x)− c]k,

which contradicts with ρj → +∞ and εj → 0.
Thus, x∗ ∈ X0.
(ii) For any x ∈ X0, we have

[ f (x∗εj ,ρj
)− c]k ≤ Fk

εj ,ρj
(x∗εj ,ρj

, c) ≤ Fk
εj ,ρj

(x, c) = [ f (x)− c]k.

We know that f (x∗εj ,ρj
)− c > 0, so f (x∗εj ,ρj

)− c ≤ f (x)− c. Therefore, f (x∗) ≤ infx∈X0 f (x) holds.
This completes the proof.

4. Numerical Examples

In this section, we apply the Algorithm 1 to three test problems. The proposed algorithm is
implemented in Matlab (R2011A, The MathWorks Inc., Natick, MA, USA).

In each example, we take ε = 10−6. Then, it is expected to get an ε-solution to problem (P) with
Algorithm 1, and the numerical results are presented in the following tables.
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Example 1. Consider the following problem ([20], Example 4.1)

min f (x) = x2
1 + x2

2 + 2x2
3 + x2

4 − 5x1 − 5x2 − 21x3 + 7x4

s.t. g1(x) = 2x2
1 + x2

2 + x2
3 + 2x1 + x2 + x4 − 5 ≤ 0,

g2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g3(x) = x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10 ≤ 0.

For k = 2
3 , let x0

1 = (0, 0, 0, 0), ρ1 = 6, β = 10, ε1 = 0.01, γ = 0.01 and choose c = −100.
The results are shown in Table 1.

For k = 1, let x0
1 = (5, 5, 5, 5), ρ1 = 10, β = 4, ε1 = 0.01, γ = 0.1 and choose c = −100.

The results are shown in Table 2.
The results in Tables 1 and 2 show that the convergence of Algorithm 1 and the objective

function values are almost the same. By Table 1, we obtain that an approximate optimal
solution x∗ = (0.166332, 0.828748, 2.013798, − 0.959021) after two iterations with function
value f (x∗) = −44.233325. In [20], the obtained approximate optimal solution is x∗ =

(0.170056, 0.841066, 2.004907, − 0.968785) with function value f (x∗) = −44.225989. Numerical
results obtained by our algorithm are slightly better than the results in [20].

Table 1. Results of Algorithm 1 with k = 2
3 , x0

1 = (0, 0, 0, 0) for Example 1.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

) g3(x∗εj ,ρj
)

1 6 0.01 (0.214257, 0.952510, 1.934008, −1.051001) −44.266455 0.069500 0.044928 −1.353205
2 60 0.0001 (0.166332, 0.828748, 2.013798, −0.959021) −44.233325 −0.000071 −0.000006 −1.911178

Table 2. Results of Algorithm 1 with k = 1, x0
1 = (5, 5, 5, 5) for Example 1.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

) g3(x∗εj ,ρj
)

1 10 0.01 (0.049915, 1.064341, 1.936277, −1.083612) −44.010514 −0.032469 0.064160 −0.600569
2 40 0.001 (0.161485, 0.837434, 2.012060, −0.962236) −44.233462 0.000003 0.000003 −1.870398
3 160 0.0001 (0.169837, 0.833494, 2.009512, −0.963710) −44.233813 0.000000 0.000000 −1.892242

Example 2. Consider the following problem ([22], Example 3.2)

min f (x) = −x1 − x2

s.t. g1(x) = −2x4
1 + 8x3

1 − 8x2
1 + x1 − 2 ≤ 0,

g2(x) = −4x4
1 + 32x3

1 − 88x2
1 + 96x1 + x2 − 36 ≤ 0,

0 ≤ x1 ≤ 3,

0 ≤ x2 ≤ 4.

For k = 3
4 , let x0

1 = (3, 1), ρ1 = 5, β = 10, ε1 = 0.1, γ = 0.1, and choose c = −10. The results are
shown in Table 3.

For k = 1, let x0
1 = (0, 1), ρ1 = 6, β = 10, ε1 = 0.02, γ = 0.01 and choose c = −10. The results

are shown in Table 4.
The results in Tables 3 and 4 show that the convergence of Algorithm 1 and the objective

function values are almost the same. By Table 3, we obtain an approximate optimal solution is
x∗ = (2.112103, 3.900086) after 2 iterations with function value f (x∗) = −6.012190. In [22], the
obtained global solution is x∗ = (2.3295, 3.1784) with function value f (x∗) = −5.5080. Numerical
results obtained by our algorithm are much better than the results in [22].
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Table 3. Results of Algorithm 1 with k = 3
4 , x0

1 = (3, 1) for Example 2.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

)

1 5 0.1 (2.112050, 3.900242) −6.012292 0.000039 0.000052
2 50 0.01 (2.112103, 3.900086) −6.012190 −0.000020 −0.000008

Table 4. Results of Algorithm 1 with k = 1, x0
1 = (0, 1) for Example 2.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

)

1 6 0.02 (2.111875, 3.900776) −6.012651 0.000232 0.000278
2 60 0.0002 (2.112763, 3.898814) −6.011577 −0.000755 −0.000109

Example 3. Consider the following problem ([26], Example 4.1)

min f (x) = x2
1 + x2

2 − cos(17x1)− cos(17x2) + 3

s.t. g1(x) = (x1 − 2)2 + x2
2 − 1.62 ≤ 0,

g2(x) = x2
1 + (x2 − 3)2 − 2.72 ≤ 0,

0 ≤ x1 ≤ 2,

0 ≤ x2 ≤ 2.

For k = 2
3 , let x0

1 = (0, 1), ρ1 = 1, β = 3, ε1 = 0.01, γ = 0.01 and choose c = −2. The results are
shown in Table 5.

For k = 3
4 , let x0

1 = (0, 0), ρ1 = 1, β = 9, ε1 = 0.01, γ = 0.01, and choose c = −2. The results are
shown in Table 6.

The results in Tables 5 and 6 show that the convergence of Algorithm 1 and the objective function
values are almost the same. By Table 5, we obtain that an approximate optimal solution is x∗ =

(0.725355, 0.399258) after two iterations with function value f (x∗) = 1.837548. In [26], the obtained
approximate optimal solution is x∗ = (0.7255, 0.3993) with function value f (x∗) = 1.8376. Numerical
results obtained by our algorithm are slightly better than the results in [26].

Table 5. Results of Algorithm 1 with k = 2
3 , x0

1 = (0, 1) for Example 3.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

)

1 1 0.01 (0.016363, 1.092060) 2.271514 2.567409 −3.649496
2 3 0.0001 (0.725355, 0.399258) 1.837548 −0.775873 −0.000000

Table 6. Results of Algorithm 1 with k = 3
4 , x0

1 = (0, 0) for Example 3.

j ρj εj x∗εj ,ρj
f (x∗εj ,ρj

) g1(x∗εj ,ρj
) g2(x∗εj ,ρj

)

1 1 0.01 (0.387905, 1.086812) 2.448684 1.220019 −3.479255
2 9 0.0001 (0.725356, 0.399258) 1.837548 −0.775876 −0.000000

5. Conclusions

In this study, we have proposed a new smoothing approach to the nonsmooth penalty function and
developed a corresponding algorithm to solve constrained optimization with inequality constraints.
It is shown that any optimal solution of the smoothed penalty problem is shown to be an approximate
optimal solution or a global solution of the original optimization problem. Furthermore, the numerical
results given in Section 4 show that the Algorithm 1 has a good convergence for an approximate
optimal solution.
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