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A b s t r a c t .  The notion of staircase separator, introduced in [2], greatly 
facilitates the design of divide-and-conquer algorithms for problems on 
rectangles. We generalize the concept of staircase separator to k-perfect 
staircase separator, namely a set of staircase separators which partitions 
a set S of n axis-parallel, disjoint rectangles into k subsets of (almost) 
equal size. We derive an optimal O(logn) time parallel algorithm for 
computing a k-perfect staircase separator, using O(n) processors on the 
CREW PRAM model of computation. For a special case, where k --- 2, 
this result provides a new bound of [-~], in compared to [ ~ ]  in [2], on 
the quality of staircase separators for sets of rectangles. 

1 I n t r o d u c t i o n  

In this paper we consider the problem of computing a staircase separator 
for a set S of n axis-parallel, disjoint rectangles in the plane. The concept 
of staircase separator has been shown to be very helpful in solving exactly 
or approximately the rectilinear shortest path problem (for examples, see 
[2, 3, 5, 8]). The first staircase separator theorem was proved by Atallah 
and Chen. In [2], the authors proved that there is a staircase separator 
which partitions S into two subsets such that each subset contains at most 
[ ~ ]  rectangles and this separator can be constructed in O(logn) time, 
using O(n) processors on the CREW PRAM model of computation. The 
authors proposed a divide and conquer approach for solving the rectili- 
near shortest path problem by using staircase separators to recursively 
partition the set of rectangles. Other divide and conquer algorithms using 
the result on staircase separators can be found in, for example, [5, 8]. 

We generalize the concept of staircase separator to k-perfect staircase 
separator (a precise definition is given in the next section) and present 
an efficient parallel algorithm for computing these staircase separators, 
using an approach that is quite different from that of [2]. More precisely, 
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we present an optimal O(log n) time parallel algorithm for computing a k- 
perfect staircase separator, using O(n) processors on the CREW PRAM 
model of computation.  Lett ing k = 2, this result implies an optimal bound 
of [9] on the quality of staircase separators for sets of rectangles, thus 
considerably improving the previous bound of [ ~ ]  derived by Atallah 
and Chen in [2]. 

Our results make use of simple geometric observations and classical 
data structuring techniques. The visibility graph structure for a set of 
rectangles in the plane introduced in this paper is used as a central tool 
for computing perfect staircase separators. We hope that  the results and 
techniques presented here may also be useful for solving other geometric 
problems on sets of rectangles in the plane. 

Due to space limitation, some proofs are omitted. More details and 
further results on staircase separators can be found in [9]. 

2 P r e l i m i n a r i e s  

Recall that,  a rectilinear path ~rst from s to t is a sequence of points 
(Po,. . . ,Pro), where Po = s, Pm = t, and Pi and Pi+l differ in exactly one 
coordinate. Irst is called x-monotone  (y-monotone) if the x-coordinates (y- 
coordinates) of points along the directed path  from s to t are monotone, 
either non-decreasing or non-increasing. A pa th  7r is called a staircase if 
it is xy-monotone. A staircase is unbounded if it starts and ends with a 
semi-infinite segment, i.e. a segment that  extends to infinity on one side. 
(By convention, a staircase zc = (Po,. . .  ,Pro) starts on its left and ends 
on its right, i.e. Po and Pm are the leftmost and rightmost points of 7r, 
respectively.) Staircases can be increasing or decreasing, depending on 
whether they are y-monotone increasing or decreasing. Let S be a set of 
n (axis-parallel) non-overlapping rectangles in the plane. For the sake of 
simplicity, we assume that  the rectangles of $ are in general position. A 
staircase which does not intersect the interior of any rectangle of S is 
called a staircase separator. 

A point p in a set V of points in the plane is called a Nw-maximum 
if there exists no q in 1) that  lies northwest of p. Formally, a point p = 
( x l , y t )  in V is called a Nw-maximum if there exists no q = (x2, Y2) in 1) 
such that  q # p and x2 ~ Xl and Y2 >_ yl. x v - m a x i m u m  can similarly be 
defined, for any X E {N, S} and Y e {E, W } .  

A point p is above (resp., to the left of) an unbounded staircase C iff 
(i) the vertical (resp., horizonta 0 line l(p) incident with p intersects C 
and (ii) for any point p' E l(p) NC,  p is above (resp., to the left of) p'. 
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A rectangle R is above (resp., to the left of) an unbounded staircase C iff 
any point of R is above (resp., to the left of) C; we can equivalently say 
that C is below (resp., to the right of) R. A rectangle R1 is above (resp., 
to the left of) a rectangle R2 iff for any two points pl = (xl ,yl)  of R1 
and p2 = (x2,y2) of R2, yl > y2 (resp., xl < x2); we can equivalently say 
that R2 is below (resp., to the right of) R1. 

Let S be a set of n rectangular obstacles in the plane. ];s denotes the 
set of obstacle vertices. Let R be a rectangle in S. Denote R's corners by 
Rxy (or Rvx), for any X E {N, S} and Y E {E, W} (e.g. the northwest 
corner of R is denoted by RNw or RwN). Let NW(R)  denote the first re- 
ctangle of S that is hit by a vertical ray going upward from the northwest 
corner  RNW of  R. If the vertical ray goes to infinity without hitting a 
rectangle of S, then NW(R)  is defined to be a rectangle (30 N at infinity. 
Similarly, we define XY(R)  (YX(R),  respectively) for any X E {N,S} 
and Y E {E, W} and call these rectangles neighbours of R. R is vertically 
(horizontally) visible from a staircase lr iff (i) there is a vertical (horizon- 
tal) line segment s connecting two interior points pl E R and P2 ~ ~r; 
(ii) for any such line segment s, s does not intersect the interior of any 
other obstacle. Similarly, we define a visibility relationship between the 
rectangles of 8. 

Def in i t ion  1. Two rectangles R1 and R2 are vertically (horizontally) 
visible iff (i) there is a vertical (horizontal) line segment s connecting two 
(interior) points Pl E R1 and P2 E R2; (ii) for any such line segment s, s 
does not intersect the interior of any other obstacle. 

The following definition describes important properties of a k-perfect 
staircase separator: 

Def in i t ion  2. For an integer k, 2 < k <_ n, a set of (unbounded and 
bounded) staircases C is called a k-perfect staircase separator of a set S 
of n disjoint rectangles if it satisfies the following properties: 

1) For all C E C, C doesnot  intersect the interior of any rectangle in S. 
2) C partitions S into k subsets 81 , . . .  ,Sk such that each ofSi, 1 < i < k 

contains no more than r~] rectangles in S. 
3) C consists of at most n segments. 

We shall use the plane-sweep tree technique [1, 4] (see also [6]). The 
following known result will allow us to avoid describing in detail the plane- 
sweep tree data structure, and thus to concentrate on the presentation of 
our algorithm for constructing the graph structure in Section 3. 
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L e m m a  3. ([4]) Given a set of n nonintersecting horizontal segments in 
the plane, the problem of determining, for each endpoint p, the closest 
segment directly below p can be solved in O(logn) time, using a total of 
O(n log n) operations. 

The following definition is borrowed from [2]. For a subset S~ of S, 
consider the set of all increasing unbounded staircases that  are above all 
rectangles in S t. From the set of all such staircases choose the lowest- 
rightmost one; that  is, if C is the chosen one, then there is no unbounded 
staircase C ~ above S ~ with a point of C' strictly below or to the right of 
a point of C. Denote such a C by MaxNw(S~). We can similarly define 
Maxxy(S')  for any X e {N,S}  and Y e {E, W}. 

3 C o m p u t i n g  P e r f e c t  S t a i r c a s e  S e p a r a t o r s  i n  P a r a l l e l  

In this section we present an optimal parallel algorithm for computing 
perfect staircase separators for a set S of n rectangular obstacles in the 
plane. We begin with an algorithm for computing a 2-perfect staircase 
separator (which we simply call a perfect staircase separator). Let C be 
an unbounded increasing staircase, which begins with a horizontal semi- 
infinite segment and ends with a vertical semi-infinite segment. Given a 
rectangle R E S such that  R is above C, we draw two horizontal line 
segments hi,  h2 and one vertical line segment v from R~E and RSE, 
the northeast and southeast corners of R, to C (see Fig. 1). Let Ec(R) 
(SEc(R), resp.) denote the open rectilinear region bounded by the east 
edge of R, hi,  h2 and C (h2, v and C, resp.). We have the following lemma. 

L e m m a  4. Let L be the set of all rectangles in S which are vertically 
visible from a staircase separator C, R be the rightmost 1 rectangle in L. 
The following assertions hold 

(1) No rectangle in $ intersects SEc(R); 
(2) No rectangle in S intersects Ec(R), i.e. R is horizontally visible from 

C. 

Now, let Co be an arbitrary unbounded increasing staircase separator, 
which begins with a horizontal semi-infinite segment and ends with a 
vertical semi-infinite segment. Co partit ions S into Sl and St, where St is 
on the left and S~ is on the other side of C. Assuming Sl is not empty, 
we define a (left) bending operation as follows. Among all rectangles of S1 

1 Recall that "R ~ is to the right of R iff for any two points p~ E R ~ and p E R, p~.x > p.x. 
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Fig.  1. Illustration for Lemma 4 

which are vertically visible from do, select the rightmost rectangle R. R 
is horizontally visible from go, by Lemma 4. Let Pl and P2 be the vertical 
and horizontal projection points of p = RNw onto go. Now we replace 
the rectilinear subpath of go, which starts at Pl and ends at P2, by a new 
rectilinear subpath P-TP Up--P-2. In other words, we "bend" the edges of go 
around R to obtain a new staircase separator gl. Obviously~ gl partitions 
S into S~ and Sr ~, where IS~[ = [Szl-  1, ISr~[ = [$rl + 1. Starting with 
an arbitrary unbounded staircase separator with [Srl < r~], by applying 
successively the above described bending operation at most [~J times, 
we can obtain a perfect staircase separator g. 

The idea of our parallel algorithm for constructing a perfect staircase 
separator g, which partitions S into two subsets St and St, is to compute 
the subset Sr and then construct its northwest boundary MaxNw(Sr). 
Recall that a point p in ]) is called a Nw-maximum if there exists no q 
in V that lies northwest of p. Maxgw (S) can be constructed in constant 
time, using O(n) operations from a sorted set of all Nw-maxima of Vs. The 
latter set can be computed in O(log n) time, using O(n log n) operations 
by applying the cascading divide and conquer approach for solving the 
dominance counting problem [4] (see also [6]). Now we show how to solve 
the other task by first computing a graph structure Gn(S) = < S, 75 >, 
where T~ C S x S and (R1, R2) E 75 iff R1 and R2 are vertically visible. 

G7¢(S) can be implemented by a data structure 7 ) ( ~ ( S ) )  as follows. 
The edges of GT~ (S) are simply implemented by using two-way pointers. 
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Let NneighbourTt(R) denote the set of rectangles vertically visible from 
the north edge of R, sorted from left to right. Zneighbourn(R) can si- 
milarly be defined, for any Z E a. For the current goal, we need to 
store at each node R in the graph ~ ( S )  a sorted set Nneighbourn(R) 
(SneighbourTc(R), resp.), which allows us to list all north (south, resp.) 
neighbours of R, from left to right. It is not difficult to see that the re- 
sulting data structure 7)(Gn(S)) has size O(n). 

Now, let Nneighbourv (R) denote the set of obstacle vertices vertically 
visible from the north edge of R, sorted from left to right. Similarly, let 
Zneighbourv (R) denote the sorted set of obstacle vertices visible from the 
Z-edge of R, for any Z E a. The following simple geometric observations 
are essential for the construction of the graph G7¢(8). 

L e m m a  5. Let R and R ~ be two nonintersecting rectangles, where R is 
above R ~. R and R ~ are vertically visible iff one of the following conditions 
holds 

! I (i) Nneighboury(R') = 0, and RNw and RNE are in Sneighbourv(R), 
(ii) Sneighbourv(R) = O, and Rsw and R~sE are in Nneighbourv(R~), 

(iii) R~w is the last element in Sneighbourv(R) and Rsx is the first ele- 
ment in Nneighbourv(R~), 

(iv) R~E is the first element in Sneighbourv(R) and Rsw is the last ele- 
ment in Nneighbourv( RI). 

Now, using the results of Lemma 3 and Lemma 5 we can prove the 
following theorem. 

T h e o r e m  6. Given a set S of n rectangular obstacles in the plane, the 
graph 67e($) can be constructed in O(logn) time, using a total of O(nlogn) 
operations. 

Having preprocessed S into Gn(S), we now turn back to the compu- 
tation of St. We shall employ the Euler-Tour technique for tree compu- 
tation [10]. However, the (undirected) graph 6ze(S) may not be a tree: 
from a node R to a node R ~, R r ~ R, there may be more than one path, 
i.e. there may be a "cycle" from R to R'. Therefore, in order to apply 
successfully the Euler-Tour technique, we need to transform the graph 
~7¢(S) into a tree structure Tn(S) = < S, T~* >, where T~* C ~ .  T~(S) 
is copied from Gn(S) by a cycle-elimination procedure which costs O(1) 
time with O(n) operations as follows. For each node R of Gn(S) with 
[NneighbourT~(R)[ > 1, only the edge (R ~, R) e 7~ connecting R to the 
rightmost rectangle R' above R, is retained in 7~*. Moreover, the node 
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set of Tn(S) can easily be organized into adjacency lists with additional 
pointers [6] in O(logn) time, using O(n) operations. 

~k 

® 
~s 

s 

Fig. 2. "&(S) 

Observe that the order in which the rightmost vertically (from a sta- 
ircase separator C) visible rectangle R is included into Sr is exactly the 
reverse of the preorder number of vertices in Tn(S). With all the tools 
that we have developed so fax, we are now ready for the computation of 
&. 

L e m m a  7. Sl and Sr can be computed in O(logn) time, using a total of 
O(n log n) operations. 

Proof :  Applying the Euler-Tour technique for tree computation on Tn (S), 
we can compute the preorder number j for each vertex in Tn(S), which 
determines exactly the order number i = n - j of the bending step in 
which the corresponding rectangle is involved, during the sequential com- 
putation of C. After that, Sr can be computed in O(1) time, using O(n) 
operations. 

Given an integer k, 2 < k _< n, instead of partitioning the (now 
sorted) set S into two subsets Sl and Sr we can partition S into k subsets 
S1,... ,Sk, each containing no more than [~] rectangles. In addition, 
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the boundaries of 81 , . . . ,  Sk are disjoint. 81, . . . ,  Sk can be computed in 
O(log n) time, using a total of O(n logn) operations. We conclude : 

T h e o r e m  8. A k-perfect staircase separator for a set of n axis-parallel, 
non-overlapping rectangles in the plane can be constructed in O(logn) 
time, using a total of O(n log n) operations. 
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