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Abstract 

Data mining evolved as a collection of applica- 
tive problems and efficient solution algorithms 
relative to rather peculiar problems, all focused 

on the discovery of relevant information hidden 
in databases of huge dimensions. In particular, 

one of the most investigated topics is the disco- 
very of association rules. 

This work proposes a unifying model that ena- 
bles a uniform description of the problem of di- 
scovering association rules. The model provides 
SQL-like operator, named MINE RULE, which 

is capable of expressing all the problems presen- 
ted so far in the literature concerning the mining 
of association rules. We demonstrate the expres- 

sive power of the new operator by means of seve- 
ral examples, some of which are classical, while 
some others are fully original and correspond to 
novel and unusual applications. We also pre- 

sent the operational semantics of the operator 
by means of an extended relational algebra. 

1 Introduction 

Dais Mining is a novel research area that develops te- 
chniques for knowledge discovery in massive amounts of 
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data. In the last years, an increasing number of resear- 
chers has concentrated on the solution of a variety of 
data mining problems, ranging from classification of data 
into disjoint groups [2, 191, to discovery of associations 

[3, 16, 12, 7, 5, 151, sequential patterns [8] and similari- 
ties in ordered data [l, 10, 4, 61. The common approach 

given to research in the field is to concentrate on the 
development of specialized, efficient techniques for sol- 
ving specific data mining problems. This emphasis on 
algorithmic solutions is well motivated by the concrete 

problem of managing inside data collections, however 
has some drawbacks; in particular, we believe that not 
enough emphasis has been placed on the equally impor- 

tant problem of specifying data mining problems from a 
purely logical and linguistic perspective. 

We have observed that many data mining problems 
consist in finding association rules among data grouped 
by some common characteristics. As the problem was 
introduced in the application domain of the basket data 

analysis, purchase data were collected grouped by the 

purchase transaction, and associations between two sets 
of bought products (referred as items) were found. But 

in general, data may be grouped equally well by some 
different attribute. For example in the sequential pattern 

problem, data are grouped by customer; then each group 
is partitioned by date. In both cases, the data mining 

process consists in discovering associations between two 
sets of data found in the same group. 

An association rule has the form X 3 y, where X 

and y are two sets of items. In this paper we refer to 

the left hand side of the rule as the body and-to the 
right hand side as the head. The aim of rules is to pro- 
vide an observation a posteriori on the most common 
links between data. The frequency of such an observa- 
tion in the data gives the measure of its relevance. As 
the number of produced associations might be huge, and 
not all the discovered associations are meaningful, two 
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probability measures, called support and confidence, are 
introduced to discard the less frequent associations in 
the database. The support is the joint probability to 

find in the same group X and Y; the confidence is the 

conditional probability to find in a group y having found 
X. Two thresholds, respectively for support and confi- 
dence, are given by the user in order to discard those 

association rules judged less meaningful, as they are less 
frequent in the amassed data. 

We have pointed out the similarities among these pro- 
blems and defined a unique operator, named MINE RULE, 
that captures the majority of them. This new operator 

is designed as an extension of the SQL language. The 
operator has similar objectives as the DATA CUBE opera- 
tor which was introduced in [ll]; although DATA CUBE 
and MINE RULE refer to distinct problems they respond 

to the same need of giving a unified framework and pro- 

posing a standard formulation for problems that have be- 

come very popular, concerning multi-dimensional data- 

bases (for DATA CUBE) and data mining (for MINE RULE), 
before being given a standard, unitary formulation. 

The suitability of the MINE RULE operator requires to 
demonstrate two features. First, the operator must cap- 
ture most of the data mining problems which were so far 
informally formulated as well as many other problems, 
whose formulation is made possible by the operator it- 

self. Second, the operator must be associated to efficient 

evaluation techniques, that ensure the possibility of sol- 

ving the specific data mining problems. 
This paper is concerned with the first issue, namely 

the expressive power of the MINE RULE operator, which 
is demonstrated by means of a very large number of 
examples. In order to guarantee that these problems are 

unambiguously formulated, we give an inefficient opera 

tional semantics, based on a relational algebra. 

The paper is organized as follows: Section 2 introdu- 
ces the operator by means of examples that span from 
the classical association rules, to rules for sequential pat- 

terns and for taxonomic databases; Section 3 defines the 

semantics of the MINE RULE operator; finally Section 4 
draws the conclusions, and the Appendix A reports the 

full syntax of the operator. 

1.1 Related Work 

The problem of discovering of association rules was in- 
troduced in [3], in which associations between a set of 
items in the body of the rule and a single item in the 
head are considered. Association rules are slightly ge- 
neralized in [7], in order to enable more than one item 

in the head. Both these works inspect data in a flat 

file. In [13, 141 data is contained in a relational data- 
base and rules are discovered by means of the creation 
of temporary tables and the manipulation of them .using 
SQL expressions. In [8] the problem of discovering of se- 
quential patterns, is introduced: a sequential pattern is 
an association between sets of items, in which some tem- 
poral properties between items in each set and between 

sets are satisfied. In particular, items in a set have the 
same temporal reference, and an order between sets is 
established by means of the temporal reference. 

Association rules were extended to taxonomic databa- 

ses in [16]. A taxonomic database describes a hierarchy 
of the items stored in the database. In presence of such a 
hierarchy, rules associate not only items, but also classes 
of items. An algorithm that discovers association rules 
in taxonomic databases is provided by [16]. Other algo- 
rithms, in [12], differ form the previous one for the fact 
that they discover associations between classes inside a 
level of the hierarchy, i.e. a rule associates only classes 

of the hierarchy that have the same distance from the 
root of the hierarchy.. 

2 Language by Examples 

In this section, we introduce our mining operator MINE 

RULE, showing its application to mining problems based 

on a practical case. The practical cde is the classical 

database collecting purchase data of a big-store. When 
a customer buys a set of products (also called items), 

the whole purchase is referred to as a transaction having 
a unique identifier, a date and a customer code. Each 
transaction contains the set of bought items with the 
purchased quantity and the price. The simplest way to 
organize this data is the table Purchase, depicted in 
Figure 1. The transaction column (tr.) contains the 
identifier of the customer transaction; the other columns 

correspond to the customer identifier, the type of the 

purchased item, the date of the purchase, the unitary 

price and the purchased quantity (q. ty). 

tr. 1 customer item ] date ( price 1 q.ty 

Figure 1: The Purchase table for a big-store. 

2.1 Simple Association Rules 

In literature, association rules were introduced in the 

context of the analysis of purchase data, typically orga- 
nized in a-way similar to that of the Purchase table. 

A rule describes fegularities of purchased items in cu- 
stomer transactions. For example, the rule 

{brown_boots, jackets} + col-shirts 

states that ij brown-boots and jackets are bought to- 

gether in a transaction, also colshirts is bought in 

the same transaction. In this simple kind of association 

rules, the body is a set of items and the head is a sin- 
gle item. Note that the rule {brownboots, jackets} 3 

brown-boots is not interesting because it is a tautology: 
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in fact if the head is implicated by the body the rule 
does not provide new information. This problem has 

the following formulation: 

MINE RULE SimpleAssociations AS 

SELECT DISTINCT l..n item AS BODY, 

I..1 item AS HEAD, 

SUPPORT, CONFIDENCE 
FROM Purchase 

GROUP BY transaction 
EXTRACTING RULES WITH SUPPORT: 0.1, 

CONFIDENCE : 0.2 

The MINE RULE operator produces a new table, called 
SimpleAssociations, where each tuple corresponds to a 

discovered rule. The SELECT clause defines the structure 

of rules: the body is defined as a set of items whose 
cardinality is any positive integer as specified by .t . . n; 

the head is defined as a set containing one single item, as 

specified by 1. .I i . The DISTINCT keyword states that 
no replications are allowed inside body or head. This 

keyword is mandatory because rules are meant to point 
out the presence of certain kind of items, independently 

of the number of their occurrences. Furthermore, the 

SELECT clause indicates that the resulting table has four 
attributes: BODY, HEAD, SUPPORT and CONFIDENCE. 

The MINE RULE operator inspects data in the 
Purchase table grouped by transaction, as specified 

by the GROUP BY clause. Figure 2 shows the Purchase 
table after the grouping. Rules are extracted from within 

groups; their support is the number of groups satisfying 

the rules divided by the total number of groups; their 

confidence is the number of groups satisfying the rule 
divided by the number of groups satisfying the body. 

The clause EXTRACTING RULES WITH indicates that 

the operator produces only those rules whose support 
is greater than or equal to the minimum support and 
the confidence is greater than or equal to the minimum 
confidence. In this case, we have a minimum threshold 

for support of 0.1 and a for confidence of 0.2. 
Figure 3 shows the resulting SimpleAssociations ta- 

ble; observe that if we change the minimum support to 

0.3, we then loose almost all rules of Figure 3 except 

those having 0.50 as support. 

Variants of Simple Association Rules Several va- 
riants of the basic case of simple association rules are 
possible; in the following, we discuss them. 

If we are interested only in extracting rules from a 
portion of the source table instead of the whole table, a 

selection on the source table is necessary. .Similarly to 

the classical SQL FROM clause, in our language it is possi- 
ble to specify an optional WHERE clause associated to the 

FROM clause. This clause creates a temporary table by 
selecting tuples in the source table that satisfy the WHERE 

‘Note that the annotations 1 ..nandl..lareoptionalinthe 
syntax of Appendix A; this cardinalities are assumed by default 
when they omitted. 

Figure 2: The Purchase table grouped by transaction. 

Figure 3: The SimpleAssociations table containing as- 

sociation rules valid for data in Purchase table. 

clause; then, rules are extracted from this temporary ta- 
ble. For example, if we are interested only in purchases 

of items that cost no more than $150, we write: 

MINE RULE SimpleAssociations AS 

SELECT DISTINCT l..n item AS BODY, 

l..l item AS HEAD, SUPPORT, CONFIDENCE 
FROM Purchase WHERE price <= 150 
GROUP BY transaction 
EXTRACTING RULES WITH SUPPORT: 0.1, 

CONFIDENCE : 0.2 

If rules must be extracted only from within groups 
with a certain property, it is possible to use the classical 
SQL HAVING clause associated to the GROUP BY clause. 

Inside this clause, either aggregate functions (such as 
COUNT; HIN, MAX, AVG) or predicates on the grouping at- 
tributes can be used. For instance, if we like to extract 

rules from purchases of no more than six items, we write: 

MINE RULE SimpleAssociations AS 
SELECT DISTINCT l..n item AS BODY, 

I..1 item AS HEAD, SUPPORT, CONFIDENCE 
FROM Purchase 
GROUP BY transaction 

HAVING COUNT(*) <= 6 
EXTRACTING RULES WITH SUPPORT: 0.1, 

CONFIDENCE: 0.2 

In [li’] the case of simple association rules is exten- 
ded to generalized association rules, i.e. rules with an 

arbitrary number of elements in the head. Our operator 
treats also this case, by means of a different specifica- 
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tion for the cardinality of the head, that becomes 1. .n 

instead of I. . I. 

MINE RULE GenAssociations AS 

SELECT DISTINCT item AS BODY, 
i..n item AS HEAD, SUPPORT, CONFIDENCE 
FROM Purchase 

GROUP BY transact ion 
EXTRACTING RULES WITH SUPPORT: 0.1, 

CONFIDENCE: 0.2 

With the MINE RULE operator it is possible to group 
the source table by whichever attributes; this fact chan- 
ges the meaning of extracted rules. For example, if the 
Purchase table were grouped by customer instead of 

the usual transaction, rules would describe regulari- 

ties among customers, independently of the purchase 

transactions. Thus, we analyze the customer behaviour 

without paying attention to the transactions in which 
items are purchased. The problem is formalized as fol- 

lows: 

MINE RULE CustomerAssociations AS 
SELECT DISTINCT item AS BODY, 

i..n item AS HEAD, SUPPORT, CONFIDENCE 

FROM Purchase 
GROUP BY customer 

EXTRACTING RULES WITH SUPPORT: 0.1, 
CONFIDENCE: 0.2 

2.2 Association Rules with Clustering 

We said that rules are extracted from within groups: tu- 

ples belonging to a group are characterized by the same 

value of the grouping attributes. Thus, extracted rules 
are irrespective of other properties described by the re- 

maining attributes. We now extend this simple model 
by assuming that tuples in a group are partitioned into 
sub-groups by some non-grouping attributes; we refer to 
each sub-group as a cluster, and to the attributes that 
define clusters as clustering attributes. All tuples in a 

cluster have the same values of the clustering attributes. 
With clusters, we extract rules so that their body and 

head refer to clusters within the same group. Support 

and confidence are still computed on groups, since rules 
still describe regularities among groups. This way, the 
user can specify more sophisticated requirements which 
are not expressible by means of the simple grouping. 

cust 1 date ) item 1 tr. 1 price 1 GY 

I I ski-pants I 1 I 140 I 1 I 
J 

cust.1 X2/17/95 hiking-boots 1 180 1 
12/18/95 jackets 3 300 1 

colsllirts 2 25 2 
12/18/95 brown-boots 2 150 1 

cust9 iackets 2 300 1 
” 

, 

colshirts 4 1 25 1 3 

12/19/95 jackets 4 1 300 1 2 

Figure 4: The Purchase table grouped by customer and 
clustered by date. 

For instance, consider the Purchase table; we restrict 

the association rules of the last example of the previous 
Section, so that items purchased by some customer give 

rise association rules only if they are bought in the same 
day. This problem can be specified as follows: 

MINE RULE ClusteredByDate AS 

SELECT DISTINCT l..n item AS BODY, 
l..n item AS HEAD, SUPPORT, CONFIDENCE 

FROM Purchase 
GROUP BY customer 

CLUSTER BY date 
EXTRACTING RULES WITH SUPPORT: 0.01, 

CONFIDENCE: 0.2 

The rule extraction process proceeds in the following 

way. At first, the Purchase table is grouped by 

customer; second, after grouping, groups are clustered 

by date, obtaining the table of Figure 4. 

At this point, in each group, the cross product of clu- 
sters is created, obtaining the table of Figure 5; observe 

that clusters still maintain the tuples they contain. 

For each group, rules are now extracted only from 
within couples of clusters, the left cluster for the body 
and the right cluster for the head: the effect is that the 

body (or the head) of a rule contain items purchased 
in the same date. For instance, consider the second 
couple of clusters contained in the group of customer 
customeri; from this couple, it is possible to extract 
the rules {ski-pants} 3 {jackets}, {hiking-boots} j 
{jackets} and {ski-pants, hiking-boots} j {jackets}. 

Observe that the body of the last rule contains two items 

bought in the same date. 

Tautologies are possible when rules are extracted 

from a couple of the same cluster. For instance, 
consider the first couple of clusters contained in the 
group of customerl; from this couple, it is possible 
to extract the rules {ski-pants} 3 {ski-pants} and 
{hiking-boots} j {hiking-boots} which are tautolo- 
gies, since they do not provide new information be- 

cause body and head refer to the same date. In 
contrast, the rule {col-shirts, brown-boots, jackets) + 

{col-shirts, jackets}, extracted from the second cou- 

ple of clusters contained in the group of customer 
customerz, is not a tautology. In fact, it informs us 
that items in the head refer to a different date w.r.t the 

items in the body. 

The extraction process can be resumed as follows. 
The source table is grouped and clustered. Then or- 

dered couples of clusters coming from the same group 
are created. Given a couple of clusters, the first cluster 

is used to extract bodies, while the second one is used to 
extract heads. Finally, all extracted rules are collected; 
for each rule, its support and confidence are computed 
on groups (and not clusters) that contain the rule. Only 
rules with sufficient support and confidence are kept. 

Let us consider a rule produced as a variant of the 
previous example. We are now interested only in rules 
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I WOUP 1 
customer I 

cust1 

1 

cust2 

1 

body cluster head cluster 

date 1 item 1 tr. 1 price 1 9.ty date 1 item 1 tr. 1 price 1 9.ty 

Figure 5: Table of Figure 4 after the associations between clusters 

that describe temporally ordered purchases, i.e. the items 

in the body are purchased previously than the items in the 

head. This is similar to the problem of finding sequential 

patterns introduced in [S]. 

The temporal constraint is a condition on the clu- 

stering attributes; it can be specified in the MINE RULE 
operator by means of an optional HAVING clause associa- 

ted to the CLUSTER BY clause. This predicate is used to 

discard couples of clusters before forming rules. Inside 

this predicate, we can use correlation variables BODY and 

HEAD to denote the left and right cluster, as described by 
Figure 5. The refined problem is described as follows: 

MINE RULE OrderedSets AS 

SELECT DISTINCT l..a item #AS BODY, 
l..n item AS HEAD, SUPPORT, CONFIDENCE 

FROM Purchase 
GROUP BY customer 
CLUSTER BY date 

HAVING BODY.date < HEAD.date 
EXTRACTING RULES WITH SUPPORT: 0.01, 

CONFIDENCE: 0.2 

The HAVING clause following the CLUSTER BY clause 
specifies which couples of clusters must be kept; for the 

particular case, it produces the table of Figure 6, from 
which the rules of Figure 7 are produced. Note that 
these association rules are a subset of the association 
rules produced in the table ClusteredByDate. 

If clusters are not specified, each group contains only 
the trivial cluster. Thus, for each group, the trivial clu- 

ster is coupled with itself, and rules are extracted from 
within this single couple. This shows that the semantics 
of rule extraction without clustering is a particular case 
of the semantics with clustering. 

2.3 Association Rules with Mining Condition 

Let us further refine the example discussed in the pre- 
vious Section. For example, we are interested in rules 
such that the body contains only items whose price is 

greater than or equal to $100, and the head contains only 

items whose price is less than $100. It is not possible to 
express this requirement‘by means of the other clauses 

that the operator provides. In fact, the WHERE predicate 

associated to the FROM clause changes the structure of the 
source table, modifying also the definition of support and 
confidence; thus, selection predicates are not appropriate 

for expressing conditions upon rules. The HAVING pre- 
dicate of the GROUP BY clause discards groups, and this 

is not the case. The CLUSTER BY clause cannot be used, 
because the requirement does not specify that items in 

the body and in the head must have the same price; 
consequently, also the associated HAVING clause is use- 
less. Thus, it is necessary to introduce another selection 
predicate, called mining condition, that must be applied 
when rules are actually mined. In fact, for each couple 
of clusters, a rule is extracted. if there is a cross pro- 

duct of tuples of the left and right cluster that projected 

on the body and head attributes gives the rule; the new 

predicate selects tuples from each cross-product, thereby 

reducing their cardinality and the extracted rules. 

In our operator, the mining condition is specified by 
means of an optional WHERE clause placed between the 
SELECT and the FROM clauses. As inside the HAVING pre- 
dicate associated to the CLUSTER BY clause, we can use 
correlation variables BODY and HEAD to denote tuples of 
the left and right cluster. This predicate differs from the 

HAVING clauses because it can refer to attributes which 
are neither grouping nor clustering attributes, and not 
even in the schema of body and head; this is the case 
of price. Indeed, this is a tuple predicate, while HAVING 
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,- 
group body cluster head cluster 

customer date item tr. price q.tY date item tr. price GY 

ski-pants 1 140 1 

cust1 12/17/95 hiking-boots 1 180 1 12/18/95 jackets 3 300 1 

colshirts 2 25 2 
custz 12/18/95 brown-boots 2 150 1 12/19/95 colshirts 4 25 3 

jackets 2 300 1 jackets 4 300 2 

Figure 6: Table of Figure 5 after the selection of couples of clusters 

BODY 1 HEAD IS.1C.I 

(ski-pants\ 1 Jiacketsl 1 0.5 1 1 

{h&i&boois} (&k&j 0.5 1 

{ski-pants,hiking-boots} {jackets} 0.5 1 
{col-shirts) {col-shirts) 0.5 1 

icol-shirtsj 

{col-shirts} 

1 ‘{jackets}. 1 0.5 ) 1 

1 {colshirts, 1 0.5 I 1 

{brown-boots) 

{brown-boots} 

{brown-boots} 

jackets} 

{col-shirts) 0.5 1 

{jackets} 0.5 1 

{colshirts, 0.5 1 
I jackets) I I I 

{jackets} 

{jackets} 

{jackets} 

{col-shiris} 0.5 0.5 

{jackets} 0.5 0.5 

{colshirts, 0.5 0.5 

1 jackets} 1 
{col-shirts.brown-boots) 1 {col-shirts) 1 0.5 1 1 

I 

{coi-shirts, ’ ‘{jackets}- 0.5 1 

+&own-boots} 

{ colshirts, {colshirts, 0.5 1 

blown-boots} 

{col-shirtsjackets} 

{ col-shirts, 

. jackets} 

{col-shirts} 0.5 1 - 

{jackets} 0.5 1 

jackets} I I 
{col-shirts, ( {colshirts, 1 0.5 1 1 

Figure 7: The output table OrderedSets. 

clauses introduce group and cluster predicates. The pro- 

blem can be specified as follows: 

MINE RULE FilteredOrderedSets AS 

SELECT DISTINCT item AS BODY, 

i..n item AS HEAD, SUPPORT, CONFIDENCE 

WHERE BODY.price >= 100 AND HEAD.price < 100 

FROM Purchase 

GROUP BY customer 

CLUSTER BY date 

HAVING BODY.datecHEAD.date 

EXTRACTING RULES WITH SUPPORT: 0.01, 

CONFIDENCE: 0.2 

For understanding mining conditions, consider again 
the table in Figure 6; we said that rules are actually mi- 
ned from this intermediate table. It is not possible to 
extract rules satisfying the requirement from the couple 

of clusters in the group of customer customeq , because 
the item in the right cluster costs more than $100, and it 

is not allowed to appear in the head. Consider now the 
couple of clusters in the group of customer customera. 

In the left cluster, only items brown-boots and jackets 
cost more than $100, and are allowed to appear in the 

body; in the right hand side cluster, only item col-shirts 

cost less than $100, and is allowed to appear in the 
head. Thus, the resulting table FilteredOrderedSets 

contains only three rules, as described in Figure 8. 

BODY HEAD S. C. 

{brown-boots} {colshirts} 0.5 1 - 

{jackets} {colshirts} 0.5 0.5 

{brown-boots,jackets} {colshirts} 0.5 1 _ 

Figure 8: The output table FilteredOrderedSets. 

The mining condition can be also used without clu- 

sters. For example, let us suppose now that we are in- 

terested in rules such that the items in the body are pur- 

chased previously than the items in the head. Observe 
that we do not want that items in the body or in the 

head be bought in the same date; hence, clusters are not 
useful. The problem can be specified as follows: 

MINE RULE OrderedItems AS 

SELECT DISTINCT l..n item AS BODY, 

i..i item AS HEAD, SUPPORT, CONFIDENCE 

WHERE BODY.date < HEAD.date 

FROM Purchase 
GROUP BY customer 

EXTRACTING RULES WITH SUPPORT: 0.1, 

CONFIDENCE: 0.2 

The resulting table OrderedItems is a superset of ta- 

ble OrderedSets: since clusters are missing, new sets of 

items for the body and the head are allowed which were 
not allowed previously. 

2.4 Association Rules with Generalization 

Given a table from which association rules are extracted, 

by means of a taxonomy on the tuples in the table, asso- 

ciation rules can be specified by means of the properties 

described in the taxonomy. The taxonomy can be repre- 

sented as a hierarchy tree, where each node corresponds 

to a class of items and its sons are its sub-classes; leaf 

nodes correspond to items in the database. If there is 
an ordered path from a node a to a node b, a is cal- 
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I item 1 

L I 

Figure 9: Hierarchy tree of items. 

led ancestor of b, and b is called descendant of a. Using 

as an example the case of purchases, let us suppose to 

have a hierarchy of classes on the attribute item of the 
Purchase table, as shown in Figure 9. The hierarchy is 
described by table ItemHierarchy, shown in Figure 19. 

Each tuple stables a pair connecting a node to one of 
its ancestors; the attribute level indicates the number 

of levels that separate the node from the ancestor in the 
hierarchy. Observe that each node is considered ancestor 

of itself, with the corresponding level set to 0. 

2.4.1 Hierarchies in the Mining Condition 

Hierarchies can be used in the mining condition to re- 

strict the association rules that can be extracted from 
the source table, in such a way that the rules refer to 

specific portions of the hierarchy. 

For example, consider the Purchase table. Suppose 
that you want to extract rules that associates items 

which are boots with items which are pants. This is simi- 

lar to the examples discussed in Section 2.3, with the ad- 

ditional problem that the information about the hierar- 

chy is not contained in the source table. The idea is that 

the mining condition queries the table ItemHierarchy 
to select only items for the body having boots as ance- 

stor, and items for the head having pants as ancestor; 

these queries can be specified by means of the standard 

SQL IN predicate, as we show below. 

MINE RULE BootsPantsRules AS 
SELECT DISTINCT item AS BODY,item AS HEAD, 

SUPPORT, CONFIDENCE 

WHERE HEAD.item IN (SELECT node 

FROM ItemHierarchy WHERE ancestor =‘pants’) 

AND BODY.item IN (SELECT node 

FROM ItemHierarchy WHERE ancestor =‘boots’) 
FROM Purchase 
GROUP BY transaction 
EXTRACTING RULES WITH SUPPORT: 0.2, 

CONFIDENCE: 0.5 

For the data in the Purchase table of Figure 1, 
only the rule {hikingboots} 3 {ski-pants}, having 
support = 0.25 and confidence = 1, is extracted. 

2.4.2 Hierarchies in the Source Table 

Association rules can be generalized, in order to obtain 

rules that associate classes. A generalized rule can be 

node ancestor 1 level 

Figure 10: ItemHierarchy table containing a descrip- 
tion of the hierarchy defined on item. 

obtained by a rule that associates leaves of the hierarchy, 

by replacing each leaf with one of its ancestors. For 
example, the simple association rule: 
{hiking-boots} 3 {ski-pants} can be generalized as: 
{hiking-boots} + {pants}, 

{hiking-boots} + {clothes}, 

{boots} =+ {ski-pants}, {shoes} + {ski-pants}, 

{boots} + {pants}, {boots} + {clothes}, 

{shoes} + {pants} and {shoes} + {clothes} 

The generalized rules are characterized by values of 
support which are greaterthan the values of the specia- 

lized rules. For this fact, it is not possible to obtain all 
the generalized rules contained in the source table from 

the specialized rules, for the fact that generalized rules 

with support and confidence greater than the minimum 
thresholds can derive from specialized rules that are not 

extracted since their support is too low. 

To extract generalized association rules, we need to 

add information in the hierarchy table to the source ta- 

ble, by joining this two tables in the FROM clause of the 

MINE RULE operator. For example, the following specifi- 
cation extracts generalized association rules from within 

the Purchase table using the ItemHierarchy table. 

MINE RULE GeneralizedRules AS 

SELECT DISTINCT ancestor AS BODY, 
i..n ancestor AS HEAD, SUPPORT, CONFIDENCE 

FRon (SELECT * 

FROM Purchase, ItemHierarchy 

WHERE node=item) 
GROUP BY transaction 

EXTRACTING RULES WITH SUPPORT: 0.‘3, 

CONFIDENCE : 0.5 

The first thing that can be noticed, is the SELECT 

clause inside the FROM clause: it computes the join of 
the two tables, and the resulting table is the source table 

from which rules are extracted, shown in Figure 11. 

The second major point to note is that rules contain 
the attribute ancestor in the body and in the head in- 
stead of the attribute item; this way the leaves of the 
hierarchy are not loosed, because in the ItemHierarchy 
table each node is ancestor of itself with level 0. A por- 
tion of the resulting table is shown in Figure 12. 
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tr. 1 customer 1 date 1 itim 1 price 1 q.ty 1 ord-num ancestor 

I I I I I I I I 

Figure 11: Source table for extracting generalized association rules. 

[ BODY 1 HEAD 1 s. 1 c. ] 

Figure 12: Table GeneralizedRules containing genera- 

lized association rules. 

2.4.3 Generalized Use of Hierarchies 

The hierarchy can be used in the mining condition and 

in the source table at the same time; the effect is that the 
problem of finding generalized association rules can be 

refined, obtaining a smaller number of rules. For exam- 
ple, suppose we are interested in extracting generalized 

association rules that have sub-classes of boots in the 

body and sub-classes of pants in the head. This problem 
requires that the hierarchy is used at first in source table 

to produce generalized association rules, and second in 
the mining condition to reduce the number of extracted 
rules. Its specification by means of the MINE RULE is: 

MINE RULE GeneralizedBootsPantsRules AS 

SELECT DISTINCT ancestor AS BODY, 
l..n ancestor AS HEAD, SUPPORT, CONFIDENCE 

WHERE HEAD.&estor ,IN (SELECT node 
FROM ItemHierarchy WHERE ancestor =‘pants’) 
AND BODY’.ancestor IN (SELECT node 

FROM ItemHierarchy WHERE ancestor =‘boots’) 

FROM (SELECT * FROM Purchase, ItemHierarchy 
WHERE node=item) 

GRObP BY transaction 
EXTRACTING RULES WITH SUPPORT: 0.3, 

CONFIDENCE: 0.5 

2.5 Final Example 

We show a final example in which we specify an uncon- 
ventional problem that can be solved by extracting as- 
sociation rules. Let us suppose we are interested in rules 
that associate a customer with a set of customers, such 
that customers in the head buys the same product pre- 

viously bought by the customer in the body. We call this 
problem the word of mouth effect. By means of the MINE 
RULE operator, we can write the following specification. 

MINE RULE WordOfMouth AS 
SELECT DISTINCT I..1 customer AS BODY, 

l..n customer AS HEAD, SUPPORT, CONFIDENCE 
WHERE BODY.date <= HEAD.date 

FROM Purchase 
GROUP BY item 

EXTRACTING RULES WITH SUPPORT: 0.01, 

CONFIDENCE: 0.05 

At first, the Purchase table is grouped by item, be- 
cause we want to extract rules that describe a repea- 
ted behaviour w.r.t purchased items. Second, the table 

‘is clustered by date, and the HAVING predicate speci- 

fies that rules must be extracted from couples of clu- 
sters temporally ordered. Finally, rules having one sin- 
gle customer in the body and multiple customers in 
the head are extracted. A hypothetical rule might be: 

{Jennifer} + {Janet, Barbara}. 

Obserye that the minimum thresholds for support and 
confidence are very low; this is due to the fact that the 

word of mouth effect is not expected to be very evident 
in the global population. 

3 Semantics of the Operator 

The aim of this section is to provide a formal semantics 
for the MINE RULE operator. The semantics is procedu- 
rally described by means of an extended relational alge- 
bra: this technique is able to describe how to transform 
the source table in order to discover association rules. 

3.1 New Relational Operators 

In the following sections, we use relational tables with 
complex attributes, i:e. attributes which are themselves 

relations. An example of nested relation is the table 

shown in Figure 2, whose schema is 

(transaction,Group:table(customer,item,date, 
price,quantity)). 

In order to operate on extended relations, we use the 

traditional relational algebra (described in [18]) exten- 
ded with special operators. The relational algebra pro- 
vides operators like selection, projection, union, inter- 
section, difference, Cartesian product, join and natural 
join; their semantics is adapted to extended relations, as 
e.g. in [9]. Hereafter, we introduce the new operators. 

Group by: I’(grou&ng attrs; new attr) T partitions 

the relation by distinct values of the grouping attributes. 
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The schema of the result, contains the grouping attribu- 

tes and a new set valued attribute (called new attribute) 

whose schema contains all other attributes of T. Values 
in the new attribute are structured as one subtable for 

each distinct’ value of the grouping attributes. 
Unnest: v(attribute-name) T, is the opposite of the 
group by operator. 

Extend: &(attribute name; expression) T, extends the 
schema of the operand with a new attribute called at- 
tribute name; for each tuple, the value to be assigned 
to the new attribute is abtained evaluating the generic 
algebraic expression. 
Substitute: C(attribute name; expression) T, substi- 

tutes the value of the attribute indicated by attribute 
name with the result of the algebraic expression evalua- 
ted for each tuple. 

Rename: p(old attt names; new attr names) T, chan- 
ges the names of the attributes listed as old attribute 
names into the names listed a8 new attribute names. 
Powerset: P(powerset name) T produces a relation 
whose schema is obtained by introducing a single attri- 

bute, named powerset name, that is in turn a relation 
with the same schema of the original relation T. Tu- 

pies of the results are relations which correspond to the 

power-set of T, hence each felation corresponds to a non- 
empty qubset of the T. 

As an example, consider table Purchase of Fi- 
gure 1; Figure 2 shows the table after it is grouped by 
transaction. This opetation can be algebraically de- 

scribed as Grouped = I’(transadion; Group) Purchase. 

By unnesting attribute Group with the expression 
q(Group) Grouped, table Purchase is obtained again. 

3.2 Algebraic Semantics of the MINE RULE 
Operator 

In this section, the semantics of the MIME RULE operator 

is formally defined by means of the algebraic operators 
introduced in Section 3.1. The idea is that the source 
relation which rules have to be extracted from passes 

through several transformations; the final result of this 
process is the relation containing a rule for each tuple, 
with associated attributes for support and confidence. 

In order to simplify the description of the semantics 

and improve its clarity, we divide the transformation pro- 
cess in distinct steps. Each step is defined as a function 
that, is given a name and a list of input relations, and 
produces either a derived relation or a number; an al- 

gebraic equation assigns the result of a function to a 

variable, that can be either a relation or a numeric va- 

riable. The collection of equations necessary to describe 
the procedural semantics of the operator is the following 
algebraic system. 

AllGroups = CountAllGroups(Table) 
Clustered I MakeGlusterPairs(Table) 
Bodies I EztractBodies(Clusteted, AllGroups) 
Rules s EztractRules(Clustered, Bodies, AllGroups) 
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The meaning of the equations in the system 
can be summarized as follows: at first, function 

CountAllGroups computes the number of groups (w.r.t 
the attribute list in the GROUP BY clause) in the source 

relation; the second equation transforms the source rela- 
tion into a new one containing couples of clusters (defi- 
ned by the CLUSTER BY clause). At this point, the third 
equation extracts all possible rule bodies, that are used 
to evaluate the confidence of each extracted rule; finally, 
the fourth equation extracts all rules that have sufficient 
support ahd confidence. 

In the following, tie use of the example in Section 2.2 
producing table OrderedSets as running example. 

Counting Groups: the first equation in the system 
derives the number of groups AllGroups present in the 
source relation: this number is necessary to evaluate the 
support of rules. Function CountAllGroups projects the 

source table on the grouping attributes (the list of grou- 
ping attributes is called GBAttrList and it contains the 
attributes appearing in the GROUP BY clause of the MIlE 

RULE operator); then, it counts the tuples remained after 
the projection. 

CountAllGroups( Table ) 3 
E COUNT(r(GBAttrList) Table) 

Making Couples of Clusters: the second equa- 
tion of the system transforms the source relation into a 

new one such that each tuple corresponds to a couple 
of clusters. Recall that if the CLUSTER BY clause is not 
specified, for each group the trivial cluster is coupled to 

itself; otherwise, the list of coupling attributes appearing 
in that clause (in the following this list is indicated as 

ClAttrList) is used to obtain clusters and couple them. 

MakeClusterPairs(Table) I 
E x(GBAttrLi.4, BClAttrList, HClAttrList, 

BGroup, HGroup) (6) 
&(HGroup;u(forzach a E ClAttrList : 

HEAD.a = GR0UP.a) Group) (5) 
E(BGroup; g(foreach a E ClAttrList : 

B0DY.a = GR0UP.a) Group) 

q(ClusterPairs) It; 

&(ClasterPairs; MakePairs(Group)) 
I’(GBAttrList; Group) Table I:; 

Function MakeClusterPairs at first, groups the 
source relation by the grouping attributes, obtaining a 
new intermediate relation where each tuple has the grou- 

ping attributes and a complex attribute called Group: 
this is a relation that contains all the tuples in the 

source relation belonging to that group; its schema is 
obtained from the schema of the source relation remo- 

ving the grouping attributes. In the running example, 
only customer is specified as grouping attribute; then, 
Line (1) obtains a relation with the following schema: 

(customer,Group:table(transaction,item,date, 
price,quantity)). 

Then at line (2)) by means of sub-function 

MakePairs, each tuple is further extended with a com- 
plex attribute, called ClusterPairs: this is the set of 



couples of clusters‘contained in the group corresponding 

to that tuple. Let us describe the sub-function. 

MakePaira(Grozlp) s 

z ( p(foreach a E ClAttrLiat; B0DY.a) 
r(CXAwrLiat) GTOUP ) 

w[ChaterCondition] 

( p(foreach a E ClAttrLiat; HEAD.a) 
zr(ClAttrLiat) GTOUP ) 

Sub-function MakePairs receives the table GTOU~ as 

input parameter, i.e. the tuples contained in a group 
without the grouping attributes,. The sub-function is di- 
vided in two parts. The first part projects table GTOUP 

on the clustering attributes, in order to obtain the set of 

clusters contained in that group; since these are clusters 

from which rule bodies might be extracted, each cluste- 
ring attribute a E ClAttrList is renamed as B0DY.a. 

The second part of the function obtains clusters for rule 
heads, naming each clustering attribute a E ClAttrList 

as HEAD.a. Finally, the two intermediate relations are 
joined to form all couples of clusters satisfying the cou- 

pling condition Clustercondition possibly coming from 
the HAVIBG clause associated to the CLUSTER BY clause. 
For instance, in the running example the clustering attri- 
bute is date; thus, the schema of the relation produced 
from this function is: (BODY. date,HEAD.date). 

Coming back to the description 

of function MakeClusteTPaiTs, at Line (3) the unnest 

operator unnests the attribute ClusterPairs: this ope- 

ration puts cluster pairs to the topmost level, obtaining 

a tuple for each group and cluster pair. After that, at Li- 
nes (4) and (5) t wo complex attributes, called BG~oup 

and HGTou~, are added to the schema: they contain 

the tuples in the group that belong to the cluster for 
the body and to the cluster for the head, respectively. 

The final schema of relation Clustered for the running 
example is the following: 

customer,BODY.date,HEAD.date, 

BGroup:table(transaction,item,date, 
price,quantity), 

HGroup:table(transaction;item,date, 

price,quantity) 1). 

Extracting Bodies: relation Bodies contains all 

possible bodies contained in the couples of clusters of 

relation Clustered. We need to know the set of bodies 
in order to evaluate the confidence of rules. 

EztractBodies(Clustered, AIlGroups) G 
s u(COUNT(BGROUPS)/AllGroupa > mSUP) (7) 

I’(BODY; BGROUPS) (6) 
r(GBAttrList, BODY) (5) 
E(BODY; r(BSchema) Subset) 
r](Subsets) I;; 
E(Subsets; P(Subset) BGroup) (2) 
r(GBAtttList, BGtoup) Clustered (1) 

Function ExtractBodies transforms 

relation Clustered, where each tuple corresponds to a 
couple of clusters. Line (2) extends the. schema with 
a complex attribute, called Subsets, containing all the 

subsets of attribute BGTOUP, i.e. the tuples contained in 
the cluster which bodies are extracted from; this work is 
done by the power set operator P(Subset) . An example 
of the schema at this point is the following: 

(customer,BGroup:table(transaction,item,date, 
price, quantity) , 

Subsets:table( Subset:table(transaction,item, 
date,price,quantity))). 

This new complex attribute is then unnested (Line 
(3)), in order to put its internal attribute Subset to the 

topmost level. Then, attribute Subset is projected on 
the attributes appearing in the body schema BSchema 
to obtain bodies. Finally, after at Line (5) the rela- 

tion is projected on the grouping attributes and the at- 

tribute BODY, at Line (6) the relation is grouped by 
BODY, in order to have a body for each tuple, and 

the set of groups containing the body in the new com- 
plex attribute GROUPS. Bodies with insufficient sup- 
port are discarded at Line (7). The schema of rela- 

tion Bodies for the running example is the following: 
(BdDY:table(item), BGROUPS:table(customer)). 

Extracting Rules: the last equation of the system 
extracts rules by means of function ExtractRules. This 
function uses sub-functions in order to simplify the de- 
scription of the process. 

ExtTactRules(Cluatered, Bodies, AlK’r’oupa) E 

E AddConfidence(Bodiea, 
AddSupport(AllGroups, 

CollectRulea(DiscardTautologiea( 

MakeRules(MakeSubsets(Clustered))))) 

MakeSubseta(ClusteTed, Bodies) E 

3 q( Pairs0 f Subsets) 

r(GBAttrLiat, BClAttrLiat, 

HClAttrList, Pairsof Subsets) 

&( Pairs0 fsubsets; 

(3) 

(2) 

MakePairaOfSubsets(BGroup, HGTOUP)) (1) 

Clustered 

At first, function MakeSubsets extracts from rela- 
tion Clustered the Subsets of tuples contained in clu- 

sters. For each tuple, corresponding to a couple of clu- 

sters; at Line (1) it adds a new complex attribute, called 
Pairs0 f Subsets, that contains ordered pairs of subsets 
of tuples contained in the couple of clusters. Then, at 
Line (3) this new attribute is unnested, in order to have 

one pair of subsets for each tuple. The resulting schema 

for the running example is: 

(customer,BODY.date,HEAD.date, 
BODY:table(transaction,item,date, 

p&ce,quantity), 

HEAD:table(tra.nsaction,item,date, 

price,quantity) 1. 

Observe that this schema is similar to the schema of 

relation Clustered, except for the fact that attributes 
BGroup and HGroup become BODY and HEAD. 

Couples of subsets are computed by sub-function 
MakePairsOfSubsets: it extracts subsets for body and 
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head by means of the power set operator, and produces 
the Cartesian product of these subsets. 

MakePairsOfSubsets(BGroup, HGTou~) E 

5 P(BODY) BGTOU~ x P(HEAD) HGTOU~ 

After function MakeSubsets terminates, function 
Extract Rules calls sub-function Make Rules that ac- 
tually extracts rules from the pairs of subsets. 

MakeRules(Subsets) z 

3 C(HEAD; *(HSchema) HEAD) (4) 
C(BODY; *(BSchema) BODY) 

a(BadBH = 0) ii; 

&(BadBH; BODY w[yMiningCond] HEAD) (1) 

Subsets 

This function extracts rules only from couples of sub- 

sets that satisfy the mining condition. For each tuple, 
corresponding to a couple of subsets, at Line (1) the 
subset BODY is joined with the subset HEAD in order 
to check for the presence of tuples that do not satisfy 

the mining condition. At Line (2), if the resulting attri- 
bute BadBH is empty, the tuple is selected, because the 
corresponding couple of subsets satisfies the mining con- 

dition. Finally, the actual body and head are computed 

(Lines (3) and (4)), by means of a projection on body 
and head schema, respectively. Observe that after Li- 

nes (3) and (4), attribute BODY has the body schema 

(in our running example BODY: table (item)), and at- 
tribute HEAD has the head schema (in the example 

HEAD:table(item)). 

DiscardTautologies(ClusteTswithRuies) 3 

3 ir(GBAttrList, BODY, HEAD) 

(a(Taut = 0) 
&(Taut; *(CSchema) BODY 

n *(CSchema) HEAD) 

a(CSchema = HSchemaA 

(5) 
(4) 

(3) 

foreach a E ClAttrList : B0DY.a = HEAD.a) (2) 

ClustersWithRulds) U 

(a(CSchema # HSchemaV 

thereis a E ClAttrList : B0DY.a # HEAD.a) (1) 
ClustersWithRules) 

Tautological rules are discarded by sub-function 
DiscardTautologies. Tautologies are possible when a 
rule comes from a couple of the same cluster and the 
head schema is contained in the body schema. If we in- 

dicate the intersection of the two schemas as CSchema 

(CSchema = BSchema n HSchema), this fact can be 

indicated with CSchema = HSchema. After this pre- 
mise, it is obvious that the function is divided in two 
groups: Line (1) takes rules which are certainly not tau- 
tological (i.e. the head schema not contained in the body 

schema or the rule does not come from a couple of the 
same cluster); Line (2) to (4) take possibly tautological 
rules and discard rules containing tautologies (tautologi- 
cal rules have non-empty intersection of body and head). 

CollectRules(GroupsWithRules) 3 

E r(BQDY, HEAD; GROUPS) GToupsWithRules 

After rules are extracted, sub-function CollectRules 

associates to each rule the set of grocp identifiers that 
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contain the rule. This is done grouping the input relation 
by attributes BODY and HEAD. The resulting schema 

for the example is: 

(BODY:table(item), HEAD:table(item), 
GROUPS:table(customer)) 

Finally, it is necessary to add support and confidence 
to rules and discard rules with insufficient support and 
confidence. 

AddSupport(RulesWithoutSuppoTt, AIIGTou~s) E 

3 *(BODY, HEAD,SUPPORT) 

a((SUPPORT 2 minSUPPORT) 

E(SUPPORT; COUNT(GROUPS)IA~~GTOU~S) 

RulesWr?houtSupport 

AddConfidence(RulesWithSuppo72, Bodies) E 

= *(BODY, HEAD,SUPPORT, CONFIDENCE) 
a(CONFIDENCE 2 minCONF) 
&(CONFIDENCE; 

COUNT(GROUPS)/COUNT(BGROUPS)) 
(RulesWithSupport w Bodies) 

For each rule, function AddSupport simply adds the 
new attribute SUPPORT counting the groups contai- 

ning the rule and dividing it by the number of groups 

in the source relation (AllGroups). Conversely, function 
AddConfidence is a bit more complicated, because for 

each rule it needs know the groups containing only the 

body; observe that it is possible to do that by joining 
relation RulesW‘ithSupport with relation Bodies, com- 
puted by the third line of the algebraic system. 

4 Conclusions . 

This paper has proposed a unifying model describing the 
problem of discovering association rules, one of the most 
investigated topics in data mining. The model is based 
on a new operator, named MINE RULE, designed as an 

extension of the SQL language. The operator is intro- 
duced by means of examples: the classical problems are 

reformulated using the new operator and provide exam- 
ples of its applications; then novel examples are propo- 
sed showing unconventional cases of association rules. 
Finally the procedural semantics of the operator is given 
by means of an extended relational algebra. 
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Syntax 

This appendix presents the full syntax of the MINE RULE 
statement. In the syntax, square brackets denote op- 
tionality; productions <FromList> and <WhereClause> 
denote the standard SQL clauses FROM and WHERE 
which are not further expanded (the keywords BODY 
and HEAD can be used as correlation variables in the 
WHERE clause for the SELECT clause and in the HAVING 
clause for the CLUSTER BY clauses); <TableName> and 

<AttributeName> denote identifiers, <Number> denotes 
a positive integer, <real> denotes real numbers. 

<MineRuleOp> := MINE RULE <TableName> AS 
SELECT DISTINCT <BodyDescr>, <HeadDescr> 

[,SUPPORTj [,CONFIDENCE] 
[WHERE <WhereClause>] 
FROM <FromList> [WHERE <WhereClause>] 
GROUP BY <Attribute> <AttributeList> 

[HAVING <HavingClause>l 
[ CLUSTER BY <Attribute> <AttributeList> 

[HAVING <HavingClause>] 1 
EXTRACTING RULES WITH SUPPORT:<real>, 

CONFIDENCE:<real> 

<BodyDescr>:= 
[<CardSpec>] <AttrName> <AttrList> AS BODY 
/* default cardinality for Body: i..n */ 

<HeadDescr>:= 
[<CardSpec>] <AttrName> <AttrList> AS HEAD 
/* default cardinality for Head: I..1 */ 

<CardSpec>:=<Number> . . (<Number> I n> 
<AttributeList>:=(,<AttributeName>) 
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