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1. Introduction 

Urban ecosystems are deeply influenced by many factors such as rapidity of expansion, loss 

of forests, loss of vegetation and global disasters. Following the Land Use/Land Cover 

(LU/LC) changes is a good strategy to manage the urbanization and to avoid the undesired 

situations and catastrophes like Tsunami. Remote sensing satellite images have been 

contributing to updating and actualizing maps, which are highly desired by the policy makers. 

Moreover, the LU/LC indices became a good tool to interpret, manage, follow and control 

land features such as Normalized Difference Vegetation Index (NDVI) which has been 

largely used to follow vegetation and Normalized Difference Built-up Index (NDBI) which 

has also been widely utilized to identify and map the built-up areas from medium spatial and 

spectral resolution satellite images (Stathakis et al. 2012; Zha et al. 2003). There are three 

categories of built-up extraction methods, the spectral and spatial indices, the combination of 

the spectral data and texture information i.e. classification, and the combination of sensors or 

multi-sensors (Zhang et al. 2014). However, the developed indices are outperformed other 

methods by their simplicity and rapidity of calculation, reduction of processing time and the 

high applicability. Since the creation of NDVI, researchers have made a huge effort to 

produce a similar accurate built-up index. The results show that the built-up lands are well 

separated from vegetation but they are poorly isolated from bare soil and water (Piyoosh & 

Ghosh 2018) because the calculated indices misclassify a quantity of barren and water regions 

as built-up areas due to heterogeneity of complex urban areas. Moreover, Kassawmar et al. 

(2018) have implemented a method to reduce this heterogeneity and improve the 

classification of LU/LC features. Kawamura et al. (1996) have proposed the Urban Index (UI) 

using TM7 and TM4 bands from Landsat Thematic Mapper (TM) sensor. Zha et al. (2003) 

have introduced the known built-up index, NDBI. To make NDBI more efficient at 

automatically mapping built-up terrain, they have subtracted the recoded NDVI image from 
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the recoded NDBI image. Earlier in 2008, Xu (2008) formulated a new expression of built-up 

index using the NDBI, the Soil Adjusted Vegetation Index (SAVI), the Modified Normalized 

Difference Water Index (MNDWI) and the introduction of the so-called Index-based Built-up 

Index (IBI). Deng and Wu (2012) proposed the Biophysical Composition Index (BCI). The 

BCI was shown to be the most effective index of the evaluated indices for separating 

impervious surfaces and bare soil. Bhatti and Tripathi (2014) have proposed the Built-up Area 

Extraction Method (BAEMOLI) applied to the  Operational Land Imager, and the Thermal 

Infrared Sensor (OLI-TIRS) Landsat 8 images and based on the subtraction of the sum of 

(NDVIOLI) and (MNDWIOLI) from the NDBIOLI. The NDBIOLI has a specific expression using 

the Principal Component Analysis (PCA). Bouzekri et al. (2015) have used the green (G), red 

(R) and (SWIR1) bands of OLI Landsat 8 sensor and have suggested the Built-up Area 

Extraction Index (BAEI). Sinha et al. (2016) have proposed the New Built-Up Index (NBUI), 

which applies most of the wavelengths of Landsat images to represent the major urban land 

use classes. Piyoosh and Ghosh (2018) have proposed the so-called Normalized Ratio Urban 

Index (NRUI) and they have mentioned that using panchromatic (PAN) band (Band 8) of 

Landsat 8 data leads to an overall improvement in discriminating between built-up, barren 

(bare soil) and vegetation. However, generating a satisfactory built-up index image from 

remotely sensed data like Landsat 8 is not a straightforward task. There are many factors that 

may reduce the accuracy of classification, such as the nature of the study area, the spatial and 

spectral resolution of satellite remotely acquired data. As a matter of fact the built-up land 

feature is smaller than the spatial resolution of sensors, besides the multiple equations and 

transformations which may amplify errors. It is a hard and a complex process started from the 

registration and preprocessing operation until the generation of the accuracy map. The 

purpose of this study is to develop a new simple accuracy built-up land features extraction 

index (BLFEI) which robustly differentiates the built-up areas from the surrounding barren, 
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vegetation and water surfaces, and takes advantage of the quick processing time and absence 

of human intervention or interaction. This new index is applied to Algiers image taken from 

Landsat 8 OLI sensor, but remains available for Enhanced Thematic Mapper Plus (ETM+) 

sensor. The proposed index is compared to some recently developed indices where it showed 

higher performance in terms of both separability as well as accuracy.  

2. Related works and the existing indices  

In remote sensing an index is a mathematical spectral transformation formula of two or more 

bands that have the ability to highlight the desired land feature and to graphically indicate in a 

uniform toned color the pixels which have the similarity of spectral value in a small range. 

The creation of an index is based on the unique pattern of each land cover and the spectral 

response of signature features.  

Researchers in the field of remote sensing have waited until 2003 when Zha et al. 

(2003) announced their index (NDBI). This index is similar to NDVI for its segmentation of 

built-up areas but achieves lower accuracy.  

The NDBI index uses the difference and the ratio of Middle InfraRed Band (MIR) or 

(B5) and Near InfraRed band (NIR) or (B4) to highlight the built-up areas and it is given by 

the following equation:   

  

                                               NDBI = (B5−B4)(B5+B4)                                                    (1) 

This index takes advantage of its simplicity and its computation speed. 

An alternative way to extract more precisely built-up areas and to eliminate the noise 

of vegetation and water is the IBI index proposed by (Xu 2008), which is applied to ETM+ 

sensor and is given by the following equation: 

                                    IBI = (NDBI−((SAVI+MNDWI) 2⁄ )(NDBI+((SAVI+MNDWI) 2⁄ )                                              (2)  
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Where SAVI and MNDWI are respectively expressed as:            

                                                𝑆𝐴𝑉𝐼 = (𝐵4−𝐵3)(1+𝑙)(𝐵4+𝐵3+𝑙)                                            (3) 

                                                𝑀𝑁𝐷𝑊𝐼 = (𝐵2−𝐵5)(𝐵2+𝐵5)                                             (4)  

B2, B3 are respectively the green and red bands of the ETM+ sensor and l is a factor 

implemented to minimize the vegetation index sensitivity to soil background reflectance 

variation. If l is zero, SAVI becomes the same as NDVI. For intermediate vegetation cover 

ranges, l is typically set around 0.5 as reported in the work of (Zhang et al. 2009). 

Let us now delve into the most recent indices reported in the literature. In the passed 

few years, researchers have made a considerable effort to establish a good index that reflects 

the reality of built-up regions (Piyoosh & Ghosh 2018; Sinha et al. 2016; Li et al. 2015; 

Bouzekri et al. 2015; Estoque & Murayama 2015; Bhatti & Tripathi 2014; Stathakis et al. 

2012; Deng & Wu 2012). Some of them are based on the Tasseled Cap Transformation (TCT) 

and PCA. The first is BCI, an index developed with Landsat ETM+, IKONOS and MODIS 

satellites and similar to IBI. The BCI uses the three of first TCT components and it is 

computed as:  

                                                           𝐵𝐶𝐼 = ((𝐻+𝑉)2 −𝐿)((𝐻+𝑉)2 +𝐿)                                        (5) 

Where H, V and L are the brightness (TC1), the wetness (TC3) and the greenness 

(TC2) components of the tasseled Cap transformation, respectively. 

Estoque and Murayama (2015) have proposed the Visible green-based built-up index 

(VgNIR-BI) which is a simple and accurate index, and is applied for Landsat 7 as well as 

Landsat 8. The expression of this index is given by:  

                                                   𝑉𝑔𝑁𝐼𝑅 − 𝐵𝐼 = (𝜌𝐺𝑟𝑒𝑒𝑛−𝜌𝑁𝐼𝑅)(𝜌𝐺𝑟𝑒𝑒𝑛+𝜌𝑁𝐼𝑅)                           (6) 
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Where 𝜌𝐺𝑟𝑒𝑒𝑛, 𝜌𝑁𝐼𝑅  are respectively the reflectance of the bands (B2), (B4) for the 

ETM + sensor and the reflectance of the bands (OLI3), (OLI5) for the OLI sensor.     

The BAEI index is derived from band ratios and applied to Landsat 8, its formula is: 

                                                     𝐵𝐴𝐸𝐼 = 𝑂𝐿𝐼4+0.3𝑂𝐿𝐼3+𝑂𝐿𝐼6                                       (7) 

Another approach is NBUI, an index applied to Landsat 5 and based on the subtraction 

of the SAVI and MNDWI from the Enhanced Built-up and Bareness Index (EBBI) (As-

Syakur et al. 2012) and it is computed as:   

                                 𝑁𝐵𝑈𝐼 =  𝐵5−𝐵410×√𝐵5+𝐵6 − ((𝐵4−𝐵3)(1+𝑙)(𝐵4+𝐵3+𝑙) + (𝐵2−𝐵5)(𝐵2+𝐵5))                  (8)  

   To extract built-up area from Landsat 8 imagery through NBUI index, the thermal 

band (B6) is replaced with (OLI10) thermal band. The formula of NBUI and many other 

indices illustrate the importance for the utility of SWIR1 band in the creation of indices.  

The indices not mentioned in this section are listed in Table 1 by citing the authors as 

well as the satellites, the sensors used, the Overall Accuracy (OA) and the kappa coefficient 

(k) if are given by authors. 

 

3. Study area, data sets and preprocessing 

3.1 Study area and data used  

The OLI sensor Landsat 8 satellite image (L8-19635) of level 1 acquired on 1/5/2015 

corresponds to  the path of 196 and the row 35 georeferenced to UTM WGS 84 zone 31 was 

subset by a shapefile of Algiers located in the middle North Africa as shown in Figure 1. A 

high resolution image of Google earth captured on the same day and at the same location, 

besides, a Landsat 8 image of another scene footprint corresponding to 196 path and 34 row 

(L8-19634) for Level 1 acquired on the same day (1/5/2015) but eight seconds earlier from 
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than the first image and georeferenced to the same reference (UTM WGS 84 zone 31), are 

both used for results validation.   

3.2 Data preprocessing  

To enhance the satellite images and increase the classification accuracy, a preprocessing 

process is required. This process is applied to image L8-19635 as well as to L8-19634.  To 

improve the spatial resolution and achieve a resolution of 14.25 m. First a resampling method 

(change of resolution) using the nearest neighbor algorithm was performed to obtain a 

resolution of 28.5 m (Tucker et al. 2004; Ehlers & Welch 1987), subsequently followed by a 

pansharpening where the OLI Bands 2-7, 10 used have a resolution of 28.5 m, and thus were 

merged with Band 8, that has the high resolution of 14.25 m using Gram-Schmidt 

pansharpening (Xu et al. 2014; Ehlers et al.2010). Pansharpening is an image fusion technique 

in which high resolution panchromatic data is combined with lower resolution multispectral 

data to obtain a colorized high-resolution dataset. An atmospheric correction has been applied 

to remove the influence of atmospheric scattering (Zhou et al. 2014).  The Fast Line-of-sight 

Atmospheric Analysis of Spectral Hypercubes (FlAASH) and the ATmospheric CORection 

(ATCOR) modules are used. The Landsat 8 OLI sensor is very sensitive, the digital data is 

rescaled to 16-bit DN and ranges from 0 to 65536 as shown in Table 2. To extract built-up 

area from Landsat 8 imagery through the cited indices and the proposed index, these images 

have been converted to reflectance rather than radiance. A radiometric calibration is available 

in ENVI software (Environment for Visualizing Images) to calculate the Top-Of-Atmosphere 

(TOA) radiance used as input, in the FLAASH module. Fuyi et al. (2013) concluded that for 

ground reflectance the most accurate results are obtained with ATCOR. However, Morteza et 

al. (2015) announced that FLAASH atmospheric correction outperformed ATCOR in the 

majority of cases. In our case, the FLAASH and ATCOR reflectance’s values are almost the 

same as shown in Figure 2. Figure 2 also exhibits that even the separation of built-up from the 
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G and R bands is good, the separation from the SWIR1 and SWIR2 even bands is better.  

Displayed color composites were formed using various band combinations to differentiate 

diverse types of land cover such as 765, 543, and 654 (false color) composites. By using the 

654 composite, the built-up areas appear in varying shades of magenta, vegetation is green 

bright, barren (soil) is mauve and water is very dark (Figure4), and by using the 543 

composite, vegetation appears in shades of red, built-up areas are cyan blue, barren land vary 

from dark to light browns, and water appears very dark as shown in Figure 1. 

4 Evaluation of some existing indices 

In this section, we briefly evaluate the built-up indices cited in section 2 (without NDBI, 

SAVI and MNDWI) using the histograms overlap method and the spectral discrimination 

index (SDI) technique (Piyoosh & Ghosh 2018; Sun et al. 2016; Deng & Wu 2012). To show 

the images of color coded indices instead of grayscale, a classification using Support Vector 

Machine (SVM) was carried out. SVM is well known in the field of classification for remote 

sensing and leads to better results (Feyisa et al. 2016; Hazini & Hashim 2015). The Region Of 

Interest (ROI) are used as a spectral signature of land use and land cover categories namely 

built-up, barren, vegetation and water.  To perform the SVM classification, the ROI are 

carefully selected and constructed until they exhibit satisfactory separability and they are 

shown in Figure 8. The classified indices are shown in Figure 3. The detailed evaluation and 

discussion also using Otsu’s method and accuracy assessment will be discussed in the results 

and discussion section. 

Assessment is based on visual interpretation and analysis of overestimation, 

underestimation or separability of each class. It is mentioned that all indices can segment the 

built-up regions and there is no index that we can single out which can efficiently extract the 

built-up lands. The accuracy of the extracted built-up areas through the indices varies from 

one index to another. To analyze the overlap between classes, we use the SDI based on the 
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means and Standard Deviations (SD) of the classes and is defined by (Kaufman & Remer 

1994) as the difference of the mean values of two classes divided by the sum of their standard 

deviations. To avoid negative values, the difference in means is replaced by the absolute 

difference. If SDI < 1 classes overlap and the ability to discriminate the classes is poor, 

whereas if 1 < SDI <3 Histogram means are well (good) separated and that regions are 

relatively easy to discriminate. However, if SDI ≥ 3 an excellent discrimination of land 

features is reached and there is no overlap that occurs. Table 3 shows the SDI values for the 

four features of landscape, namely, the built-up, bare soil, vegetation and water and Figure 4 

shows the overlapping histograms between land covers. With SDI values of 3.05 and 4 

between built-up-vegetation and built-up-water respectively, IBI index has better separated 

the vegetation and water from the built-up areas; however, it suffer from discriminating the 

built-up regions from the barren land which is reflected in Figure 4 by isolation of histograms 

between built-up-vegetation, built-up-water and deep intersection of histograms between 

built-up and barren, and it is reflected in Figure 3 for SVM classification by underestimation 

of the barren class, but it is closer to reality as shown in Figure 3. The new tested indices from 

2012 until 2016 (i.e. BCI, VgNIR-BI, BAEI and NBUI) can extract and map the built-up 

more precisely, but the disadvantage is their enormous value, creating a problem of coding 

grayscale images. The BCI index has the ability to better segment built-up lands and separate 

them from other classes, but it confuses a small amount of barren land with built-up regions, 

in addition there is low isolation between barren and vegetation. BAEI index has perfectly 

separate water from barren moreover, it confused barren with vegetation and a small quantity 

of barren with built-up.  VgNIR-BI index is still a good accurate index, but it also 

overestimates urbanized areas in arid lands as shown in Figure 4, the disadvantage being that 

it only exploits two bands from the entire electromagnetic spectrum and remains to be tested 

for a complex urban system. The NBUI index has the highest SDI value between barren and 
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vegetation (2.93) and remains the best index for extracting both barren and built-up. The 

NBUI method has largely merged urbanized zones with barren land; however, it has largely 

separated the vegetative area from barren class.  

5. Methodology 

5.1. Creation of the spectral index BLFEI 

To develop the new index, the LU/LC profiles shown in Figure 2 are analyzed to determine 

the unique pattern of the land features. The concept is to determine the strongest and the 

weakest values of the built-up reflectance. It is obvious that for OLI7 and OLI6 bands, the 

built-up areas are well spectrally distinguishable from the others LU/LC. The most useful 

bands from which some cover lands can be potentially differentiated and separated are OLI3 

(G), OLI4 (R), OLI6 (SWIR1) and OLI7 (SWIR2) bands. In the electromagnetic spectrum the 

built-up areas have high values reflectance for SWIR1 (1.60 µm), SWIR2 (2.20 µm) and low 

values for green (0.56 µm) and red (0.65 µm), the vegetation and barren have high values in 

the OLI5 (0.86 µm). Figure 2 shows that barren land and asphalt like roads have an almost 

equal spectral response for the spectrum ranging from NIR to SWIR1; these responses have 

roughly intersected for the NIR band. This is why the NIR band does not appear in the BLFEI 

formula given by the following equation:                                                    

                                             BLFEI = (OLI3+OLI4+OLI7)3  −OLI6(OLI3+OLI4+OLI7)3  +OLI6                               (9) 

By using equation (9) the water areas will have the highest values and appear in the 

white tones. The built-up areas’ features will have the medium values and appear in bright 

grey. The vegetation will have the lowest values and appears in black and dark grey as shown 

in Figure 5. The barren will appear in grey tones because its values are greater than the 

vegetation and less than the values of the built-up areas. The robustness of BLFEI index is 

due to the fact that it exploits almost the whole spectrum of visible (Vis) and infra red 
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shortwave (SWIR). It is based on the R and G bands from the visible spectrum and on the 

SWIR1, SWIR2 bands from the infra red spectrum. Figure 5 shows the grayscale image of the 

BLFEI index and its SVM classification. It is obvious that the new index provides striking 

spatial details like roads and airports better than almost all built-up indices in comparison with 

SVM classification of the others indices as shown Figure 3. 

 5.2. Optimal thresholding and Otsu’s algorithm for separating built-up from non 

built-up regions 

Most of the previous studies have used the manual thresholding to generate built-up and non 

built-up binary images (Garg 2016; Patel & Mukherjee 2015; Xu 2007; Zha et al. 2003). An 

automated thresholding algorithm is swiftly needed to classify the built-up index image into 

built-up and non built-up regions (Varshney & Rajesh 2014). Otsu’s method for finding the 

threshold of an image is based on minimizing the interclass variance of two classes 

representing the background and foreground of the image (Otsu 1979). It selects an optimal 

threshold by maximizing between-class variance in an image characterized by a bimodal 

histogram. Liu et al. (2010) have conducted an experimental research of different methods of 

threshold segmentation and have concluded that Otsu’s method outperforms others techniques 

by speed of processing and its stable effect and have reported also that Otsu's thresholding 

algorithm gives better results even when more than the two peaks are present in the 

histogram. Li et al. (2013) have used the Otsu's threshold to automatically calculate the 

threshold value for separating the water feature from other lands. If we assume that a gray 

level histogram corresponds to an image obviously has two modes (sides), one for built-up 

areas (class C1 ranging from [α, . . ., t]) and the other for non built-up regions (vegetation and 

barren) (Class C2 ranging from [t, . . ., β]), where t is the threshold value. We note Mb, Mn 

the means of built-up and non built-up classes respectively and Pb, Pn the probabilities that a 
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pixel belonged to class C1 or class C2 respectively. Therefore, the between class variance is 

given by variance 𝜎  and it is expressed as: 

                             σ =  √Pb. (M − Mb)2 + Pn. (M − Mn)2                             (10) 

Where M is the mean of entire image M= Pb .Mb + Pn .Mn and  Pb+Pn=1 

The Otsu optimal threshold Th is given by 

                                                  𝑇ℎ = 𝐴𝑟𝑔𝑀𝑎𝑥α≤t≤β(𝜎2)                              (11) 

The optimal threshold value’s algorithm is implemented in the Environment of ENVI 

5.3 and with a script of IDL 8.5 (Integrated Development Language). To avoid the 

enhancement of water with built-up when applying the new index, an operation of masking 

out the water still needed before applying the index as reported by (Waqar et al. 2012).  After 

the water regions are masked, the histogram presents two modes allowing to find 

automatically the optimal threshold used for binary coding (built-up and non built-up) and 

built-up land extraction as shown in Figure 7. Any pixel of image is notified belonged to 

built-up class if its value is greater than the optimal threshold value (Th). Table 4 shows the 

means, the SD and the optimal threshold values and Figure 9 shows the extracted built-up 

from the waterless surfaces (barren and vegetation, the water is shown but is masked out). 

5.3. Comparison with the existing indices  

To demonstrate the ability of BLFEI index to extract the built-up land features, this study 

compares the new index with the evaluated indices described in the section 3.3. (BAEI, BCI, 

IBI, NBUI and VgNIR-BI). The comparison is based on the evaluation using histogram 

overlap and spectral discrimination index, the results from Otsu's optimal thresholding or how 

each index responds to Otsu's method and accuracy assessment as well as the comparison of 

built-up area surfaces extracted using the SVM classification and the Otsu's method. SVM 

output classification images of these spectral indices are shown in Figure 3. Analysis, 

quantitative and qualitative comparison will be discussed in the results and discussion section. 
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5.4 Built-up areas extracted and accuracy assessment  

To evaluate the accuracy of the cited indices in the section 3.3 and the new 

index for their ability to segment built-up lands, 80 pixels belonging to built-up area and 120 

pixels belonging to non built-up region (vegetation and barren) were randomly collected using 

stratified random sampling method according to Tumb rule (Xu 2007). These 200 random 

points were generated in ArcMap 10.4.1 and converted to KML in order to use in Google 

Earth. The  200 points are shown in Figure 8 and are generate in each index image to sort 

them according to the class they belong to (built-up or non built-up).  After those pixels are 

examined one at a time in the 654 composite of the multispectral image (L8-19634) with the 

resolution of 14.25 m, they are verified using the Google Earth of high image resolution. 

Google Earth provides high resolution images with the date were taken, without metadata and 

without the time-stamp, so we used L8-19634 image which is eight seconds earlier than L8-

19635 image to ensure that no change will occur in the studied area. Table 5 summarizes the 

error matrix (confusion matrix) including the Overall accuracy (OA), the kappa coefficient (k) 

as well as the commission error and omission error and Table 6 exhibits the scale used to 

describes the strength of agreement for kappa statistic (Rwanga & Ndambuki 2017). Figure 

10 shows the OA and k values and exhibits that OA values range from high (95%) to low 

(81%). The highest value is attributed to the BLFEI index and the low value is for NBUI. In 

addition, the value of k varies from 0.60 to 0.90 and is considered substantial (0.61-0.80) for 

all indices except for BLFEI which is considered almost perfect (0.81-1.00). 

6. Results and discussion 

6.1 Results from SDI separability and overlapping histograms 

Table 3, Figure 4 and Figure 6 exhibit that BLFEI, the new index discriminates the four land 

cover categories more precisely and its separability is higher than indices used for 

comparison. Figure 2 shows the spectral response of the terrestrial features after being 
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corrected atmospherically with FLAASH and ATCOR and pansharpened with PAN band 

leading to a spatial and spectral enhancement. Figure 2 also exhibits the similarity of the 

spectral response between barren and asphalt, particularly around the NIR spectrum, so that 

by using the BLFEI formula, the built-up area was highlighted in foreground. Figure 4 and 

Figure 6 show the separability between land features or the overlapping phenomena and 

illustrate that for the new approach, the classes are well discriminated but for the rest of 

indices they are overlapped and the barren land is spectrally confused with the built-up 

regions at different proportions, which also is reflects by intersection of the land cover 

histograms. SDI values and the intersection length of histograms determine the proportion of 

confusion between land covers. SDI values for BLFEI are ranged between 1.75 and 7.44, and 

are rated as good and excellent by considering SDI’s decision.  SDI of barren - vegetation, 

and barren - water is perfect (excellent) because its value is respectively 3.72 and 4.81. 

Moreover, BLFEI and the studied indices have excellent separability between built-up and 

vegetation on the one hand and between vegetation and water on the other hand, as shown in 

Table 3. In addition, BLFEI index presents a perfect isolation between land cover histograms 

except between built-up and barren where a negligible overlap has occurred. This overlapping 

behavior is undesired for a precise extraction of lands. Table 3 shows that the highest value of 

SDI between built-up land and barren class is 2.10 and it assigned to BLFEI index, 

subsequently followed by VgNIR-BI with a value of 1.69 which is 62% lower than our 

proposed index and makes BLFEI the new index improves separability by 25%. After that 

comes the SDI of BAEI index with a value of 1.25 which is 84% inferior, thereafter comes the 

SDI of BCI with a value of 1.08 which is 97% less than SDI value of BLFEI index. This fact 

is also supported by Figure 6 which shows the means of the four urban components features 

and demonstrates that almost all built-up indices suffer from separating the barren lands and it 

is only the BLFEI index which is greatly discriminate between them followed by the VgNIR-
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BI index. With an SDI value of 3.72 which is the greatest, BLFEI is the best to make great 

discrimination between built-up and vegetation. The largest value of SDI between barren and 

vegetation is 2.95, which makes NBUI the effective index for discrimination between barren 

and vegetation. The poor separability for the rest of the indices is a disadvantage because of, 

essentially the lack of insufficient information that improves the separation such as the texture 

features and due also to the existence of the shadow in the studied area mainly for the building 

and roads (Labib & Harris 2018). 

6.2 Results from the extraction of built-up areas using Otsu's optimal threshold 

 The water reflectance values in G and R bands are higher than those in SWIR1 band as 

shown in Figure 2; therefore by processing BLFEI index, the water returns the highest values 

(positive values as shown in Figure 5) and will be enhanced like the built-up lands. This 

problem mostly occurs with BLFEI, BAEI and VgNIR-BI indices and the necessity to mask 

out the water before executing the formula of the said indices and processing the optimal 

thresholding is essential, but there is an alternative solution of water masking by using the 

double manual threshold. Table 4 and Figure 10 show that the optimal Otsu thresholding 

values are lower than the mean values; these values are displayed on the histogram of each 

index as shown in Figure 7. The classes and their overlaps in case they exist are presented on 

the histograms by different colors, as shown in Figure 7. The Otsu’s method works very well 

with the BLFEI index where the Otsu’s optimal threshloding value is detected in the middle 

of a two predominant symmetrical sides (peaks) of the histogram corresponding to built-up 

area, on the one hand, and to barren and vegetation areas on the other hand. Followed by the 

BCI index which also works well with the Otsu’s method according to its histogram which 

presents two peaks, one for the built-up class and the other for the two classes mentioned 

above (note that the water zones are masked out). Then, the BAEI and IBI indices moderately 

responded to the Otsu’s method for optimal thresholding. Based on the optimal thresholding 
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values, the output binary indices are coded as built-up and non built-up regions. Table 4 and 

Figure 7 show the Otsu’s optimal thresholding values and Figure 9 shows the binary coding 

image where the built-up lands are finally extracted from the waterless lands. To visually 

evaluate the new proposed index and the indices of investigation, four locations are chosen 

objectively: first the bay of Algiers, the second is the park of Alhamma (a region in Algiers), 

the third is Algiers airport, and some roads as shown in Figure 9. Bay of Algiers is perfectly 

extracted by the built-up indices. The park which is located in the middle of a potentially 

urbanized city is also discriminated by the new method (BLFEI) as well as by BCI, IBI, 

NBUI indices, but it is extracted with a moderate precision for the VgNIR-BI index and it is 

confusedly segmented with built-up and barren lands according to the BAEI index. For the 

airport, BLFEI outperforms for the extraction of the airport's headquarters, however the 

indices developed like BCI, IBI and NBUI segment more precisely the airport runways than 

the BLFEI index. With the size of the images shown in Figure 9 (421×305), some roads are 

only extracted by the BLFEI approach. As mentioned in the introduction section, the 

resolution of moderate satellite images, such as Landsat 8 limits the segmentation of urban 

areas even in our case, the Landsat 8 image has undergone  preprocessing and pansharpening 

and has reached a resolution of 14.25 m. With the Otsu’s threshold method, BLFEI index 

gives better results compared to the indices studied, but they remain also available for the 

extraction of built-up land though the performances vary from one index to another. The 

indices are tested in different areas with different sensors, in addition to specific limitations 

such as image acquisition conditions, preprocessing, topographic and climatic characteristics 

are imposed. Therefore, performance and evaluation vary from one place to another and also 

from a sensor to another. Finally, we aim to know which evaluation method is the most 

accurate. 
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Some indices such as BLFEI, BAEI and VgNIR-BI showed better results over others 

by using overlapping histogram and SDI; nevertheless, the Otsu method is more specifically 

suited to the BLFEI, BCI and IBI approaches, since each side (peak) of their histograms has a 

better symmetry with respect to the other. Moreover, as mentioned in the introduction 

Kassawmar et al. (2018) implemented a new method to increase the accuracy of classification 

based on increasing number of classes. In the first method based on the SDI separability and 

overlapping histograms, the classes are four, but for the second method (Otsu’s method) the 

classes are only two, which means that the first method is more precise. 

6.3 Results from accuracy assessment 

With an OA of  95% and a coefficient k of 0.90 as shown in Table 5 and Figure 10, BLFEI, 

the new index is able to segment more efficiently and precisely the built-up areas than 

previously developed indices.   

The errors of commission and omission of the built-up class for BLFEI are 

respectively 6% and 5% and are the lowest compared to the other studied indexes. 

Nevertheless, this slight error of omission means that the new approach effectively captures 

the built-up areas.  BLFEI, the new method has reduced the commission and omission errors 

by (6% - 4%) and has only misclassified 9 pixels. These nine points have been wrongly 

classified, and are in majority, localized in the overlapping zone between the built-up and the 

barren areas. Our proposed index is followed by VgNIR-BI index with an OA equal to  90% 

and a k coefficient equal to 0.78 which has misclassified a twenty pixels, followed by BCI 

with an OA equal to 87% and a k coefficient equal to 0.72 which it has misclassified twenty 

six pixels. BLFEI the new index have an overall accuracy (5-14) % and a coefficient k (12-

26) % higher than that of the state-of-the-art indices. For the quantitative comparison, Figure 

10 shows in Hectares the surfaces occupied by built-up land for each index using Otsu’s 

method and SVM classification. The surface of waterless studied zone is 338543 × 28.5 ×  
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28.5 = 27498.15 hectares. As shown in Figure 10, the extracted built-up surface by BLFEI 

index is not affected by the method used, unlike with other indices where the built-up region 

surfaces vary from the Otsu’s method to the SVM classification. The percentages of built-up 

area extracted by BLFEI approach are 40.36% and 40.80% using Otsu’s method and SVM 

classification, respectively, which leads to a relative error of 1% only. Thus the obtained 

results demonstrate that BLFEI index can be used as an alternative way for the extraction of 

built-up lands and for discriminating between land covers.     

 

Conclusion 

Extracting built-up areas from satellite images with medium spectral and spatial resolution 

like Landsat 8 is not an easy task. The recent developed built-up indices, such 

as BAEI, BCI, IBI, NBUI and VgNIR-BI, are able to extract built-up areas but they often 

merge them at different proportions with land cover categories such as barren and 

water. The purpose of this study is to develop and test a new built-up index and to compare it 

with the newly existing indices in order to examine its capacity in delimiting built-up areas 

and in distinguishing the components of land cover. By using BLFEI, the new index, built-up 

areas have been identified automatically, which minimizes the time required for the image 

classification process. The analyses of overlapping histograms, spectral discrimination index 

(SDI), Otsu’s optimal thresholding and accuracy assessment make it relevant that our 

proposed new index outperforms existing indices. Firstly, by its robustness in discriminating 

built-up land from the barren class, secondly by its histogram of land without water which 

presented two predominant symmetrical sides leading to the best Otsu’s optimal thresholding 

for the extraction of built-up areas, and thirdly by the accuracy assessment where its overall 

accuracy and its kappa coefficient are higher than those of the indices used for comparison. 

However, the values of the BLFEI index are the highest for water zones, therefore, a masking 
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operation is necessary for optimal thresholding, which is not an advantageous point for the 

new proposed index. Another point is that BLFEI index is applied only to one city and it is 

essential to test it for other regions with different land cover characteristics. 
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Table 1. Some of built-up extraction indices. 

 

*”-” OA and k are not mentioned by authors. 
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Table 2. Characteristic of Landsat 8 OLI/ TIRS sensors.    

 

*The TIRS bands are resampled at 30 m in the data product delivered, in fact they are 

acquired at a resolution of 100 m. https://landsat.usgs.gov/what-are-band-designations-

landsat-satellites 
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Table 3. Values of Spectral Discrimination Index (SDI) between land features for the 

BLFEI index and evaluated indices. 

 

*SDI decision: Poor (SDI<1), good (1≤SDI<3), excellent (SDI≥3). 
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Table 4. Means, standard deviations (SD) and optimal thresholds (Th) for BLFEI 

index and the built-up indices 

 

Table 5. Overall accuracy (OA), Kappa coefficient (k), commission error and 

omission error values for the new index and the built-up indices. 

 

* b = Built-up          nb = Non Built-up       OA = Overall accuracy         k = Kappa coefficient 
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Table 6. Scale used for describing the relative strength agreement of Kappa statistic. 
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