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Abstract. In this paper we present a novel algorithm for learning
facial expressions in a supervised manner. This algorithm is de-
rived from the local non-negative matrix factorization (LNMF) al-
gorithm, which is an extension of non-negative matrix factorization
(NMF) method. We call this newly proposed algorithm Discrimi-
nant Non-negative Matrix Factorization (DNMF). Given an image
database, all these three algorithms decompose the database into
basis images and their corresponding coefficients. This decomposi-
tion is computed differently for each method. The decomposition
results are applied on facial images for the recognition of the six
basic facial expressions. We found that our algorithm shows su-
perior performance by achieving a higher recognition rate, when
compared to NMF and LNMF.

INTRODUCTION

In recent years it is argued, from a visual neuroscience viewpoint, that the
architecture of the visual cortex suggests a hierarchical organization, in which
neurons become selective to progressively more complex aspects of image
structure. The type of image encoding in the human visual system is related
to the number of neurons that are active (respond) to a certain information
represented by a specific sensory stimulus caused by the image. We refer
to a local code when only a single individual specific cell is activated. We
have a dense code when a large cell population with overlapping sensory
input is activated and contributes to image representation. In between local
and dense codes, we have the sparse codes, where only a fraction of a large
neuronal population is active. It is a compromise between dense and local
codes, combining their advantages and trying to eliminate their drawbacks.



Atick and Redlich [1] support and argue for compact, dense decorrelated
codes for image representation. They have demonstrated that receptive fields
of retinal ganglion cells can be viewed as local “whitening” filters that re-
move second-order correlations between image pixels. Bandpass, multi-scale
and oriented receptive fields of V1 neurons may also be considered as filters
that remove second-order correlation, such as Principal Component Analysis
(PCA) does.

Numerous evidence about sparse image coding were brought by other
researchers. They argue for a sparse representation that leads to an ”efficient
coding” in the visual cortex [14]. Since spatial receptive fields of simple cells
(including V1 neurons) have been reasonably well described physiologically
as being localized, oriented and bandpass, Olshausen and Field [20] bring
evidence that an efficient image coding can be produced by considering an
approach where the image is described by a small number of descriptors. This
descriptors can be found by applying principles such as entropy minimization
[2], which is equivalent to minimizing the mutual information in a such a way
that the higher-order correlation between images is removed. Biederman
came up with the theory of recognition-by-components (RBC) [5]. Empirical
tests support his idea that the complex objects are segmented in components
called ‘geons’ that are further used by humans for image understanding.
There are also studies showing that Gabor elementary functions, which are a
sparse image representation, are suitable for modeling simple cells in visual
cortex [18].

Form engineering viewpoint, both dense and sparse (local) codes have
been used by computer scientists in the attempt to analyze and represent the
human face for face recognition, identification or facial expressions analysis.
Representations of human face based on principal components give us a dense
code and the post-processed images have holistic (“ghost” - like) appearance.
PCA has been successfully applied to recognize facial identity in [9], [4] and
[24], and facial expressions [10], [21] and [7]. Other researchers state that
local or parts-based human face representation performs better than holistic
representations. Bartlett et al. [3] used Independent Component Analysis
(ICA) to represent faces for recognition. They employed an ICA configuration
in such a way that the derived image features represent local features and
they found that ICA outperforms PCA. ICA looks for components that are
as independent as possible and produces such features whose properties are
related to the ones of V1 receptive fields, e.g. orientation selectivity, bandpass
nature and scaling ability.

The facial expression recognition methods can be classified in two cat-
egories: appearance-based methods and geometric feature-based methods.
One of the most successful techniques that belongs to the first category is
the one that implies a convolution of each image with Gabor filters, whose re-
sponses, extracted from the face images at fiducial points, form vectors that
are further used for classification. Regarding the geometric feature-based
methods, the positions of a set of fiducial points in a face form a feature vec-
tor that represents facial geometry. Although the appearance-based methods



(especially Gabor wavelets) seem to yield a reasonable recognition rate, the
highest recognition rate is obtained when these two main approaches are
combined [26], [23]. Several holistic and local representation methods have
been studied and applied to classify facial actions by Donato et. al [12].
They have shown that the extraction of local features from the entire face
space by convolving each image with a set of Gabor filters having different
frequencies and orientations can outperform other methods that invoke the
holistic representation of the face, when it comes to classify facial actions.
They achieved the best recognition results by using ICA and Gabor filters.
Regarding Gabor filters, they have been applied successfully not only to clas-
sify facial actions but to face recognition as well [25]. A survey on automatic
facial expression analysis can be found in [13].

Within the local image representation framework, another two methods
have been proposed recently for learning object parts. Lee and Seung [16]
proposed an unsupervised learning technique, the so called Non-negative
Matrix Factorization (NMF) which allows objects to be reassembled using
purely additive combinations of the learned parts. Li et al. [19] have ex-
tended this technique by imposing additional constraints and developing a
variant of NMF, named Local Non-negative Matrix Factorization (LNMF).
Both methods have been applied for face representation and recognition. Li
et al. found that, while NMF representation yields low recognition accu-
racy (actually lower than the one that can be obtained by using the PCA
method), LNMF leads to a better classification performance. Chen et al. [8]
successfully applied LNMF for face detection. LNMF has also been found
to give higher facial expression recognition rate than NMF, when applied to
recognize facial expressions [6].

In this paper, we further extend LNMF technique in order to enhance
its performance regarding the recognition of the six basic expressions. All
the previously mentioned representation methods (except FLD) are unsu-
pervised. On the contrary, we propose here a novel supervised technique
called Discriminant Non-negative Matrix Factorization (DNMF) that takes
into account facial expression class information, which is not used in NMF
and LNMF methods. Our technique is proven to perform better than the
latter two methods by achieving a higher facial expression recognition rate.

NMF, LNMF, AND DNMF

Non-negative matrix factorization (NMF) has been proposed by Lee and Se-
ung as a method that decomposes a given m×n non-negative matrix X into
non-negative factors Z and H such as X ≈ ZH, where Z and H are matri-
ces of size m × p and p × n, respectively [16]. Suppose that i = 1, . . . ,m,
j = 1, . . . , n and k = 1, . . . , p. Then, each element xij of the matrix X can
be written as xij ≈

∑
k zikhkj . The quality of approximation depends on the

cost function used. Two cost functions were proposed by Lee and Seung in
[17]: the Euclidean distance between X and ZH and KL divergence. In this



case, KL has the following expression:

DNMF (X ‖ZH) ,
∑

i,j

(
xij ln

xij∑
k zikhkj

+
∑

k

zikhkj − xij

)
, (1)

This expression can be minimized by applying multiplicative update rules
subject to Z,H ≥ 0. The positivity constraints arise in many real image
processing applications. For example, the pixels in a grayscale image have
non-negative intensities. In the NMF approach, its proposers find appropriate
to impose non-negative constraints, partly motivated by the biological aspect
that the firing rates of neurons are non-negative. Since both matrices Z and
H are unknown, we need an algorithm which is able to find these matrices
by minimizing the divergence (1). By using an auxiliary function and the
Expectation Maximization (EM) algorithm [11], the following update rule
for computing hkj is found to minimize the KL divergence at each iteration
t [17]:

ht
kj = ht−1

kj

∑
i zki

xijP
k zikht−1

kj∑
i zik

. (2)

By reversing the roles of Z and H in (2), a similar update rule for each
element zik of Z is obtained:

zt
ik = zt−1

ik

∑
j

xijP
k zt−1

ik hkj

hjk

∑
j hkj

. (3)

Both updating rules are applied alternatively in an EM manner and they
guarantee a nonincreasing behavior of the KL divergence.

It has been shown that, if the matrix X contains images from an image
database one in each matrix column, then the method decomposes them into
basis images (columns of Z) and the corresponding coefficients (or hidden
components) (rows of H) [16]. The resulting basis images contain parts of
the original images, parts that are learned thorough the iterative process in
the attempt of approximating X by the product ZH. In this context, m
represents the number of pixels in the image, n is the total number of images
and p is the number of the subspaces in which basis images lay.

Local non-negative matrix factorization (LNMF) has been developed by Li
et al [19]. This technique is a version of NMF which imposes more constraints
on the cost function that are related to spatial localization. Therefore, the
localization of the learned image features is improved. If we use the notations
[uij ] = U = ZT Z and [vij ] = V = HHT , the new function has to be
minimized subject to three additional issues: 1) min

∑
j ujj , 2)min

∑
j 6=k ujk

and 3)max
∑

j vjj .
Therefore, the new cost function takes the form of the following diver-

gence:

DLNMF (X||ZH) , DNMF (X||ZH)

+α
∑

ij

uij − β
∑

i

vii,
(4)



where α, β > 0 are constants. A solution for the minimization of relation (4)
can be found in [19]. Accordingly, if we use the following update rules for
image basis and coefficients:

ht
kj =

√
ht−1

kj

∑

i

zki
xij∑

k zikht−1
kj

. (5)

zt
ik =

zt−1
ik

∑
j

xijP
k zt−1

ik hkj

hjk

∑
j hkj

. (6)

zt
ik =

zt
ik∑
i zt

ik

, for all k (7)

the KL divergence is nonincreasing.
Let us suppose now that we have c distinctive image classes {Q̧1, . . . , Q̧c}.

Each image from the database corresponding to one column of matrix X, be-
longs to one of these classes. We denote the arithmetic mean of each class
Q̧l by µl = 1

nl

∑nl

r=1 hr and the global arithmetic mean by µ = 1
n

∑n
j=1 hj ,

where nl is the cardinality of class Q̧l, n is the total number of images and
l = 1, . . . , c. Both NMF and LNMF consider the database as a whole and
treat each image in the same way. There is no class information integrated
into the cost function. Here, we extend the cost function given by the LNMF
technique by proposing a class-dependent approach called Discriminant Non-
negative Matrix Factorization (DNMF). The decomposition coefficients en-
code the image representation in the same way for each image. Therefore, by
modifying the expression for the coefficients in a such a way that the basis
images incorporate class characteristics, we obtain a class-dependent image
representation. We preserve the same constraints on basis as for LNMF and
we only introduce two more constraints on the coefficients:

1. Sw =
∑

l

∑
hr∈Q̧l

(hr − µl)(hr − µl)T −→ min. Sw represents the
within-class scatter matrix and defines the scatter of the class samples around
their mean. The dispersion of samples that belong to the same class around
their corresponding mean should be as small as possible.

2. Sb =
∑

l(µl − µ)(µl − µ)T −→ max. Sb denotes the between-class
scatter matrix and defines the scatter of the class mean around the global
mean µ. Each cluster formed by the samples that belong to the same class
must be as far as possible from the other clusters. Therefore, Sb should be
as large as possible.

We modify the divergence by adding these two more constraints. The
new cost function is expressed as:

DDNMF (X||ZH) , DLNMF (X||ZH) + γ
∑

l

∑

hr∈Q̧l

(hr − µl)(hr − µl)T −

−δ
∑

l

(µl − µ)(µl − µ)T , (8)



where γ and δ are constants. Following the same EM approach used by NMF
and LNMF techniques, it can be proven that the following update expression
for each element hkj of the coefficient matrix H is obtained:

ht
kj(l) =

2µl − 1 +
√

(1− 2µl)2 + 8ξht−1
kj(l)

∑
i zki

xijP
k zikht−1

kj(l)

4ξ
(9)

ht
kj = [ht

kj(l1)
|ht

kj(l2)
| . . . |ht

kj(lc)
] (10)

where “|” denotes concatenation and ξ = γ−β. The expression for updating
the image basis remains unchanged from LNMF.

The method proposed here is a supervised method that preserves the
sparseness characteristic of basis images through (6), while enhancing the
class separability by the minimization of Sw and the maximization of Sb

through (9).

FACIAL EXPRESSION RECOGNITION EXPERIMENT

We have tested our method along with NMF and LNMF approaches for
recognizing the six basic facial expressions namely, anger, disgust, fear, hap-
piness, sadness and surprise from face images. The facial images used come
from Cohn-Kanade AU-coded facial expression database [15]. The facial ac-
tion (action units) that are described in the image annotations have been
converted into emotion class labels according to [22]. Thirteen persons have
been chosen to create the image database that has been used in our exper-
iments. Each person expresses six basic emotions and each emotion has 3
intensities. Therefore, the total number of images in the database is n =
234. Each original image was cropped to a central face image containing the
main facial fiducial points (as eyebrows, eyes, nose and chin) The uniform
background was eliminated. The cropped face images have been aligned with
respect to their upper left corner. The cropped face images of size 80 × 60
pixels were downsampled to 40 × 30 pixels. The face image pixels were stored
into a m = 1200 - dimensional vector for each image. These vectors form the
columns of matrix X.

In the classical facial expression classification context, the original data
are split in two disjoint parts, the training and test data sets. To form the
training set, 164 face images were randomly chosen from the Cohn-Kanade
derived database, while the remaining images were used for testing, forming
the test face image set. Out of the training images we formed the basis images
corresponding to NMF, LNMF, DNMF by executing the algorithms described
in this paper. The first 10 basis images learned by NMF, DNMF and LNMF
for the facial expression recognition experiment are depicted in Figure 1. It
can be noticed by visual inspection that the basis images retrieved by DNMF
are not as sparse as those extracted by LNMF but are more sparse than the
basis images found by NMF. The training procedure was applied for various



Figure 1: A set of 10 basis images learned by NMF (top), DNMF (middle) and
LNMF (bottom).

numbers of basis images. The image data are then projected into the image
basis in an approach similar to the one used in PCA, yielding a new feature
vector F = ZT (X −Ψ), where Ψ is a matrix whose columns represent the
average face ψ = 1

n

∑n
j=1 Xj . In the test phase, for each test face image

xtest, a new test feature vector ftest is then formed as ftest = ZT (xtest − ψ).
If we construct a classifier whose class label output for a test sample

ftest is l̃ then, the classifier accuracy is defined as the percentage of the
correctly classified test images when {l̃(ftest) = l(ftest)}, where l(ftest) is the
correct class label. Once we have formed 6 classes of new feature vectors
(or prototype samples), a nearest neighbor classifier is employed to classify
the new test sample, by using the Cosine Similarity Measure (CSM). This
approach is based on the nearest neighbor rule and uses as similarity the
angle between a test feature vector and a prototype one. We choose l̃ =
argminl=1,...,c{dl}, where dl = ftestf

T
l

‖ftest‖‖fl‖ and dl is the cosine of the angle
between a test feature vector ftest and the prototype one fl.

PERFORMANCE EVALUATION AND DISCUSSIONS

We have tested the algorithms for several number of basis images (subspaces).
The results are shown in Figure 2. Unfortunately, the accuracy does not
increase monotonically for none of the methods with the number of basis
images. A maximum classification accuracy of 82.85 % is obtained for 81 and
100 basis images in the case of DNMF, 81.42 % is yielded by LNMF corre-
sponding to 25 basis and 77.14 % for NMF and 36 basis. However, mean and
standard deviation for accuracy averaged over the number of basis images
are (%): 79.04 and 3.19 for DNMF, 76.34 and 5.53 for LNMF and 71.58 and
4.42 for NMF, respectively. Hence, a maximum average classification accu-
racy and a its minimum deviation around the mean is obtained by DNMF,
indicating that DNMF has a better overall classification rate.

A very careful attention must be paid to the choice of the parameter ξ in
(9). Due to the fact that the cost function defined by DNMF is formed by
several terms that are simultaneously optimized (minimized or maximized),
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Figure 2: Accuracy achieved for DNMF, NMF and LNMF methods versus number
of basis images (subspaces).

its global optimization may suffer. Although the cost function is globally
minimized, each term has its own rate of convergence. The parameter ξ gov-
erns the convergence speed for minimizing Sw while maximizing Sb. How-
ever, it also interferes with the expression that minimizes the approxima-
tion X ≈ ZH, i.e., the term DNMF (X ‖ZH). An overly small value of ξ
will speed up the decrease of Sw, the increase of Sb and the minimization
of DNMF (X ‖ZH)). However, the algorithm may stop too early and the
number of iterations might not be sufficient to reach a local minimum for
DDNMF (X ‖ZH) and to learn corresponding sparse basis images. On the
other hand, the algorithm may converge very slowly if an overly large value
of ξ is chosen. Experimentally, we have chosen a value of ξ = 0.5 in our ex-
periments that gave us a good trade-off between sparseness and convergence
speed.

CONCLUSION

In this paper we have presented a new image representation approach that
has been applied to facial expression recognition. We found that it produces
a higher recognition accuracy than NMF or LNMF approaches. In the light
of the sparse image coding theory, the neural interpretation of this model is
that a simple cell in V1 area performs sparse coding on the visual input, hav-



ing its receptive fields closely related to the sparse coding basis images and
firing rates proportional to the representation coefficients. DNMF presents a
sparse structure of the basis images The basis image sparse “active” patterns
(just a few pixel patterns have non-zero value) are selected by the repre-
sentation coefficients that convey class information. The proposed approach
is a supervised learning algorithm that keeps the original non-negative con-
straints on basis and coefficients borrowed from the original NMF approach,
enhances the sparseness of basis images (with respect to NMF) by adding
the constraints taken from LNMF approach and improves the classification
accuracy by following a class discriminant approach. As far as basis image
sparseness is concerned, DNMF is a good trade-off between local image repre-
sentation produced by LNMF and the holistic image representation produced
by NMF.
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