
A New SQL-like Operator for Mining Association Rules

Rosa Meo

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

rosimeo@polito.it

Giuseppe Psaila

Dipartimento di Automatica e Informatica, Politecnico di Torino, Italy

psaila@elet.polimi.it

S tefano Ceri

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

ceriQelet.polimi.it

Abstract

Data mining evolved as a collection of applica-
tive problems and efficient solution algorithms
relative to rather peculiar problems, all focused

on the discovery of relevant information hidden
in databases of huge dimensions. In particular,

one of the most investigated topics is the disco-
very of association rules.

This work proposes a unifying model that ena-
bles a uniform description of the problem of di-
scovering association rules. The model provides
SQL-like operator, named MINE RULE, which

is capable of expressing all the problems presen-
ted so far in the literature concerning the mining
of association rules. We demonstrate the expres-

sive power of the new operator by means of seve-
ral examples, some of which are classical, while
some others are fully original and correspond to
novel and unusual applications. We also pre-

sent the operational semantics of the operator
by means of an extended relational algebra.

1 Introduction

Dais Mining is a novel research area that develops te-
chniques for knowledge discovery in massive amounts of

Permission to copy without fee all OT part of this material is gran-
ted provided that the copies are not made or distributed for direct
commercial advantage, the VLDB copyright notice and the title

of the publication and its date appear, and notice is given that
copying is by permission of the Very Large Data Base Endow-
ment. To copy otherwise, or to republish, requires a fee and/or

special permission from the Endowment.

Proceedings of the 22nd VLDB Conference

Mumbai(Bombay), India, 1996

data. In the last years, an increasing number of resear-
chers has concentrated on the solution of a variety of
data mining problems, ranging from classification of data
into disjoint groups [2, 191, to discovery of associations

[3, 16, 12, 7, 5, 151, sequential patterns [8] and similari-
ties in ordered data [l, 10, 4, 61. The common approach

given to research in the field is to concentrate on the
development of specialized, efficient techniques for sol-
ving specific data mining problems. This emphasis on
algorithmic solutions is well motivated by the concrete

problem of managing inside data collections, however
has some drawbacks; in particular, we believe that not
enough emphasis has been placed on the equally impor-

tant problem of specifying data mining problems from a
purely logical and linguistic perspective.

We have observed that many data mining problems
consist in finding association rules among data grouped
by some common characteristics. As the problem was
introduced in the application domain of the basket data

analysis, purchase data were collected grouped by the

purchase transaction, and associations between two sets
of bought products (referred as items) were found. But

in general, data may be grouped equally well by some
different attribute. For example in the sequential pattern

problem, data are grouped by customer; then each group
is partitioned by date. In both cases, the data mining

process consists in discovering associations between two
sets of data found in the same group.

An association rule has the form X 3 y, where X

and y are two sets of items. In this paper we refer to

the left hand side of the rule as the body and-to the
right hand side as the head. The aim of rules is to pro-
vide an observation a posteriori on the most common
links between data. The frequency of such an observa-
tion in the data gives the measure of its relevance. As
the number of produced associations might be huge, and
not all the discovered associations are meaningful, two

122

probability measures, called support and confidence, are
introduced to discard the less frequent associations in
the database. The support is the joint probability to

find in the same group X and Y; the confidence is the

conditional probability to find in a group y having found
X. Two thresholds, respectively for support and confi-
dence, are given by the user in order to discard those

association rules judged less meaningful, as they are less
frequent in the amassed data.

We have pointed out the similarities among these pro-
blems and defined a unique operator, named MINE RULE,
that captures the majority of them. This new operator

is designed as an extension of the SQL language. The
operator has similar objectives as the DATA CUBE opera-
tor which was introduced in [ll]; although DATA CUBE
and MINE RULE refer to distinct problems they respond

to the same need of giving a unified framework and pro-

posing a standard formulation for problems that have be-

come very popular, concerning multi-dimensional data-

bases (for DATA CUBE) and data mining (for MINE RULE),
before being given a standard, unitary formulation.

The suitability of the MINE RULE operator requires to
demonstrate two features. First, the operator must cap-
ture most of the data mining problems which were so far
informally formulated as well as many other problems,
whose formulation is made possible by the operator it-

self. Second, the operator must be associated to efficient

evaluation techniques, that ensure the possibility of sol-

ving the specific data mining problems.
This paper is concerned with the first issue, namely

the expressive power of the MINE RULE operator, which
is demonstrated by means of a very large number of
examples. In order to guarantee that these problems are

unambiguously formulated, we give an inefficient opera

tional semantics, based on a relational algebra.

The paper is organized as follows: Section 2 introdu-
ces the operator by means of examples that span from
the classical association rules, to rules for sequential pat-

terns and for taxonomic databases; Section 3 defines the

semantics of the MINE RULE operator; finally Section 4
draws the conclusions, and the Appendix A reports the

full syntax of the operator.

1.1 Related Work

The problem of discovering of association rules was in-
troduced in [3], in which associations between a set of
items in the body of the rule and a single item in the
head are considered. Association rules are slightly ge-
neralized in [7], in order to enable more than one item

in the head. Both these works inspect data in a flat

file. In [13, 141 data is contained in a relational data-
base and rules are discovered by means of the creation
of temporary tables and the manipulation of them .using
SQL expressions. In [8] the problem of discovering of se-
quential patterns, is introduced: a sequential pattern is
an association between sets of items, in which some tem-
poral properties between items in each set and between

sets are satisfied. In particular, items in a set have the
same temporal reference, and an order between sets is
established by means of the temporal reference.

Association rules were extended to taxonomic databa-

ses in [16]. A taxonomic database describes a hierarchy
of the items stored in the database. In presence of such a
hierarchy, rules associate not only items, but also classes
of items. An algorithm that discovers association rules
in taxonomic databases is provided by [16]. Other algo-
rithms, in [12], differ form the previous one for the fact
that they discover associations between classes inside a
level of the hierarchy, i.e. a rule associates only classes

of the hierarchy that have the same distance from the
root of the hierarchy..

2 Language by Examples

In this section, we introduce our mining operator MINE

RULE, showing its application to mining problems based

on a practical case. The practical cde is the classical

database collecting purchase data of a big-store. When
a customer buys a set of products (also called items),

the whole purchase is referred to as a transaction having
a unique identifier, a date and a customer code. Each
transaction contains the set of bought items with the
purchased quantity and the price. The simplest way to
organize this data is the table Purchase, depicted in
Figure 1. The transaction column (tr.) contains the
identifier of the customer transaction; the other columns

correspond to the customer identifier, the type of the

purchased item, the date of the purchase, the unitary

price and the purchased quantity (q. ty).

tr. 1 customer item] date (price 1 q.ty

Figure 1: The Purchase table for a big-store.

2.1 Simple Association Rules

In literature, association rules were introduced in the

context of the analysis of purchase data, typically orga-
nized in a-way similar to that of the Purchase table.

A rule describes fegularities of purchased items in cu-
stomer transactions. For example, the rule

{brown_boots, jackets} + col-shirts

states that ij brown-boots and jackets are bought to-

gether in a transaction, also colshirts is bought in

the same transaction. In this simple kind of association

rules, the body is a set of items and the head is a sin-
gle item. Note that the rule {brownboots, jackets} 3

brown-boots is not interesting because it is a tautology:

123

in fact if the head is implicated by the body the rule
does not provide new information. This problem has

the following formulation:

MINE RULE SimpleAssociations AS

SELECT DISTINCT l..n item AS BODY,

I..1 item AS HEAD,

SUPPORT, CONFIDENCE
FROM Purchase

GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE : 0.2

The MINE RULE operator produces a new table, called
SimpleAssociations, where each tuple corresponds to a

discovered rule. The SELECT clause defines the structure

of rules: the body is defined as a set of items whose
cardinality is any positive integer as specified by .t . . n;

the head is defined as a set containing one single item, as

specified by 1. .I i . The DISTINCT keyword states that
no replications are allowed inside body or head. This

keyword is mandatory because rules are meant to point
out the presence of certain kind of items, independently

of the number of their occurrences. Furthermore, the

SELECT clause indicates that the resulting table has four
attributes: BODY, HEAD, SUPPORT and CONFIDENCE.

The MINE RULE operator inspects data in the
Purchase table grouped by transaction, as specified

by the GROUP BY clause. Figure 2 shows the Purchase
table after the grouping. Rules are extracted from within

groups; their support is the number of groups satisfying

the rules divided by the total number of groups; their

confidence is the number of groups satisfying the rule
divided by the number of groups satisfying the body.

The clause EXTRACTING RULES WITH indicates that

the operator produces only those rules whose support
is greater than or equal to the minimum support and
the confidence is greater than or equal to the minimum
confidence. In this case, we have a minimum threshold

for support of 0.1 and a for confidence of 0.2.
Figure 3 shows the resulting SimpleAssociations ta-

ble; observe that if we change the minimum support to

0.3, we then loose almost all rules of Figure 3 except

those having 0.50 as support.

Variants of Simple Association Rules Several va-
riants of the basic case of simple association rules are
possible; in the following, we discuss them.

If we are interested only in extracting rules from a
portion of the source table instead of the whole table, a

selection on the source table is necessary. .Similarly to

the classical SQL FROM clause, in our language it is possi-
ble to specify an optional WHERE clause associated to the

FROM clause. This clause creates a temporary table by
selecting tuples in the source table that satisfy the WHERE

‘Note that the annotations 1 ..nandl..lareoptionalinthe
syntax of Appendix A; this cardinalities are assumed by default
when they omitted.

Figure 2: The Purchase table grouped by transaction.

Figure 3: The SimpleAssociations table containing as-

sociation rules valid for data in Purchase table.

clause; then, rules are extracted from this temporary ta-
ble. For example, if we are interested only in purchases

of items that cost no more than $150, we write:

MINE RULE SimpleAssociations AS

SELECT DISTINCT l..n item AS BODY,

l..l item AS HEAD, SUPPORT, CONFIDENCE
FROM Purchase WHERE price <= 150
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE : 0.2

If rules must be extracted only from within groups
with a certain property, it is possible to use the classical
SQL HAVING clause associated to the GROUP BY clause.

Inside this clause, either aggregate functions (such as
COUNT; HIN, MAX, AVG) or predicates on the grouping at-
tributes can be used. For instance, if we like to extract

rules from purchases of no more than six items, we write:

MINE RULE SimpleAssociations AS
SELECT DISTINCT l..n item AS BODY,

I..1 item AS HEAD, SUPPORT, CONFIDENCE
FROM Purchase
GROUP BY transaction

HAVING COUNT(*) <= 6
EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE: 0.2

In [li’] the case of simple association rules is exten-
ded to generalized association rules, i.e. rules with an

arbitrary number of elements in the head. Our operator
treats also this case, by means of a different specifica-

124

tion for the cardinality of the head, that becomes 1. .n

instead of I. . I.

MINE RULE GenAssociations AS

SELECT DISTINCT item AS BODY,
i..n item AS HEAD, SUPPORT, CONFIDENCE
FROM Purchase

GROUP BY transact ion
EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE: 0.2

With the MINE RULE operator it is possible to group
the source table by whichever attributes; this fact chan-
ges the meaning of extracted rules. For example, if the
Purchase table were grouped by customer instead of

the usual transaction, rules would describe regulari-

ties among customers, independently of the purchase

transactions. Thus, we analyze the customer behaviour

without paying attention to the transactions in which
items are purchased. The problem is formalized as fol-

lows:

MINE RULE CustomerAssociations AS
SELECT DISTINCT item AS BODY,

i..n item AS HEAD, SUPPORT, CONFIDENCE

FROM Purchase
GROUP BY customer

EXTRACTING RULES WITH SUPPORT: 0.1,
CONFIDENCE: 0.2

2.2 Association Rules with Clustering

We said that rules are extracted from within groups: tu-

ples belonging to a group are characterized by the same

value of the grouping attributes. Thus, extracted rules
are irrespective of other properties described by the re-

maining attributes. We now extend this simple model
by assuming that tuples in a group are partitioned into
sub-groups by some non-grouping attributes; we refer to
each sub-group as a cluster, and to the attributes that
define clusters as clustering attributes. All tuples in a

cluster have the same values of the clustering attributes.
With clusters, we extract rules so that their body and

head refer to clusters within the same group. Support

and confidence are still computed on groups, since rules
still describe regularities among groups. This way, the
user can specify more sophisticated requirements which
are not expressible by means of the simple grouping.

cust 1 date) item 1 tr. 1 price 1 GY

I I ski-pants I 1 I 140 I 1 I
J

cust.1 X2/17/95 hiking-boots 1 180 1
12/18/95 jackets 3 300 1

colsllirts 2 25 2
12/18/95 brown-boots 2 150 1

cust9 iackets 2 300 1
”

,

colshirts 4 1 25 1 3

12/19/95 jackets 4 1 300 1 2

Figure 4: The Purchase table grouped by customer and
clustered by date.

For instance, consider the Purchase table; we restrict

the association rules of the last example of the previous
Section, so that items purchased by some customer give

rise association rules only if they are bought in the same
day. This problem can be specified as follows:

MINE RULE ClusteredByDate AS

SELECT DISTINCT l..n item AS BODY,
l..n item AS HEAD, SUPPORT, CONFIDENCE

FROM Purchase
GROUP BY customer

CLUSTER BY date
EXTRACTING RULES WITH SUPPORT: 0.01,

CONFIDENCE: 0.2

The rule extraction process proceeds in the following

way. At first, the Purchase table is grouped by

customer; second, after grouping, groups are clustered

by date, obtaining the table of Figure 4.

At this point, in each group, the cross product of clu-
sters is created, obtaining the table of Figure 5; observe

that clusters still maintain the tuples they contain.

For each group, rules are now extracted only from
within couples of clusters, the left cluster for the body
and the right cluster for the head: the effect is that the

body (or the head) of a rule contain items purchased
in the same date. For instance, consider the second
couple of clusters contained in the group of customer
customeri; from this couple, it is possible to extract
the rules {ski-pants} 3 {jackets}, {hiking-boots} j
{jackets} and {ski-pants, hiking-boots} j {jackets}.

Observe that the body of the last rule contains two items

bought in the same date.

Tautologies are possible when rules are extracted

from a couple of the same cluster. For instance,
consider the first couple of clusters contained in the
group of customerl; from this couple, it is possible
to extract the rules {ski-pants} 3 {ski-pants} and
{hiking-boots} j {hiking-boots} which are tautolo-
gies, since they do not provide new information be-

cause body and head refer to the same date. In
contrast, the rule {col-shirts, brown-boots, jackets) +

{col-shirts, jackets}, extracted from the second cou-

ple of clusters contained in the group of customer
customerz, is not a tautology. In fact, it informs us
that items in the head refer to a different date w.r.t the

items in the body.

The extraction process can be resumed as follows.
The source table is grouped and clustered. Then or-

dered couples of clusters coming from the same group
are created. Given a couple of clusters, the first cluster

is used to extract bodies, while the second one is used to
extract heads. Finally, all extracted rules are collected;
for each rule, its support and confidence are computed
on groups (and not clusters) that contain the rule. Only
rules with sufficient support and confidence are kept.

Let us consider a rule produced as a variant of the
previous example. We are now interested only in rules

125

I WOUP 1
customer I

cust1

1

cust2

1

body cluster head cluster

date 1 item 1 tr. 1 price 1 9.ty date 1 item 1 tr. 1 price 1 9.ty

Figure 5: Table of Figure 4 after the associations between clusters

that describe temporally ordered purchases, i.e. the items

in the body are purchased previously than the items in the

head. This is similar to the problem of finding sequential

patterns introduced in [S].

The temporal constraint is a condition on the clu-

stering attributes; it can be specified in the MINE RULE
operator by means of an optional HAVING clause associa-

ted to the CLUSTER BY clause. This predicate is used to

discard couples of clusters before forming rules. Inside

this predicate, we can use correlation variables BODY and

HEAD to denote the left and right cluster, as described by
Figure 5. The refined problem is described as follows:

MINE RULE OrderedSets AS

SELECT DISTINCT l..a item #AS BODY,
l..n item AS HEAD, SUPPORT, CONFIDENCE

FROM Purchase
GROUP BY customer
CLUSTER BY date

HAVING BODY.date < HEAD.date
EXTRACTING RULES WITH SUPPORT: 0.01,

CONFIDENCE: 0.2

The HAVING clause following the CLUSTER BY clause
specifies which couples of clusters must be kept; for the

particular case, it produces the table of Figure 6, from
which the rules of Figure 7 are produced. Note that
these association rules are a subset of the association
rules produced in the table ClusteredByDate.

If clusters are not specified, each group contains only
the trivial cluster. Thus, for each group, the trivial clu-

ster is coupled with itself, and rules are extracted from
within this single couple. This shows that the semantics
of rule extraction without clustering is a particular case
of the semantics with clustering.

2.3 Association Rules with Mining Condition

Let us further refine the example discussed in the pre-
vious Section. For example, we are interested in rules
such that the body contains only items whose price is

greater than or equal to $100, and the head contains only

items whose price is less than $100. It is not possible to
express this requirement‘by means of the other clauses

that the operator provides. In fact, the WHERE predicate

associated to the FROM clause changes the structure of the
source table, modifying also the definition of support and
confidence; thus, selection predicates are not appropriate

for expressing conditions upon rules. The HAVING pre-
dicate of the GROUP BY clause discards groups, and this

is not the case. The CLUSTER BY clause cannot be used,
because the requirement does not specify that items in

the body and in the head must have the same price;
consequently, also the associated HAVING clause is use-
less. Thus, it is necessary to introduce another selection
predicate, called mining condition, that must be applied
when rules are actually mined. In fact, for each couple
of clusters, a rule is extracted. if there is a cross pro-

duct of tuples of the left and right cluster that projected

on the body and head attributes gives the rule; the new

predicate selects tuples from each cross-product, thereby

reducing their cardinality and the extracted rules.

In our operator, the mining condition is specified by
means of an optional WHERE clause placed between the
SELECT and the FROM clauses. As inside the HAVING pre-
dicate associated to the CLUSTER BY clause, we can use
correlation variables BODY and HEAD to denote tuples of
the left and right cluster. This predicate differs from the

HAVING clauses because it can refer to attributes which
are neither grouping nor clustering attributes, and not
even in the schema of body and head; this is the case
of price. Indeed, this is a tuple predicate, while HAVING

126

,-
group body cluster head cluster

customer date item tr. price q.tY date item tr. price GY

ski-pants 1 140 1

cust1 12/17/95 hiking-boots 1 180 1 12/18/95 jackets 3 300 1

colshirts 2 25 2
custz 12/18/95 brown-boots 2 150 1 12/19/95 colshirts 4 25 3

jackets 2 300 1 jackets 4 300 2

Figure 6: Table of Figure 5 after the selection of couples of clusters

BODY 1 HEAD IS.1C.I

(ski-pants\ 1 Jiacketsl 1 0.5 1 1

{h&i&boois} (&k&j 0.5 1

{ski-pants,hiking-boots} {jackets} 0.5 1
{col-shirts) {col-shirts) 0.5 1

icol-shirtsj

{col-shirts}

1 ‘{jackets}. 1 0.5) 1

1 {colshirts, 1 0.5 I 1

{brown-boots)

{brown-boots}

{brown-boots}

jackets}

{col-shirts) 0.5 1

{jackets} 0.5 1

{colshirts, 0.5 1
I jackets) I I I

{jackets}

{jackets}

{jackets}

{col-shiris} 0.5 0.5

{jackets} 0.5 0.5

{colshirts, 0.5 0.5

1 jackets} 1
{col-shirts.brown-boots) 1 {col-shirts) 1 0.5 1 1

I

{coi-shirts, ’ ‘{jackets}- 0.5 1

+&own-boots}

{ colshirts, {colshirts, 0.5 1

blown-boots}

{col-shirtsjackets}

{ col-shirts,

. jackets}

{col-shirts} 0.5 1 -

{jackets} 0.5 1

jackets} I I
{col-shirts, ({colshirts, 1 0.5 1 1

Figure 7: The output table OrderedSets.

clauses introduce group and cluster predicates. The pro-

blem can be specified as follows:

MINE RULE FilteredOrderedSets AS

SELECT DISTINCT item AS BODY,

i..n item AS HEAD, SUPPORT, CONFIDENCE

WHERE BODY.price >= 100 AND HEAD.price < 100

FROM Purchase

GROUP BY customer

CLUSTER BY date

HAVING BODY.datecHEAD.date

EXTRACTING RULES WITH SUPPORT: 0.01,

CONFIDENCE: 0.2

For understanding mining conditions, consider again
the table in Figure 6; we said that rules are actually mi-
ned from this intermediate table. It is not possible to
extract rules satisfying the requirement from the couple

of clusters in the group of customer customeq , because
the item in the right cluster costs more than $100, and it

is not allowed to appear in the head. Consider now the
couple of clusters in the group of customer customera.

In the left cluster, only items brown-boots and jackets
cost more than $100, and are allowed to appear in the

body; in the right hand side cluster, only item col-shirts

cost less than $100, and is allowed to appear in the
head. Thus, the resulting table FilteredOrderedSets

contains only three rules, as described in Figure 8.

BODY HEAD S. C.

{brown-boots} {colshirts} 0.5 1 -

{jackets} {colshirts} 0.5 0.5

{brown-boots,jackets} {colshirts} 0.5 1 _

Figure 8: The output table FilteredOrderedSets.

The mining condition can be also used without clu-

sters. For example, let us suppose now that we are in-

terested in rules such that the items in the body are pur-

chased previously than the items in the head. Observe
that we do not want that items in the body or in the

head be bought in the same date; hence, clusters are not
useful. The problem can be specified as follows:

MINE RULE OrderedItems AS

SELECT DISTINCT l..n item AS BODY,

i..i item AS HEAD, SUPPORT, CONFIDENCE

WHERE BODY.date < HEAD.date

FROM Purchase
GROUP BY customer

EXTRACTING RULES WITH SUPPORT: 0.1,

CONFIDENCE: 0.2

The resulting table OrderedItems is a superset of ta-

ble OrderedSets: since clusters are missing, new sets of

items for the body and the head are allowed which were
not allowed previously.

2.4 Association Rules with Generalization

Given a table from which association rules are extracted,

by means of a taxonomy on the tuples in the table, asso-

ciation rules can be specified by means of the properties

described in the taxonomy. The taxonomy can be repre-

sented as a hierarchy tree, where each node corresponds

to a class of items and its sons are its sub-classes; leaf

nodes correspond to items in the database. If there is
an ordered path from a node a to a node b, a is cal-

127

I item 1

L I

Figure 9: Hierarchy tree of items.

led ancestor of b, and b is called descendant of a. Using

as an example the case of purchases, let us suppose to

have a hierarchy of classes on the attribute item of the
Purchase table, as shown in Figure 9. The hierarchy is
described by table ItemHierarchy, shown in Figure 19.

Each tuple stables a pair connecting a node to one of
its ancestors; the attribute level indicates the number

of levels that separate the node from the ancestor in the
hierarchy. Observe that each node is considered ancestor

of itself, with the corresponding level set to 0.

2.4.1 Hierarchies in the Mining Condition

Hierarchies can be used in the mining condition to re-

strict the association rules that can be extracted from
the source table, in such a way that the rules refer to

specific portions of the hierarchy.

For example, consider the Purchase table. Suppose
that you want to extract rules that associates items

which are boots with items which are pants. This is simi-

lar to the examples discussed in Section 2.3, with the ad-

ditional problem that the information about the hierar-

chy is not contained in the source table. The idea is that

the mining condition queries the table ItemHierarchy
to select only items for the body having boots as ance-

stor, and items for the head having pants as ancestor;

these queries can be specified by means of the standard

SQL IN predicate, as we show below.

MINE RULE BootsPantsRules AS
SELECT DISTINCT item AS BODY,item AS HEAD,

SUPPORT, CONFIDENCE

WHERE HEAD.item IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘pants’)

AND BODY.item IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘boots’)
FROM Purchase
GROUP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.2,

CONFIDENCE: 0.5

For the data in the Purchase table of Figure 1,
only the rule {hikingboots} 3 {ski-pants}, having
support = 0.25 and confidence = 1, is extracted.

2.4.2 Hierarchies in the Source Table

Association rules can be generalized, in order to obtain

rules that associate classes. A generalized rule can be

node ancestor 1 level

Figure 10: ItemHierarchy table containing a descrip-
tion of the hierarchy defined on item.

obtained by a rule that associates leaves of the hierarchy,

by replacing each leaf with one of its ancestors. For
example, the simple association rule:
{hiking-boots} 3 {ski-pants} can be generalized as:
{hiking-boots} + {pants},

{hiking-boots} + {clothes},

{boots} =+ {ski-pants}, {shoes} + {ski-pants},

{boots} + {pants}, {boots} + {clothes},

{shoes} + {pants} and {shoes} + {clothes}

The generalized rules are characterized by values of
support which are greaterthan the values of the specia-

lized rules. For this fact, it is not possible to obtain all
the generalized rules contained in the source table from

the specialized rules, for the fact that generalized rules

with support and confidence greater than the minimum
thresholds can derive from specialized rules that are not

extracted since their support is too low.

To extract generalized association rules, we need to

add information in the hierarchy table to the source ta-

ble, by joining this two tables in the FROM clause of the

MINE RULE operator. For example, the following specifi-
cation extracts generalized association rules from within

the Purchase table using the ItemHierarchy table.

MINE RULE GeneralizedRules AS

SELECT DISTINCT ancestor AS BODY,
i..n ancestor AS HEAD, SUPPORT, CONFIDENCE

FRon (SELECT *

FROM Purchase, ItemHierarchy

WHERE node=item)
GROUP BY transaction

EXTRACTING RULES WITH SUPPORT: 0.‘3,

CONFIDENCE : 0.5

The first thing that can be noticed, is the SELECT

clause inside the FROM clause: it computes the join of
the two tables, and the resulting table is the source table

from which rules are extracted, shown in Figure 11.

The second major point to note is that rules contain
the attribute ancestor in the body and in the head in-
stead of the attribute item; this way the leaves of the
hierarchy are not loosed, because in the ItemHierarchy
table each node is ancestor of itself with level 0. A por-
tion of the resulting table is shown in Figure 12.

128

tr. 1 customer 1 date 1 itim 1 price 1 q.ty 1 ord-num ancestor

I I I I I I I I

Figure 11: Source table for extracting generalized association rules.

[BODY 1 HEAD 1 s. 1 c.]

Figure 12: Table GeneralizedRules containing genera-

lized association rules.

2.4.3 Generalized Use of Hierarchies

The hierarchy can be used in the mining condition and

in the source table at the same time; the effect is that the
problem of finding generalized association rules can be

refined, obtaining a smaller number of rules. For exam-
ple, suppose we are interested in extracting generalized

association rules that have sub-classes of boots in the

body and sub-classes of pants in the head. This problem
requires that the hierarchy is used at first in source table

to produce generalized association rules, and second in
the mining condition to reduce the number of extracted
rules. Its specification by means of the MINE RULE is:

MINE RULE GeneralizedBootsPantsRules AS

SELECT DISTINCT ancestor AS BODY,
l..n ancestor AS HEAD, SUPPORT, CONFIDENCE

WHERE HEAD.&estor ,IN (SELECT node
FROM ItemHierarchy WHERE ancestor =‘pants’)
AND BODY’.ancestor IN (SELECT node

FROM ItemHierarchy WHERE ancestor =‘boots’)

FROM (SELECT * FROM Purchase, ItemHierarchy
WHERE node=item)

GRObP BY transaction
EXTRACTING RULES WITH SUPPORT: 0.3,

CONFIDENCE: 0.5

2.5 Final Example

We show a final example in which we specify an uncon-
ventional problem that can be solved by extracting as-
sociation rules. Let us suppose we are interested in rules
that associate a customer with a set of customers, such
that customers in the head buys the same product pre-

viously bought by the customer in the body. We call this
problem the word of mouth effect. By means of the MINE
RULE operator, we can write the following specification.

MINE RULE WordOfMouth AS
SELECT DISTINCT I..1 customer AS BODY,

l..n customer AS HEAD, SUPPORT, CONFIDENCE
WHERE BODY.date <= HEAD.date

FROM Purchase
GROUP BY item

EXTRACTING RULES WITH SUPPORT: 0.01,

CONFIDENCE: 0.05

At first, the Purchase table is grouped by item, be-
cause we want to extract rules that describe a repea-
ted behaviour w.r.t purchased items. Second, the table

‘is clustered by date, and the HAVING predicate speci-

fies that rules must be extracted from couples of clu-
sters temporally ordered. Finally, rules having one sin-
gle customer in the body and multiple customers in
the head are extracted. A hypothetical rule might be:

{Jennifer} + {Janet, Barbara}.

Obserye that the minimum thresholds for support and
confidence are very low; this is due to the fact that the

word of mouth effect is not expected to be very evident
in the global population.

3 Semantics of the Operator

The aim of this section is to provide a formal semantics
for the MINE RULE operator. The semantics is procedu-
rally described by means of an extended relational alge-
bra: this technique is able to describe how to transform
the source table in order to discover association rules.

3.1 New Relational Operators

In the following sections, we use relational tables with
complex attributes, i:e. attributes which are themselves

relations. An example of nested relation is the table

shown in Figure 2, whose schema is

(transaction,Group:table(customer,item,date,
price,quantity)).

In order to operate on extended relations, we use the

traditional relational algebra (described in [18]) exten-
ded with special operators. The relational algebra pro-
vides operators like selection, projection, union, inter-
section, difference, Cartesian product, join and natural
join; their semantics is adapted to extended relations, as
e.g. in [9]. Hereafter, we introduce the new operators.

Group by: I’(grou&ng attrs; new attr) T partitions

the relation by distinct values of the grouping attributes.

129

The schema of the result, contains the grouping attribu-

tes and a new set valued attribute (called new attribute)

whose schema contains all other attributes of T. Values
in the new attribute are structured as one subtable for

each distinct’ value of the grouping attributes.
Unnest: v(attribute-name) T, is the opposite of the
group by operator.

Extend: &(attribute name; expression) T, extends the
schema of the operand with a new attribute called at-
tribute name; for each tuple, the value to be assigned
to the new attribute is abtained evaluating the generic
algebraic expression.
Substitute: C(attribute name; expression) T, substi-

tutes the value of the attribute indicated by attribute
name with the result of the algebraic expression evalua-
ted for each tuple.

Rename: p(old attt names; new attr names) T, chan-
ges the names of the attributes listed as old attribute
names into the names listed a8 new attribute names.
Powerset: P(powerset name) T produces a relation
whose schema is obtained by introducing a single attri-

bute, named powerset name, that is in turn a relation
with the same schema of the original relation T. Tu-

pies of the results are relations which correspond to the

power-set of T, hence each felation corresponds to a non-
empty qubset of the T.

As an example, consider table Purchase of Fi-
gure 1; Figure 2 shows the table after it is grouped by
transaction. This opetation can be algebraically de-

scribed as Grouped = I’(transadion; Group) Purchase.

By unnesting attribute Group with the expression
q(Group) Grouped, table Purchase is obtained again.

3.2 Algebraic Semantics of the MINE RULE
Operator

In this section, the semantics of the MIME RULE operator

is formally defined by means of the algebraic operators
introduced in Section 3.1. The idea is that the source
relation which rules have to be extracted from passes

through several transformations; the final result of this
process is the relation containing a rule for each tuple,
with associated attributes for support and confidence.

In order to simplify the description of the semantics

and improve its clarity, we divide the transformation pro-
cess in distinct steps. Each step is defined as a function
that, is given a name and a list of input relations, and
produces either a derived relation or a number; an al-

gebraic equation assigns the result of a function to a

variable, that can be either a relation or a numeric va-

riable. The collection of equations necessary to describe
the procedural semantics of the operator is the following
algebraic system.

AllGroups = CountAllGroups(Table)
Clustered I MakeGlusterPairs(Table)
Bodies I EztractBodies(Clusteted, AllGroups)
Rules s EztractRules(Clustered, Bodies, AllGroups)

130

The meaning of the equations in the system
can be summarized as follows: at first, function

CountAllGroups computes the number of groups (w.r.t
the attribute list in the GROUP BY clause) in the source

relation; the second equation transforms the source rela-
tion into a new one containing couples of clusters (defi-
ned by the CLUSTER BY clause). At this point, the third
equation extracts all possible rule bodies, that are used
to evaluate the confidence of each extracted rule; finally,
the fourth equation extracts all rules that have sufficient
support ahd confidence.

In the following, tie use of the example in Section 2.2
producing table OrderedSets as running example.

Counting Groups: the first equation in the system
derives the number of groups AllGroups present in the
source relation: this number is necessary to evaluate the
support of rules. Function CountAllGroups projects the

source table on the grouping attributes (the list of grou-
ping attributes is called GBAttrList and it contains the
attributes appearing in the GROUP BY clause of the MIlE

RULE operator); then, it counts the tuples remained after
the projection.

CountAllGroups(Table) 3
E COUNT(r(GBAttrList) Table)

Making Couples of Clusters: the second equa-
tion of the system transforms the source relation into a

new one such that each tuple corresponds to a couple
of clusters. Recall that if the CLUSTER BY clause is not
specified, for each group the trivial cluster is coupled to

itself; otherwise, the list of coupling attributes appearing
in that clause (in the following this list is indicated as

ClAttrList) is used to obtain clusters and couple them.

MakeClusterPairs(Table) I
E x(GBAttrLi.4, BClAttrList, HClAttrList,

BGroup, HGroup) (6)
&(HGroup;u(forzach a E ClAttrList :

HEAD.a = GR0UP.a) Group) (5)
E(BGroup; g(foreach a E ClAttrList :

B0DY.a = GR0UP.a) Group)

q(ClusterPairs) It;

&(ClasterPairs; MakePairs(Group))
I’(GBAttrList; Group) Table I:;

Function MakeClusterPairs at first, groups the
source relation by the grouping attributes, obtaining a
new intermediate relation where each tuple has the grou-

ping attributes and a complex attribute called Group:
this is a relation that contains all the tuples in the

source relation belonging to that group; its schema is
obtained from the schema of the source relation remo-

ving the grouping attributes. In the running example,
only customer is specified as grouping attribute; then,
Line (1) obtains a relation with the following schema:

(customer,Group:table(transaction,item,date,
price,quantity)).

Then at line (2)) by means of sub-function

MakePairs, each tuple is further extended with a com-
plex attribute, called ClusterPairs: this is the set of

couples of clusters‘contained in the group corresponding

to that tuple. Let us describe the sub-function.

MakePaira(Grozlp) s

z (p(foreach a E ClAttrLiat; B0DY.a)
r(CXAwrLiat) GTOUP)

w[ChaterCondition]

(p(foreach a E ClAttrLiat; HEAD.a)
zr(ClAttrLiat) GTOUP)

Sub-function MakePairs receives the table GTOU~ as

input parameter, i.e. the tuples contained in a group
without the grouping attributes,. The sub-function is di-
vided in two parts. The first part projects table GTOUP

on the clustering attributes, in order to obtain the set of

clusters contained in that group; since these are clusters

from which rule bodies might be extracted, each cluste-
ring attribute a E ClAttrList is renamed as B0DY.a.

The second part of the function obtains clusters for rule
heads, naming each clustering attribute a E ClAttrList

as HEAD.a. Finally, the two intermediate relations are
joined to form all couples of clusters satisfying the cou-

pling condition Clustercondition possibly coming from
the HAVIBG clause associated to the CLUSTER BY clause.
For instance, in the running example the clustering attri-
bute is date; thus, the schema of the relation produced
from this function is: (BODY. date,HEAD.date).

Coming back to the description

of function MakeClusteTPaiTs, at Line (3) the unnest

operator unnests the attribute ClusterPairs: this ope-

ration puts cluster pairs to the topmost level, obtaining

a tuple for each group and cluster pair. After that, at Li-
nes (4) and (5) t wo complex attributes, called BG~oup

and HGTou~, are added to the schema: they contain

the tuples in the group that belong to the cluster for
the body and to the cluster for the head, respectively.

The final schema of relation Clustered for the running
example is the following:

customer,BODY.date,HEAD.date,

BGroup:table(transaction,item,date,
price,quantity),

HGroup:table(transaction;item,date,

price,quantity) 1).

Extracting Bodies: relation Bodies contains all

possible bodies contained in the couples of clusters of

relation Clustered. We need to know the set of bodies
in order to evaluate the confidence of rules.

EztractBodies(Clustered, AIlGroups) G
s u(COUNT(BGROUPS)/AllGroupa > mSUP) (7)

I’(BODY; BGROUPS) (6)
r(GBAttrList, BODY) (5)
E(BODY; r(BSchema) Subset)
r](Subsets) I;;
E(Subsets; P(Subset) BGroup) (2)
r(GBAtttList, BGtoup) Clustered (1)

Function ExtractBodies transforms

relation Clustered, where each tuple corresponds to a
couple of clusters. Line (2) extends the. schema with
a complex attribute, called Subsets, containing all the

subsets of attribute BGTOUP, i.e. the tuples contained in
the cluster which bodies are extracted from; this work is
done by the power set operator P(Subset) . An example
of the schema at this point is the following:

(customer,BGroup:table(transaction,item,date,
price, quantity) ,

Subsets:table(Subset:table(transaction,item,
date,price,quantity))).

This new complex attribute is then unnested (Line
(3)), in order to put its internal attribute Subset to the

topmost level. Then, attribute Subset is projected on
the attributes appearing in the body schema BSchema
to obtain bodies. Finally, after at Line (5) the rela-

tion is projected on the grouping attributes and the at-

tribute BODY, at Line (6) the relation is grouped by
BODY, in order to have a body for each tuple, and

the set of groups containing the body in the new com-
plex attribute GROUPS. Bodies with insufficient sup-
port are discarded at Line (7). The schema of rela-

tion Bodies for the running example is the following:
(BdDY:table(item), BGROUPS:table(customer)).

Extracting Rules: the last equation of the system
extracts rules by means of function ExtractRules. This
function uses sub-functions in order to simplify the de-
scription of the process.

ExtTactRules(Cluatered, Bodies, AlK’r’oupa) E

E AddConfidence(Bodiea,
AddSupport(AllGroups,

CollectRulea(DiscardTautologiea(

MakeRules(MakeSubsets(Clustered)))))

MakeSubseta(ClusteTed, Bodies) E

3 q(Pairs0 f Subsets)

r(GBAttrLiat, BClAttrLiat,

HClAttrList, Pairsof Subsets)

&(Pairs0 fsubsets;

(3)

(2)

MakePairaOfSubsets(BGroup, HGTOUP)) (1)

Clustered

At first, function MakeSubsets extracts from rela-
tion Clustered the Subsets of tuples contained in clu-

sters. For each tuple, corresponding to a couple of clu-

sters; at Line (1) it adds a new complex attribute, called
Pairs0 f Subsets, that contains ordered pairs of subsets
of tuples contained in the couple of clusters. Then, at
Line (3) this new attribute is unnested, in order to have

one pair of subsets for each tuple. The resulting schema

for the running example is:

(customer,BODY.date,HEAD.date,
BODY:table(transaction,item,date,

p&ce,quantity),

HEAD:table(tra.nsaction,item,date,

price,quantity) 1.

Observe that this schema is similar to the schema of

relation Clustered, except for the fact that attributes
BGroup and HGroup become BODY and HEAD.

Couples of subsets are computed by sub-function
MakePairsOfSubsets: it extracts subsets for body and

131

head by means of the power set operator, and produces
the Cartesian product of these subsets.

MakePairsOfSubsets(BGroup, HGTou~) E

5 P(BODY) BGTOU~ x P(HEAD) HGTOU~

After function MakeSubsets terminates, function
Extract Rules calls sub-function Make Rules that ac-
tually extracts rules from the pairs of subsets.

MakeRules(Subsets) z

3 C(HEAD; *(HSchema) HEAD) (4)
C(BODY; *(BSchema) BODY)

a(BadBH = 0) ii;

&(BadBH; BODY w[yMiningCond] HEAD) (1)

Subsets

This function extracts rules only from couples of sub-

sets that satisfy the mining condition. For each tuple,
corresponding to a couple of subsets, at Line (1) the
subset BODY is joined with the subset HEAD in order
to check for the presence of tuples that do not satisfy

the mining condition. At Line (2), if the resulting attri-
bute BadBH is empty, the tuple is selected, because the
corresponding couple of subsets satisfies the mining con-

dition. Finally, the actual body and head are computed

(Lines (3) and (4)), by means of a projection on body
and head schema, respectively. Observe that after Li-

nes (3) and (4), attribute BODY has the body schema

(in our running example BODY: table (item)), and at-
tribute HEAD has the head schema (in the example

HEAD:table(item)).

DiscardTautologies(ClusteTswithRuies) 3

3 ir(GBAttrList, BODY, HEAD)

(a(Taut = 0)
&(Taut; *(CSchema) BODY

n *(CSchema) HEAD)

a(CSchema = HSchemaA

(5)
(4)

(3)

foreach a E ClAttrList : B0DY.a = HEAD.a) (2)

ClustersWithRulds) U

(a(CSchema # HSchemaV

thereis a E ClAttrList : B0DY.a # HEAD.a) (1)
ClustersWithRules)

Tautological rules are discarded by sub-function
DiscardTautologies. Tautologies are possible when a
rule comes from a couple of the same cluster and the
head schema is contained in the body schema. If we in-

dicate the intersection of the two schemas as CSchema

(CSchema = BSchema n HSchema), this fact can be

indicated with CSchema = HSchema. After this pre-
mise, it is obvious that the function is divided in two
groups: Line (1) takes rules which are certainly not tau-
tological (i.e. the head schema not contained in the body

schema or the rule does not come from a couple of the
same cluster); Line (2) to (4) take possibly tautological
rules and discard rules containing tautologies (tautologi-
cal rules have non-empty intersection of body and head).

CollectRules(GroupsWithRules) 3

E r(BQDY, HEAD; GROUPS) GToupsWithRules

After rules are extracted, sub-function CollectRules

associates to each rule the set of grocp identifiers that

132

contain the rule. This is done grouping the input relation
by attributes BODY and HEAD. The resulting schema

for the example is:

(BODY:table(item), HEAD:table(item),
GROUPS:table(customer))

Finally, it is necessary to add support and confidence
to rules and discard rules with insufficient support and
confidence.

AddSupport(RulesWithoutSuppoTt, AIIGTou~s) E

3 *(BODY, HEAD,SUPPORT)

a((SUPPORT 2 minSUPPORT)

E(SUPPORT; COUNT(GROUPS)IA~~GTOU~S)

RulesWr?houtSupport

AddConfidence(RulesWithSuppo72, Bodies) E

= *(BODY, HEAD,SUPPORT, CONFIDENCE)
a(CONFIDENCE 2 minCONF)
&(CONFIDENCE;

COUNT(GROUPS)/COUNT(BGROUPS))
(RulesWithSupport w Bodies)

For each rule, function AddSupport simply adds the
new attribute SUPPORT counting the groups contai-

ning the rule and dividing it by the number of groups

in the source relation (AllGroups). Conversely, function
AddConfidence is a bit more complicated, because for

each rule it needs know the groups containing only the

body; observe that it is possible to do that by joining
relation RulesW‘ithSupport with relation Bodies, com-
puted by the third line of the algebraic system.

4 Conclusions .

This paper has proposed a unifying model describing the
problem of discovering association rules, one of the most
investigated topics in data mining. The model is based
on a new operator, named MINE RULE, designed as an

extension of the SQL language. The operator is intro-
duced by means of examples: the classical problems are

reformulated using the new operator and provide exam-
ples of its applications; then novel examples are propo-
sed showing unconventional cases of association rules.
Finally the procedural semantics of the operator is given
by means of an extended relational algebra.

Acknowledgement. The idea of designing an operator

for defining data mining rules originates from stimulating
discussions with, and a tutorial given at EDBT Summer

School by, Rakesh Agrawal.

References

[l] R. Agrawal, C. Faloutsos, and A. Swami. Efficient

similarity search in sequence databases. In 4th In-

ternational Conference On Foundations of Data Or-

ganization and Algorithms, Chicago, October 1993

[2] R. Agrawal, S. Ghosh, T. ‘Imielinski, B. Iyer, and
A. Swami. An interval classifier for database mining
applications. In VLDB-92, pages 560-573, Vancou-
ver, August 1992.

PI

141

PI

bl

PI

PI

PI

[lOI

WI

1121

WI

[I41

[I51

R. Agrawal, T. Imielinski, and A. Swami. Mining
association rules between sets of items in large data-

bases. In Proc. ACM SIGMOD-93, pages 207-216,

Washington, D.C., May 1993. British Columbia.

R. Agrawal, K. I. Lin, H. S. Sawhney, and K. Shim.
Fast similarity serach in the presence of noise, sca-

ling, and transaltion in time-series databases. In

VLDB-95, Zurich, Switzerland, September 1995.

R. Agrawal, H. Mannila, R. Srikant, H. Toivonen,
and A. Inkeri Verkamo. Fast discovery of associa-

tion rules. In Padhraic Smyth Usama M. Fayyad,
G. Piatetsky-Shapiro and Ramasamy Uthurusamy
(Eds), editors, Knowledge Discovery in Databases,

volume 2. A.AAI/MIT Press, Santiago, Chile, Sep-

tember 1995.

R. Agrawal, G. Psaila, E. L. Wimmers, and M. Zait.
Querying shapes of histories. In VLDB-95, Zurich,
Switzerland, September 1995.

R. Agrawal and R. Srikant. Fast algorithms for mi-

ning association rules in large databases. In VLDB:

94, Santiago, Chile, September 1994.

R. Agrawal and R. Srikant. Mining sequential pat-
terns. In International Conference on Data Engi-

neering, Taipei, Taiwan, March 1995.

P. Atzeni and V. De Antonellis. Relational Database

Theory: A Comprehensive Introduction. Bejamin

Cummings, 1993.

C. Faloutsos, M. Ranganathan, and Y. Manolopou-
10s. Fast subsequence matching in time-series da-

tabases. In Proc. of the ACM SIGMOD-94, May

1994.

J. Gray, A. Bosworth, A. Layman, and H. Pira-
nesh. Data cube: A relational aggregation operator

generalizing group-by, cross-tab, and sub-totals. In

ICDE96 12th International Conference on Data En-
gineering, pages 560-573, New Orleans, Louisiana,
USA, February 1996.

J. Han and Fu. Discovery of multiple-level asso-

ciation rules from large databases. In VLDB-95,

Zurich, Switzerland, September 1995.

M. A. W. Houtsma and A. Swami. Set-oriented mi-
ning for association rules in relational databases. In

11th International Conference on Data Engineering,

Taipei, Taiwan, March 6-10 1995.

M. A. W. Houtsma and’ A. Swami. Set-oriented
mining in relational databases. Data and Knowledge

Engineering, To Appear 1996.

J.S.Park, M.-S.Shen, and P.S.Yu. An effective hash

based algorithm for mining association rules. In

WI

P71

P31

WI

A

Proc. of the ACM SIGMOD-95, San Jose, Califor-

nia, May 1995.

R. Srikant and R. Agrawal. Mining generalized as-

sociation rules. In VLDB-95, Zurich, Switzerland,
September 1995.

R. Srikant and R. Agrawal. Mining generalized as-
sociation rules. Technical Report RJ 9963, IBM Al-
maden Research Center, San Jose, California, June
1995.

J. D. Ullman. Priciples ofDatabase and Knowledge-

Base Systems, volume 1 of Principles of Computer

Science Series. Computer Science Press, Rockvill,
Maryland (USA), 1988.

S. M. Weiss and C. A. Kulikowski. Compu-

ter Systems that Learn: Classification and Predic-

tion Methods from Statistics, Neural Nets, Machine

Learning, and Expert Systems. Morgan-Kaufmann,
1991.

Syntax

This appendix presents the full syntax of the MINE RULE
statement. In the syntax, square brackets denote op-
tionality; productions <FromList> and <WhereClause>
denote the standard SQL clauses FROM and WHERE
which are not further expanded (the keywords BODY
and HEAD can be used as correlation variables in the
WHERE clause for the SELECT clause and in the HAVING
clause for the CLUSTER BY clauses); <TableName> and

<AttributeName> denote identifiers, <Number> denotes
a positive integer, <real> denotes real numbers.

<MineRuleOp> := MINE RULE <TableName> AS
SELECT DISTINCT <BodyDescr>, <HeadDescr>

[,SUPPORTj [,CONFIDENCE]
[WHERE <WhereClause>]
FROM <FromList> [WHERE <WhereClause>]
GROUP BY <Attribute> <AttributeList>

[HAVING <HavingClause>l
[CLUSTER BY <Attribute> <AttributeList>

[HAVING <HavingClause>] 1
EXTRACTING RULES WITH SUPPORT:<real>,

CONFIDENCE:<real>

<BodyDescr>:=
[<CardSpec>] <AttrName> <AttrList> AS BODY
/* default cardinality for Body: i..n */

<HeadDescr>:=
[<CardSpec>] <AttrName> <AttrList> AS HEAD
/* default cardinality for Head: I..1 */

<CardSpec>:=<Number> . . (<Number> I n>
<AttributeList>:=(,<AttributeName>)

133

