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Abstract 

This paper presents a new solution to segment and quantify the microstructures from images of 

nodular, gray and malleable cast irons, based on an Artificial Neural Network. The neural network 

topology used is the multilayer perception, and the algorithm chosen for its training was the 

backpropagation. This solution was applied to 60 samples of cast iron images and results were very 

similar to the ones obtained by visual human tests. This was better than the information obtained from a 

commercial system that is very popular in this area. In fact, this solution segmented the images of 

microstructures materials more efficiently. Thus, we can conclude that it is a valid and adequate option 

for researchers, engineers, specialists and professionals from materials science field to realize a 

microstructure analysis from images faster and automatically. 

 

Key words: Artificial neural networks; Image processing and analysis; Image segmentation and 

quantification; Microstructures; Multilayer perception; Materials Science. 

1. Introduction 

One of the most challenges in the machines and equipments development is the conception of 

systems with intelligent capacities, so then they could behave like humans. Important advances have 

been happening in the Artificial Intelligence area, and its biggest objective is the research of new 

algorithms and technological solutions that can be used in the development of new systems with 

stronger intelligent capacities. However, this is a very challenging and complex task, because there are 

a lot of actions that people commonly and naturally do as, for example, visualizing, hearing, walking 

and talking that are very hard to implement in computational systems. 

Between all of those actions, vision has deserved special attention of the research community 

because of the considerable number of existing applications and its great importance in our society [1]. 

Primarily derived from Artificial Intelligence field, Computational Vision became a distinct research 



 

area and its objective is to construct systems and hardware solutions that can be able to perform some 

visual information analysis and interpretation, which can help humans in the execution of some usual 

and important tasks with higher speed and precision [2]. This new area uses, between others, 

techniques from Artificial Intelligence, Digital Signal Processing and Pattern Recognition [3]. 

Artificial neural networks are commonly used in Artificial Intelligence, Pattern Recognition and 

in Material Science fields. Particularly, they have been used in applications that involve objects 

recognition from images with high parallelism degree, considerable speed classification and important 

capacity to learn from examples [4]. 

In this work is presented a new solution to quantify the metallic materials microstructures from 

images based on a neural network. To test our solution, we used several images samples of nodular, 

malleable and gray cast irons. These materials have been selected because they are commonly used by 

industries, as in, for example, structures of machines, lamination cylinders, main bodies of valves and 

pumps and gear elements. Additionally, we compared the results obtained using our solution with the 

ones resulted using a commercial system widely used in Materials Science area for the same purpose.  

This paper is organized in the following sections. In section two, the materials and artificial 

neural networks are introduced. Afterwards, the computational solution developed is described. Then, 

in section four, some experimental results and their discussion are presented. Finally, the main 

conclusions are addressed in the paper’s last section. 

 

2. Materials and Artificial neural networks 

 

The main goal of this work was the development of a new solution to segment and quantify 

automatically the constituents of nodular malleable and gray cast irons from images. The solution 

developed and the cast irons consideration, are briefly explained into the following sections. 

 



 

2.1 Cast Irons 

 

Cast irons are mainly composed by iron and carbon, being the percentage of the last one 

between 2.14 and 6.70%. In fact, the most cast irons contain between 3.0 and 4.5% of carbon [17]. 

Beside carbon, the cast irons present significant silicon contents and, therefore, some authors as, for 

example, Callister [17], Chiaverini [18] and Raabe et al. [19], consider the cast iron as an iron alloy, 

with carbon and silicon. Another cast irons characteristic is associated to the carbon’s appearance. In 

gray cast irons, all the carbon is presented practically free with the appearance of lamellar graphite or in 

veins, while in the white cast iron the carbon presented is arranged in the form of cementite (Fe3C) 

[20]. 

In accordance with the carbon content, cast irons can be classified as hypoeutectic, eutectics or 

hypereutectic. When eutectic cast iron is solidified, there is the formation of a microstructure with 

cementite and austenite globules, called ledeburite I. Continuing the cooling process, below 727 ºC, the 

austenite transforms itself into pearlite globules on the cementite, forming ledeburite II [21], which 

deserved main attention of our work.  

 

2.2 Artificial Neural Networks 
 
 

Artificial neural networks can be applied to solve many engineering problems like function 

approximation and classification as in cases that exist nonlinear relations between the dependent and 

independent variables. 

Nowadays, artificial neural networks are being used in Material Sciences for welding control 

[25]. It can obtain the relations between process parameters and correlations in Charpy impact tests 

[26], model alloy elements [27, 28], microstructures, mechanical steels properties [30] and the 

deformation mechanism of titanium alloy in hot forming [31]; predict weld parameters in pipeline 



 

welding, properties of austempered ductile iron, the carbon contents and the grain size of carbon steels 

[29]; build models to predict the flow stress and microstructures evolution of a hydrogenised titanium 

alloy [34]. 

Many systems of image processing and analysis have been developed using artificial neural 

networks. This is possible because of their main characteristics, like robustness to the presence of noisy 

data inside the input images, speed execution and their possibility to be parallel implemented. Zhang 

presents a review that is about the usage of neural networks on several image processing and analysis 

tasks [37]. 

 The neural network paradigm is to construct a composed model using considerable number of 

neurons, being each one a very simple processing unit, with a great number of connections between 

them. The information among the neurons in the network is transmitted through the synaptic weights. 

Artificial neural networks flexibility and its capacity to learn and to generalize the information are very 

attractive and important aspects to justify their choice to solve many complex problems. In fact, the 

generalization associated to the network capacity of learning from a training set of examples and their 

ability to supply correct results to input data that was not presented in the training set, demonstrates that 

this neural network capacity goes further than the easy establishment of relations between inputs and 

outputs. This way, artificial neural networks are capable to extract information not presented in explicit 

forms in the training examples considered [35]. 

Different topologies and algorithms for neural networks can be found. In this work, it was used 

a neural network multilayer perception, which is a feed forward neural network type [36]. Usually, a 

multilayer perception network is composed of several layers lined up with neurons. Then, the input 

data is presented into its first layer and is distributed trough the internal hidden layers. The last neural 

network layer is the output one, where the problem’s solution can be obtained. The input and output 

layers can be separated by one or more hidden layers, also called intermediate layers. In many 

applications of neural networks just one hidden layer is considered. Beyond this, the neurons of a layer 



 

are connected to the immediately neurons, so there are not unidirectional communication or connection 

among the neurons of the same layer. All neural layers are totally connected. 

For the training of the multilayer perception network, we adopted a backpropagation algorithm, which 

is the most used for this neural network structure. 

 

3. Solution Developed 

 

The computational solution developed had as its main objective the microstructures 

segmentation and quantification presented in metallographic and microphotography images, using a 

neural network multilayer perception. For this purpose, each pixel of the input images is classified 

according to the microstructures element (pearlite, cemetite, graphite, martensite.). In the same way for 

the neural network inputs are considered the R, G and B color components of each images pixel; each 

microstructure element is classified corresponding to an individual output of the neural network. 

Pseudo colors are used to represent each microstructure segmented in the output images. 

More specifically, the artificial neural network used is composed by 39 neurons distributed in 

two layers. The neurons distribution along the network layers (topology) corresponds to: 3 inputs, 30 

neurons inside the hidden layer and 9 neurons in the output layer. As a consequence, it is expected that 

nine microstructure types come to be segmented  

. 

For the neural network training, it is necessary to consider some microstructures pixels in a 

representative metallographic image. This selection is done manually using the mouse device over that 

training image. The training algorithm used is the standard backpropagation [16]. For each type of 

material to be analyzed, it is necessary to perform the network training. 



 

After this, the network can analyze each pixel of an input image, and then perform the 

microstructures’ segmentation. During this phase, each pixel of the input image is classified and 

counters are used to quantify the microstructures identified. 

Our solution was implemented using C++ and the environment Builder 6 from Borland in 

Microsoft Windows XP platform. This new system was tested considering several image samples of 

cast irons. Some of the results obtained are presented and discussed in the next section. 

4. Experimental Results and Discussion 

To make an experimental test in our new computational system we used several samples of 

nodular, malleable and gray cast irons. Additionally, to validate the results obtained, a commercial 

system commonly used in Materials Science field for the same purpose was also considered. Moreover, 

in metallographic images, the nodular cast iron has the morphological graphite well defined and the 

quantification method manual was also considered [22]. In all images considered in this experiment the 

graphite is associated to the black color, while the pearlite or ferrite are to the gray color. 

In Table 1, are shown the results obtained from images of a nodular cast iron using our solution 

and the commercial system considered. With this, we can notice that the results obtained using the two 

systems are very similar, presenting a minimum difference of 2.15% and a maximum of 7.1%, for 

samples 14 and 9, respectively. In addition, it is clear that our solution presents an average of graphite 

equal to 12.09% and of pearlite or ferrite to 87.91% and that the commercial system presents 15.93% 

and 84.07%, respectively, being the difference between them of 3.84%. 

Figures 1a), b) and c), present an original image of a nodular cast iron, and the resultant images 

from the accomplished segmentation process using the commercial system and ours, respectively. 

These images are the ones that present the greatest difference between the results obtained by the two 

systems. On the other hand, images 1d), e) and f), are the ones that present the minor difference. 



 

In face of this, we noticed that the segmentation done using our solution is more accurate than 

the one obtained using the commercial system because it erroneously segmented and classified as 

graphite part of the pearlite or ferrite, what not occurred with our solution. This fact is the most 

important reason for the presented divergence in the results obtained by the two systems. 

In Table 2, are presented the average results obtained using the manual quantification and the 

both computational systems, and it can be easily distinguished from the ones that are obtained by these 

systems. This occurs because the manual quantification tends to be an extremely tedious and fastidious 

procedure, and consequently, propitious to generate errors. Furthermore, to do the manual 

quantification with less than 5% of error, it was necessary to analyze 206 points of each material 

sample, using for that, a reticulated mesh with 25 intersections [23]. The average results obtained using 

the manual quantification was 24.13% for graphite and 75.87% for ferrite or pearlite. 

For the gray cast iron it was not possible to do the manual quantification because the graphite 

appears in the image samples like ribbings (lodes). However, the two computational systems 

considered can adequately segment and quantify the constituent of this type of iron as well. 

In Table 3, are presented the results of the quantification using the two computational systems 

on gray cast iron images. Considering all materials analyzed, these are the most similar results obtained 

by the two systems because they present a minimum difference of 0.1% and a maximum of 6.44%, for 

samples 1 and 11, respectively. Moreover, we can notice that our solution presents an average of 

graphite equal to 10.28% and of pearlite or ferrite to 89.62%, and on the other hand, the commercial 

system presented 12.09% and 87.91%, respectively, being the difference between them equal to 1.71%. 

Figures 2 a), b) and c), presents the original image of the gray cast iron used, and the resultant 

images of the segmentation done using the commercial system and ours, respectively. These images are 

the ones that present the minor difference between all the results. By contrast, images of Figures 2 d), 

e) and f), are the ones that present the biggest difference. 



 

Analyzing the results obtained considering the gray cast iron, it can be concluded that the 

segmentations done using the two systems are very similar for sample 1. Relatively to sample 11, the 

segmentation carried through by visual inspection was very similar to the ones obtained using the 

computational systems; however, the quantification obtained by these systems presents a difference of 

6.44%. 

The results obtained using the two systems on samples of nodular and gray cast iron are very 

similar, as the associated images have good quality and the material constituents are well defined and 

with very distinct gray levels. 

If the two computational systems are applied on images of malleable cast irons with good 

quality, the results obtained are also very similar, as the graphite presents the same tonality that has in 

other irons, being just different in its morphology that, in this case, has an appearance similar to flakes. 

Thus, it was decided to apply our solution and the commercial system in images of malleable cast iron 

of low quality in which the ash levels of graphite are very similar to the one of pearlite or ferrite. This 

permitted the evaluation of the efficiency and efficacy of the two systems when they are used in more 

adverse conditions. 

In Table 4, are presented the quantification results obtained by using our solution and the 

commercial system considered on a malleable cast iron. These results are the most different for the 

studied materials, presenting a minimal difference of 3.55% and a maximum of 15.16% for samples 18 

and 4, respectively. Moreover, we noticed that our system presents a medium number of graphite equal 

to 14.98% and of pearlite or ferrite to 85.02% and the commercial system presents 22.89% and 

77.11%, respectively, being the difference between them of 7.91%. 

Figures 3 a), b) and c), present an original image of the malleable cast iron and the images 

resultant from the segmentation done using the commercial system and ours, respectively. These 

images present the minor difference verified between the two systems. On the other hand, the images of 

Figures 3 d), e) and f), present the major difference. 



 

Verifying the results, we can notice that the segmentations obtained using the two systems are 

considerable distinct from each other on sample 4. The same happens with sample 18 because the 

commercial system segments great part of the pearlite or ferrite because of the low quality of the 

original input image. However, this error was not verified when our solution was tested because it 

segmented correctly the graphite from the other constituents. 

From the results obtained by the commercial system considering samples of nodular, gray and, 

in particular, malleable casting iron (that its commonly used in Materials Science area), we can verify 

its difficulty to segment adequately the graphite when the background of the input image was not 

uniform. However, our system does not present that difficulty and so it is able to get results effectively 

even when used in more severe conditions. 

The proposed solution shows to be a versatile and easy tool to use in automatic segmentation 

and quantification of material microstructures from images, even when the analyzed images are of low 

quality. Additionally, when compared to the commercial system elected in this work for comparison 

and validation purposes, our system showed that needs less time for the quantification of the structures 

presented in the input images. 

 

4.1 Application on Others Microstructures 

 

Our computational system can also be used successfully in the microstructures analysis of 

others metallic materials from images. For example, in Figure 4a), an original microphotography of an 

AISI 1020 steel is showed, the black color represents the pearlite grain and the white color, the ferrite. 

The segmentation obtained using our system is shown in Figure 4b) and the green color corresponds to 

pearlite grain and yellow color to ferrite. As we can verify in these images, our system segmented 

adequately the pearlite and ferrite. 



 

In Figure 5a), an original microphotography of an AISI 1045 steel is showed. The black color 

represents the pearlite grain and the white color, the ferrite grain. After the segmentation done using 

our system we obtained the image presented in Figure 5b), in which the red color corresponds to 

pearlite grain and the black color to ferrite. As we can see, the proposed solution segmented adequately 

this image sample. 

Another possible important application of our computational system can be found in the 

segmentation and quantification of metallic materials inclusions [24]. Two examples of the results 

obtained by our system in this particular application are presented in Figure 6. 

5. Conclusions 

 

This paper described a new computational solution, based on an artificial neural network, that 

was applied to segment and quantify the constituents of metallic materials from images. 

After the several experimental tests done, considering different metal samples, we can 

concluded that the system developed can be successfully used in the Materials Science area to do the 

segmentation and quantification of material microstructures from images. All those experiments 

showed some advantages about using our system. The most important ones were the simple and easy 

way that it can be used and the less sensitive to noise presented in the input images, mainly, due to 

optic distortions or irregular illumination originated by the image acquisition process.  

Additionally, in this work we compared and validated the results obtained by our system with 

the corresponding ones obtained using one commercial system very common in the Materials Science 

area. From this comparison we could conclude that our system was easier to use, better when there was 

complex applications conditions, and that its results always had better quality and could be obtained 

faster. 



 

Finally, we can conclude that our computational system is suitable to be used by researchers, 

engineers, specialists and others professionals from the Materials Science area, as an adequate option to 

optimize the segmentation and quantification of microstructures of materials from images, obtaining 

accurate and fast results. 
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FIGURES 

 

       
a)                                      b)                                      c) 

       
d)                                     e)                                       f) 

Figure 1: Two original images of a nodular cast iron, a) and d); Resultant images of the segmentation 

done using a common commercial system, b) and e), and the corresponding images obtained using our 

system, c) and f). 

 

       
                                      a)                                       b)                                       c) 

       
                                     d)                                       e)                                       f) 
Figure 2: Two original images of a gray cast iron, a) and d); Resultant images of the segmentation done 

using a common commercial system, b) and e), and the corresponding images obtained using our 

system, c) and f). 



 

       
                                     a)                                       b)                                      c) 

       
d)                                     e)                                        f) 

Figure 3: Two original images of a malleable cast iron, a) and d); Resultant images of the segmentation 

done using a common commercial system, b) and e), and the corresponding images obtained using our 

system, c) and f). 

 

     
                                                          a)                                                    b) 

Figure 4: An original image of an AISI 1020 steel, a), and the image resultant by segmentation using 

our system, b). 



 

 

     
                                                          a)                                                   b) 

Figure 5: An original image of an AISI 1045 steel, a), and the image resultant by segmentation using 

our system, b). 

 

    
            a)                                  b)                                   c)                                    d) 

Figure 6: Two original images of inclusions, a) and c), and the corresponding images segmented 

by our system, b) and d). 



 

TABLES 

Table 1: Results obtained using the SVRNA and common commercial systems on samples of nodular 
cast iron. 

Nodular cast iron 

Samples  
SVRNA Commercial system 

Graphite 
(%) 

Pearlite 
(%) 

Graphite 
(%) 

Pearlite 
(%) 

Sample1 11.51 88.49 17.52 82.48 
Sample 2 13.36 86.64 19.91 80.09 
Sample 3 13.19 86.81 18.05 81.95 
Sample 4 13.46 86.54 17.63 82.37 
Sample 5 12.46 87.54 16.98 83.02 
Sample 6 11.79 88.21 17.07 82.93 
Sample 7 14.58 85.42 18.38 81.62 
Sample 8 12.50 8.50 17.79 82.21 
Sample 9 14.02 85.98 21.12 78.88 
Sample 10 13.30 86.70 18.12 81.88 
Sample 11 9.08 90.92 12.44 87.56 
Sample12 9.25 90.75 11.85 88.15 
Sample 13 11.56 88.44 14.35 85.65 
Sample 14 9.24 90.76 11.39 88.61 
Sample 15 10.22 89.78 12.82 87.18 
Sample 16 9.89 90.11 12.74 87.26 
Sample17 8.31 91.69 11.30 88.7 
Sample 18 7.66 92.34 10.03 89.97 
Sample 19 14.66 85.34 11.37 88.63 
Sample 20 21.73 78.27 27.77 72.23 
Average 12.09 87.91 15.93 84.07 

 
 

Table 2: Average results obtained using the manual quantification method, SVRNA and 
common commercial systems, on samples of nodular cast iron. 

Method Graphite (%) Pearlite/Ferrite (%) 
Manual 24.13  75.87  
SVRNA 12.09  87.91  
Commercial 
system 

15.93  84.07  
 

 



 

Table 3: Results obtained using the SVRNA common commercial systems on samples of gray cast 
iron. 

Gray cast iron 
 

Samples 
SVRNA Commercial system 

Graphite 
(%) 

Pearlite 
(%) 

Graphite 
(%) 

Pearlite 
(%) 

Sample1 12.21 87.79 12.31 87.69 
Sample2 6.80 93.20 7.20 92.80 
Sample3 8.56 91.44 10.70 89.30 
Sample4 6.80 93.20 8.36 91.64 
Sample5 8.03 91.97 10.96 89.04 
Sample6 5.02 94.98 6.91 93.09 
Sample7 8.73 91.27 11.21 88.79 
Sample8 9.15 90.85 11.00 89.00 
Sample9 7.90 92.10 9.82 90.18 
Sample10 6.67 93.33 8.35 91.65 
Sample11 40.41 59.59 46.85 53.15 
Sample12 7.47 92.53 10.66 89.34 
Sample13 9.83 90.17 12.77 87.23 
Sample14 7.52 92.48 10.52 89.48 
Sample15 21.69 78.31 15.40 84.60 
Sample16 8.79 91.21 9.70 90.30 
Sample 17 7.76 92.24 10.21 89.79 
Sample18 6.77 93.23 9.28 90.72 
Sample19 7.64 90.28 8.21 91.79 
Sample 20 7.78 92.22 11.35 88.65 
Average 10.28 89.62 12.09 87.91 

 
 



 

 
Table 4: Results obtained using the SVRNA and common commercial systems on samples of malleable 

cast iron. 
Malleable cast iron 

Samples 
SVRNA Commercial system 

Graphite 
(%) 

Pearlite 
(%) 

Graphite 
(%) 

Pearlite 
(%) 

Sample 1 18.95 81.05 31.65 68.35 
Sample 2 15.71 84.29 24.48 75.52 
Sample 3 14.96 85.04 28.46 71.54 
Sample 4 14.00 86.00 29.16 70.84 
Sample 5 15.16 84.84 24.08 75.92 
Sample 6 16.07 83.93 21.11 78.89 
Sample 7 19.11 80.89 30.55 69.45 
Sample 8 19.22 80.78 27.58 72.42 
Sample 9 15.64 84.36 23.89 76.11 
Sample 10 17.64 82.36 31.23 68.77 
Sample 11 11.84 88.16 18.23 81.77 
Sample 12 12.04 87.96 21.12 78.88 
Sample 13  13.72 86.28 22.62 77.38 
Sample 14 14.06 85.94 22.24 77.76 
Sample 15  11.83 88.17 17.15 82.85 
Sample 16 11.40 88.60 16.16 83.84 
Sample 17 11.30 88.70 17.83 82.17 
Sample 18 10.68 89.32 14.23 85.77 
Sample 19  21.05 78.95 14.39 85.61 
Sample 20  15.27        84.73 21.63 78.37 
Average 14.98 85.02 22.89 77.11 
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