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A NEW SOLUTION TO THE PROBLEM OF F I N D I N G  ALL 
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A new algorithm is used to test and describe the set of all possible solutions for any linear 
model of an empirical ordering derived from techniques such as additive conjoint measurement, 
unfolding theory, general Fechnerian scaling and ordinal multiple regression. The algorithm is 
computationally faster and numerically superior to previous algorithms. 
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In 1975, McClelland and Coombs described an algorithm for constructing all numer- 
ical solutions to a set of homogeneous linear inequalities. The general purpose of  their al- 
gorithm, called ORDMET,  was to test and describe the set of all possible solutions for any 
linear model of  an empirical ordering derived from such techniques as additive conjoint 
measurement, unfolding theory, general Fechnerian scaling, and ordinal multiple regres- 
sion. Generally speaking, these empirical orderings generate linear inequalities which de- 
scribe the ordering of  differences, (i.e., ordered metric structures). 

Briefly summarized, the problem ORDME T addresses is as follows. We are given a 
set of inequalities: 

(1) A s  > 0 

where A is a matrix of  integer coefficients and s is the vector of  variables. We want to find 
all positive solutions to (1), giving us the system of  inequalities, 

A s _ > 0  

(2) s -> 0. 

By well-known results from linear algebra [see for example Murty, 1976], the in- 
equalities in (2) define a convex polyhedral cone. That is, there exists a matrix V = 
[v~ i v~ i -.- i vm], such that, 
(i) no column in V is a positive linear combination of  the others, and 

(ii) s satisfies (2) if and only if there exists a set of  positive scalars, {r, r~, . . . ,  rr.}, such 
that, 

(3) S = ~,, rivi. 
J I 

From (ii) above, it is easy to see that a vector of  stimulus scale values, s, satisfies (1) if 
and only if there exists a vector of positive scalars r, and a constant vector b, such that, 

(4) S -- Vr + b. 
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The columns of V are called extreme points in the convex polyhedral cone defined by 
(2). Each extreme point is unique up to multiplication by a positive scalar. The purpose of 
ORDMET is to derive this V matrix of extreme points. 

Unfortunately, the ORDMET procedure, and its predecessors, have some problems. 
Goode's version [Goode, 1964; see also Coombs, 1964, p. 97-102] processed most inequal- 
ities, but often generated unresolved side constraints. Phillips [1971] developed an al- 
gorithm which eliminated these side constraints, but it generated a V matrix with many 
redundant columns. These columns were redundant because they could be expressed as 
positive linear combinations of  other columns in the V matrix. McClelland and Coombs 
[1975] used Phillips' algorithm and then applied a method developed by Wetz and Wit- 
zgall [1966] to eliminate the redundant columns. However, the implementation of  the 
Wetz and Witzgall algorithm is, by itself, a numerical problem. In particular, three of  the 
four tests for redundancy [Step 6, in McClelland & Coombs, 1975, p. 274] require a deci- 
sion as to whether column items are zero or non-zero. Because of  computational roundoff 
errors, this decision cannot be made directly. Rather, tolerance levels must be set to deter- 
mine how small a number must be before it is considered to be a zero by the column re- 
duction algorithm. Therefore, in order to guarantee that any particular implementation of  
ORDMET produces accurate results, it must be shown that the system used to establish 
these tolerance levels is appropriate. Consequently, the ORDMET algorithm as it is de- 
scribed in McClelland and Coombs [1975] is incomplete. 

Because of this difficulty, an alternative to the ORDMET algorithm is desired. As it 
turns out, an alternative already exists. This algorithm was developed independently by 
Motzkin, Raiffa, Thompson and Thrall [1953], and Chernikova [1965]. A description of 
the algorithm, as it is implemented in the program ORDMET2*, is given below. 

Chernikova's algorithm has several advantages over ORDMET. First, Chernikova's 
algorithm does not produce redundant columns. Therefore, column reduction is not 
needed. Second, the implementation of the algorithm uses only integer arithmetic. There- 
fore, there is no need to set tolerance levels to determine if a value is zero or not. Also, the 
implementation of Chernikova's algorithm requires considerably less CPU time and core 
storage than ORDMET. This is because there are fewer processing steps. In addition, the 
explosion of redundant V columns that sometimes results from the Phillips procedure 
does not occur. 

Algorithm 
The following description of the algorithm was adapted from the description of  

Chernikova's algorithm found in Appendix D of Mattheiss and Rubin [Note 1] (This pa- 
per was brought to our attention by Professor Katta Murty.). 

To find all extreme points in the convex cone defined by {s: As _> 0, s _> 0}, where A 
is an m by n matrix of  integers we process the matrix [~], where I is an n by n identity 
matrix. A series of transformations of this matrix will generate the V-matrix. At any stage 
in the process let the transformed matrix be denoted by Y -- [~]. The matrices U and L 
will always have m and n rows respectively, but the number of columns in Y will change 
as the algorithm proceeds. Note that initially U = A and L = I. 

Each iteration of  the algorithm will construct a new Y from the present Y. Initially, Y 
-- [~]. The algorithm proceeds as follows. 
Step 0: (check if finished) 

(1) If  any row of U has only zero or negative components, then s = 0 is the only solu- 
tion, and we are done. Otherwise, go to Step 0(2). 

* This program is available from Professor James Lingoes, room 1005, North University Building, Com- 
puter Center, University of Michigan, Ann Arbor, Michigan 48109. 
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(2) 

Step l: 

Step 2: 
(1) 

(2) 

If  all the elements of U are nonnegative, then the matrix L is the V matrix, and 
we are done. Otherwise, go to Step 1. 

(choose row to be processed) 
Choose the first row of U, say row r, with at least one strictly negative element. 
Go to Step 2(1). 
(construct new Y) 
Install as columns in the new Y all columns of  the present Y for which y,j _ 0. Go 
to Step 2(2). 
Let Io be the index set of all nonnegative rows for the current Y. Find all pairs 
(s, t), such that y,~. Yr, < 0 and s < t. Call this set S. With the first element of  S, 
go to (a). 
(a) Find all i E Io, such that yis = 0 and y,, = 0. Call this set Is(s, t). Go to (b). 
(b) If  It(s, t) is empty, go to (e). Otherwise, go to (c). 
(c) If  I,(s, t) is not empty, check if there is a u, not equal to either s or t, such that 

y,~ = 0 for all i E It(s, t). If  such a u exists, go to (e). Otherwise, go to (d). 
(d) Add a new column to the new Y which is equal to, 

Y,, [ Y,s 
GCD(.vis, y,,)Y~]+ [GCD(y,,, y,,) Y'] 

where GCD(a,  b) is the greatest common denominator of the positive in- 
tegers a and b. Go to (e). 

(e) Go to (a) with the next (s, t) pair in S. If  all the elements of  S have been ex- 
amined, go to Step 3. 

Step 3: (set up next iteration) 
At this point, the new Y has been completed. Set the present Y to be the new Y, 
and go to Step 0(1) to construct the next new Y. 
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