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Abstract—In this paper, a new statistical wideband indoor
channel model which incorporates both the clustering of multipath
components (MPCs) and the correlation between the spatial and
temporal domains is proposed. The model is derived based on
measurement data collected at a carrier frequency of 5.2 GHz in
three different indoor scenarios and is suitable for performance
analysis of HIPERLAN/2 and IEEE802.11a systems that employ
smart antenna architectures. MPC parameters are estimated
using the super-resolution frequency domain Space-Alternating
Generalized Expectation maximization (FD-SAGE) algorithm
and clusters are identified in the spatio-temporal domain by a
nonparametric density estimation procedure. The description of
the clustering observed within the channel relies on two classes of
parameters, namely, intercluster and intracluster parameters which
characterize the cluster and MPC, respectively. All parameters
are described by a set of empirical probability density functions
(pdfs) derived from the measured data. The correlation properties
are incorporated in two joint pdfs for cluster and MPC positions,
respectively. The clustering effect also gives rise to two classes
of channel power density spectra (PDS)—intercluster and intra-
cluster PDS which are shown to exhibit exponential and Laplacian
functions in the delay and angular domains, respectively. Finally,
the model validity is confirmed by comparison with two existing
models reported in the literature.

Index Terms—Antenna array, clustering multipath channel,
indoor radio communication, radio propagation, spatio-temporal
correlation.

I. INTRODUCTION

R
ECENTLY, wireless local-area networks (WLANs)

have attracted considerable interest and attention due to

their ability to provide broadband wireless communication.

Several new standards have been developed in the 5-GHz band,

namely the High Performance Local-Area Networks type 2

(HIPERLAN/2) defined by European Telecommunications

Standards Institute (ETSI) Broadband Radio Access Networks

(BRAN), 802.11a defined by IEEE and High Speed Wireless

Access Network type a (HiSWANa) defined by Mobile Access

Communication Systems (MMAC) [1]. These standards are
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capable of providing data rates of up to 54 Mb/s for short range

communication in the indoor environments.

High-data rates imply the use of a large bandwidth. However,

the limited radio spectrum forms the major bottleneck in

achieving such high-data rates. Smart antennas (SAs) have

emerged as one of the most promising candidates to maximize

the wireless capacity through multiple-input-multiple-output

(MIMO) antenna arrays [2]. SAs exploit both the spatial and

temporal domains by means of different space–time signal

processing techniques, such as the new Turbo space–time codes

and various spatial-diversity schemes. Successful deployment

of the SAs will require a detailed knowledge of the radio propa-

gation channel, thus, a realistic spatio-temporal channel model

is essential for the performance evaluation of any space–time

processing technique and any indoor system design.

Despite many spatial channel models having been reported

in the literature [3], [4], few of them incorporated both the

spatial and temporal correlation properties when the models

were being developed. Modeling the correlation between these

two domains is essential as a strong correlation could enhance

the performance of the space–time processing techniques. To

the best of the authors’ knowledge, only two models have

appeared in the literature which provide a statistical descrip-

tion for the spatio-temporal properties in indoor propagation

environments based on real measurement data. The first model

is the extension of the Saleh–Valenzuela temporal domain

only model [5] with the angle-of-arrival (AOA) information

(ESVM) [6]. This model adopts the clustered double Poisson

time-of-arrival (TOA) model detailed in [5] and proposes that

the clustering phenomenon is also observable in the angular

domain. The model was derived from the results of measured

data at a carrier frequency of 7 GHz. The clusters’ mean AOAs

are taken to be uniformly distributed over the range [0,360] ,

while the multipath components (MPCs) AOAs within each

cluster are taken to be Laplacian distributed. A key assumption

made in this model is that the spatial and temporal domains

are independent of one another. The second model is known as

the stochastic radio channel model (SRCM) [7]. This model

was developed based on measurement data collected at a

carrier frequency of 24 GHz in an office environment under

both line-of-sight (LOS) and non-LOS (NLOS) scenarios. A

nonclustered and a clustered model were proposed for LOS

and NLOS conditions, respectively. However, none of these

models investigate the spatio-temporal correlation properties

of the indoor propagation channel despite its importance.

Furthermore, these models were not developed specifically

0733-8716/03$17.00 © 2003 IEEE
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Fig. 1. Illustration of the measurement setup.

for HIPERLAN/2 or IEEE802.11a systems. To date, the most

commonly deployed HIPERLAN/2 channel model is reported

in [8]. Nevertheless, this model does not incorporate the spatial

information necessary for the development of SA technologies.

The objectives of this paper are twofold. First, to study in

more detail the statistical characteristics of the 5-GHz band

WLAN channel in both spatial and temporal domains, particu-

larly the clustering of MPCs and the correlation between these

two domains. Clustering of MPCs can have a significant impact

on channel capacity. Unclustered models tend to overestimate

the capacity if the MPCs are indeed clustered [9]. This implies

that a more comprehensive characterization of the clustering

and correlation properties is required. Second, to propose a new

statistical wideband spatio-temporal channel model suitable for

HIPERLAN/2 and IEEE802.11a systems. The new proposed

model will incorporate both the clustering and correlation

properties described above and can be employed for LOS,

obstructed-LOS (OLOS) and NLOS scenarios. The clustering

effect gives rise to two classes of channel parameters (inter-

cluster and intracluster parameters) and power density spectra

(PDS) (intercluster and intracluster PDS) while the correlation

properties are incorporated in two joint probability density

functions (pdfs) for cluster and MPC positions, respectively.

The organization of the paper is as follows. Section II de-

scribes the measurement setup and environments. Section III

presents the data analysis and processing techniques to extract

MPC parameters and to identify clusters. In Section IV, a new

spatio-temporal channel model is proposed. Sections V and VI

describe in detail the statistical characteristics and PDS of the

channel model. In Section VII, a comparison is made between

the proposed model and existing models reported in the litera-

ture. Finally, in Section VIII, appropriate conclusions are drawn.

II. MEASUREMENT SETUP AND ENVIRONMENTS

A. Measurement Setup

This section describes the indoor channel measurement cam-

paign conducted at the University of Bristol (UoB). The wide-

band measurement was performed in the 5.2 GHz band using the

Medav RUSK BRI vector channel sounder [10]. The periodic

multifrequency test signal used in the measurement had a repeti-

tion period of 0.8 s and a bandwidth of 120 MHz. The measure-

ments were based on a single-input–multiple-output (SIMO)

configuration with an omni-directional transmitter (TX) and an

eight-element uniform linear array (ULA) receiver (RX). The

ULA had eight dipole-like active elements spaced by half the

wavelength and two inactive elements at each end. Its effective

azimuth visible range is 120 . Both the TX and the RX were

fixed at the same height in all measurements.

The sounder was set up to record 16 consecutive SIMO

snapshots as a fast Doppler block (FDB), where a SIMO

snapshot consists of eight complex channel responses across

the ULA [10]. The channel responses were computed online

and were stored on the sounder’s hard disk as the complex

frequency response for subsequent offline post-processing.

The time required to record a SIMO snapshot and a FDB

was 12.8 s and 204.8 s (16 12.8 s), respectively. This

guaranteed the channel responses in one FDB were recorded

within the coherence time of the channel and within the 2-ms

medium access control (MAC) frame of the HIPERLAN/2

system. In order to collect more samples for statistical analysis,

70 FDBs were recorded in a duration of approximately 5 s in a

time grid of 70.565 ms. Therefore, one complete measurement

set in each fixed-terminal location consists of a total of 1120

(16 70 SIMO snapshots. Fig. 1 illustrates the measurement

setup.

B. Measurement Environments

Three different indoor environments in the UoB were chosen

for the measurement campaign: Room 2.19 (OFF) and the

entrance foyer (FOY) in the Merchant Venturers Building

(MVB) which represent a large office and a large open space

environment, respectively. In addition, the electrical laboratory

(LAB) in the Queens Building (QB) was also used. The layout

of OFF and FOY is shown in Fig. 2. These environments are

typical indoor environments for the future WLAN deployment.

For example, both OFF and LAB have a lot of computers with

some fixed-wired network facilities. The initial phase of the de-

ployment of future wireless network system will most likely take
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Fig. 2. Sketched plans of the (a) entrance foyer (FOY) and (b) Room 2.19
(OFF) in MVB.

place in such environments. Measurements were conducted

during normal office hours with no restrictions imposed on the

channel as people were free to move. Hence, the data collected

and used in the analysis was obtained from a realistic indoor

radio environment and the statistical model produced in this

work is realistic for the simulation of future WLAN systems.

The measurements were conducted in such a way that both

the TX and RX were fixed at one location when the sounder

was recording the 1120 SIMO channel snapshots. These loca-

tions were carefully chosen to represent the LOS, OLOS and

NLOS scenarios. During the measurement, either the TX or the

RX was fixed at location “A” (refer to Fig. 2) while the other end

was fixed at other locations (labeled as positions “3”–“25” and

“B”–“K” in the plan). For the measurements in OFF, the LOS

condition was obtained at locations “3”–“25” and the OLOS

condition was obtained at locations “B”–“F,” where the direct

path was obstructed by wooden bookshelves, metal cabinets,

and/or scatterers in the environment. All measurements in FOY

were under the NLOS condition as the direct path between lo-

cation “A” and locations “G”–“K” was blocked by the walls of

Room 2.19. Meanwhile, all measurements in LAB were based

on the LOS condition in which the TX-RX separation varied

from 3 m to 45 m. The RX orientation was at 0 for the LOS

scenario while three different RX orientations (0 , 120 , and

240 ) were used under OLOS and NLOS scenarios in order to

obtain the 360 spatial view.

III. DATA ANALYSIS AND PROCESSING

A. Channel Parameter Estimation

Before any statistical channel modeling work can be per-

formed, the first step is to extract the channel parameters of

interest from the measurement data. Two super-resolution al-

gorithms, namely, the space-alternating generalized expectation

maximization (SAGE) [11] and the unitary estimation of signal

parameters via rotational invariance techniques (ESPRIT) [12],

examples of maximum-likelihood (ML) and subspace- based

methods, respectively, were investigated. Here, the frequency

domain SAGE (FD-SAGE) algorithm is used in conjunction

with the serial interference cancellation technique [13] to jointly

detect and estimate the required multipath channel parameters

such as the number of MPCs, their complex amplitudes, TOAs,

and AOAs.1 It was demonstrated that the FD-SAGE outperforms

the standard SAGE algorithm [11] in a multipath rich environ-

ment in terms of its accuracy and stability [13]. The ML-based

method is chosen in favor of the subspace-based method be-

cause of the advantages it offers as detailed in [14].

At each location, 1120 complex channel responses were

recorded at each antenna element. By assuming that the channel

is quasistatic,2 averaging is carried out over the time-domain

for each block of 16 snapshots. The resultant averaged complex

channel responses are then operated on by the FD-SAGE

algorithm to estimate the required parameters. Hence, 70 sets

of channel parameters are obtained per location and can be

assumed to be time-invariant (due to the quasistatic assumption)

and are given by

and (1)

where is an ( ) matrix that contains the th channel

parameters set with number of MPCs, while , , and

are the complex amplitude, TOA and AOA of the th path

in the th parameter set, respectively. Subsequently, these were

concatenated with respect to their corresponding domains, i.e.,

to give a ( ) resultant matrix. A cutoff

threshold of 35-dB below the strongest path was applied to the

concatenated data to ensure that only the effective MPCs are

modeled since the useful dynamic range of the sounder is ap-

proximately 40 dB.

B. Cluster Identification

Measurement results from three scenarios reveal that the

MPCs tend to form clusters in both the spatial and temporal

domains. Therefore, the next task was to identify the clusters.

Different researchers have different definitions of a cluster

[15]–[17]. Here, we define a cluster as an accumulation of

MPCs with similar TOAs and AOAs. The clustering phenom-

enon has been reported as a result of the superstructure (e.g.,

furniture, walls, doors, etc.) of the environment [5].

A nonparametric density estimation procedure, namely the

kernel density estimate (KDE) technique [18], was deployed as

an alternative to assist the clustering identification process. This

1AOA refers to the azimuthal angle only.
2The channel can be assumed to be invariant during this time interval.
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Fig. 3. MPC TOA-AOA contour plot after being processed by the 2-D KDE
technique.

procedure is preferred due to its robustness, simplicity and con-

venience. Since clusters are observed in both the temporal and

spatial domains, they need to be identified jointly in both do-

mains. First, all MPCs within each data set are normalized with

respect to the TOA of the first arrival path in order to remove

the propagation effect due to the TX-RX separation and thus en-

abling various data sets to be compared. Then, the two-dimen-

sion (2-D) Gaussian KDE technique [18] was applied to each

data set. Fig. 3 shows the MPC TOA-AOA contour plot of a

sample data file after being processed by the 2-D KDE tech-

nique. This graph clearly shows that clustering exists in both

the spatial and temporal domains. Clusters become more ob-

vious after the KDE procedure and can be easily identified by

visual inspection. Both [5] and [6] also deploy visual inspection

to identify clusters from their measurement data.

IV. SPATIO-TEMPORAL CHANNEL MODEL

In this section, we propose a new statistical wideband

spatio-temporal channel model that incorporates both the

clustering phenomenon and the spatio-temporal correlation

properties. The model parameters are derived from the data

collected during the measurement campaigns described in

Section II and is particularly tailored for the HIPERLAN/2

and IEEE802.11a systems that employ SA architectures. By

assuming a finite number of MPCs impinging on the antenna

array, the clustering spatio-temporal channel model can be

expressed as

(2)

where is the Dirac delta function, is the number of clus-

ters and is the number of MPCs within the th cluster. ,

, and are the TOA, AOA, and amplitude of the th cluster,

which are defined as the TOA of the first arriving MPC, the

mean AOA and the maximum amplitude of all MPCs within

the th cluster, respectively. While , , , and are

the TOA, AOA, amplitude and phase of the th MPC in the th

cluster, respectively. The distribution of is assumed

to be statistically independent and uniform over the range of

[0, 360] . Notice that , , and are the relative values

with respect to , , and , respectively.

In reality, all of the parameters in (2) are randomly

time-varying functions. However, the variations are very small

compared with the signaling rate and it is, therefore, reasonable

to assume them to be time-invariant random variables. The

proposed channel model relies on two classes of parame-

ters, namely, intercluster and intracluster parameters which

characterize the cluster and the MPC, respectively. From (2),

and are classified as

the intercluster and intracluster parameters, respectively.

V. STATISTICAL CHARACTERIZATION OF THE

CHANNEL PARAMETERS

A. General Overview

This section presents the statistical characterization of

the intercluster and intracluster channel parameters defined

in Section IV. The variations of these parameters may be

characterized statistically by fitting the measurement data

against the proposed theoretical distributions. Three scenarios

are considered covering LOS, OLOS, and NLOS conditions.

Previous analysis showed that the statistical characteristics in

OFF and LAB under LOS conditions are very similar [19].

Thus, unless otherwise stated, the LOS scenario corresponds

to the OFF environment only.

B. Joint Distribution of Cluster Position

Clustering is observed in the temporal and angular domains.

The 2-D joint pdf of cluster position, can be ex-

pressed as

(3)

where is the cluster conditional AOA pdf and

is the cluster marginal TOA pdf and Fig. 4 shows for

the LOS and OLOS scenarios. of the NLOS scenario

is not shown here due to its similarity in shape to the OLOS

case. The angular axis for the LOS scenario spans from 60

to 60 while for the OLOS scenario, the angular axis spans

from 180 to 180 . The latter case is due to the concatena-

tion of three rotations to form the 360 full spatial view. While

under the LOS scenario, concatenation was not performed be-

cause the experimental results showed that majority of MPCs

arrive within 60 of the LOS direction. MPCs outside this an-

gular range have much weaker power and are thus negligible.

These graphs reveal that there are significant differences be-

tween the joint spatio-temporal statistics of the LOS and the

OLOS and NLOS scenarios. Under the LOS conditions, paths

arriving at the RX with short delays can have a relatively large

angular range, while paths which arrive with longer delays will

have a much more restricted angle. This is because paths ar-

riving at the RX with short delays are mainly due to the direct
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Fig. 4. Joint pdf of cluster position under (a) LOS and (b) OLOS scenarios.

path itself or reflections from the objects in the vicinity of the

RX. These reflected paths can come from a large angular range

as the RX may be surrounded by many reflecting objects. For

example, paths reflected from the right and left walls in the of-

fice can have relatively large angular values, but with a small

delay range. On the other hand, at larger delays, most paths

arriving at the RX are effectively due to back-wall reflections

(wall behind the TX). These paths have much lower powers,

longer delays and angles very similar to the LOS direction. Gen-

erally, this is a result of the regular structure of the measurement

environment [see Fig. 2(b)], which subsequently leads to the de-

pendency between the spatial and temporal domains as show in

Fig. 4(a).

Meanwhile under the OLOS scenario, the dependency be-

tween spatial and temporal domains becomes negligible. This

is mainly due to the effect of obstructions to the direct path and

some back-wall reflected paths caused by the wooden book-

shelves and metal cabinets inside the office. The absence of

these paths eliminates the clustered appearance at the short and

long delay ranges in the LOS direction. Hence, reflected paths

can come from any direction dependent on the location of the

scatterers. Over a large number of locations, this phenomenon

gives rise to the uniformly distributed cluster AOAs over the

whole delay range as shown in Fig. 4(b). A similar argument

is applicable to the NLOS scenario in which the direct path is

Fig. 5. Cluster marginal TOA pdf under (a) LOS and (b) NLOS scenarios.

completely blocked by the wall separating OFF and FOY. Due

to this fact, it is reasonable to assume that the spatial and tem-

poral domains are separable for the OLOS and NLOS scenarios

by re-expressing (3) as follows:

(4)

where is the cluster marginal AOA pdf which is approx-

imately uniform over [0,360] .

Arrival times have usually been modeled by the Poisson pro-

cesses [5], [6]. The key feature of a Poisson process is the inde-

pendence of events. However, due to the regular structure of the

indoor environments, this assumption is rarely fulfilled in prac-

tice. Thus, in this paper, a more general approach is adopted.

No a priori assumption on whether the arrival times satisfy a

Poisson process or not is made. Instead, the arrival times are

modeled by using a nonparametric estimation of the pdf based

on the measurement data. The Anderson–Darling (A-D) good-

ness-of-fit test [20] was then used to verify the fitness of the

chosen pdf. This approach also eases the extension of the pro-

posed model to incorporate the dynamic evolution of the MPCs

in the future. The cluster marginal TOA pdf, was esti-

mated by accumulating all clusters’ AOAs, . Fig. 5

shows the empirical cluster marginal TOA histogram density for
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Fig. 6. Partial cluster conditional AOA pdf for each delay step under LOS scenario.

the LOS and NLOS scenarios with their estimated pdf plotted

as solid curves. It is obvious that can be well modeled by

an exponential pdf given by

otherwise
(5)

where is the mean value.

For the LOS scenario, it is necessary to estimate the cluster

conditional AOA pdf, . We adopt a new approach, in

which the parameters of are described by an empir-

ical formula that fits the measured data. We introduce the term

partial cluster conditional AOA pdf which is associated

with as follows:

(6)

where , is the delay step

and is the number of delay steps. Here, ns was

chosen in order to ensure that the number of clusters in each

delay step, was sufficient (i.e., at least 15) for further statis-

tical analysis of . By observing the shape of for

, a known pdf is proposed to represent

the varying shape of by a change of its parameter values

(normally the mean and standard deviation). It was noted that,

at larger delay values, fewer clusters were observed. In order

to obtain a good statistical representation, the number of sam-

ples has to be sufficiently large. This was achieved by increasing

at larger delays values. Fig. 6 shows a series of graphs of

for . The value of to gen-

erate each of these graphs are also shown on the plot. In general,

these graphs show that a Gaussian pdf can provide a reasonably

good match. Therefore, a zero-mean3 Gaussian pdf is proposed

to model for which can be ex-

pressed as follows:

(7)

where is the standard deviation conditioned upon . Its

variation can be approximated by a Weibull distribution given

by

(8)

where , , and are the parameters for the

Weibull distribution which were estimated using a nonlinear

least squares regression method [21]. Notice that (8) is not the

conventional Weibull pdf as the area under the curve does not

necessarily equal one. Fig. 7 shows the empirical for

and its least squares fit for the OFF

and LAB.

3The mean value is zero because the LOS direction is taken as the reference,
i.e., at 0 .
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Fig. 7. Standard deviation of the cluster conditional AOA pdf as a function of
delay step for (a) OFF-LOS and (b) LAB-LOS environments.

C. Joint Distribution of MPCs Position Per Cluster

For the intracluster channel parameters, the 2-D joint pdf of

MPCs position per cluster, can be expressed as

(9)

where is the MPC conditional AOA pdf and

is the MPC marginal TOA pdf. Note that,

and are the relative values with respect to their

corresponding cluster position, i.e., and ,

respectively. Results from the data analysis show that

can be well modeled by an exponential pdf. This observation

is in agreement with [7].

Using a similar approach as described in Section V-B, the par-

tial MPC conditional AOA pdf, is introduced and can be

related to in a similar way as in (6) by replacing ,

and with , and , respectively. Here, ns

is used instead to ensure that a sufficient number of MPCs is

present in each delay step, for statistical analysis of .

Analysis results show that for

can be accurately modeled by a series of Laplacian pdfs with

negligible variation in their standard deviations. Fig. 8 shows

Fig. 8. Partial MPC conditional AOA pdf for two arbitrary chosen delay steps
under LOS scenario.

for two arbitrary chosen delay steps, i.e.,

ns and ns, which further verify the observa-

tion results. The value of to generate these two graphs is

also given. Recall that a cluster is a group of MPCs with similar

TOAs and AOAs. Hence, it is reasonable to assume that MPCs

that belong to a particular cluster are due to reflections from the

same object. Reflections from this object will create a fixed an-

gular spread with respect to the RX position, irrespective of the

absolute TOAs. Consequently, small changes in the path length

will give rise to an insignificant variation in the angular domain.

This explanation supports the results obtained for the constant

standard deviation Laplacian pdfs described above. Thus, it is

reasonable to assume that the intracluster spatial and temporal

domains are independent of each other by re-expressing (9) as

follows:

(10)

where is the MPC marginal AOA pdf, given by the

zero-mean Laplacian pdf

(11)
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Fig. 9. Illustration of the effect of local and distance scatterers on the AOAs
distribution at the RX.

with is the standard deviation, which is the mean value of

for . Notice that this simplifica-

tion is also applicable for the OLOS and NLOS scenarios.

Several researchers [6], [7], [16] have reported that the Lapla-

cian distribution can provide a good match to the distribution of

the MPC AOAs. However, none of them explained why this dis-

tribution was chosen in favor of the others except that it fits the

measurement data well. Here, the physical propagation mech-

anisms (local and distance scatterers effect) and the geometry

of the measurement environments are related to show they can

lead to a Laplacian shape of AOAs distribution at the RX. Fig. 9

illustrates the effect of the local and distance scatterers on the

AOAs distribution at the RX. As depicted in the figure, the RX

is surrounded by many local scatterers in its vicinity. Reflec-

tions due to the local scatterers can give rise to a large angular

spread. On the other hand, distance scatterers are located much

further away from the RX and reflected paths arriving at the RX

are primarily from one particular direction through a much nar-

rower angular spread. Assuming that there are same number of

scatterers at both the TX and RX end and each of the scatterers

give rise to the same number of paths. This phenomenon will

cause a much higher density of paths at one particular direc-

tion and lower densities at other directions, which is similar to

a Laplacian distribution with high occupancies at the center and

lower occupancies at the larger angular values. Ertel and Reed

[22] have derived AOA statistics based on uniformly distributed

scatterers in the elliptical and circular regions. It showed that

the AOA pdf for the elliptical scattering model approximates

a Laplacian distribution. This observation further substantiates

the above justification.

D. Number of Clusters and Distribution of the Number of

MPCs Per Cluster

The average number of clusters per data set was approxi-

mately nine under the LOS and OLOS scenarios and seven for

the NLOS scenario. Generally, these values are higher than

those found by others, for example only 1–2 clusters in [5]

and five clusters in [6]. The possible explanation is due to the

use of the super-resolution FD-SAGE algorithm, which has

high temporal and angular resolution capability in resolving

closely spaced MPCs. On the other hand, the number of MPCs

per cluster, can be well modeled by an exponential pdf

. In general, increases from LOS to OLOS and NLOS

scenarios and for 50% of the time, a cluster will contain less

than five MPCs which implies that the channel is dominated by

specular reflections.

The number of MPCs per cluster (thus, the number of clus-

ters) is heavily dependent on the resolution of the parameter es-

timation algorithm (i.e., FD-SAGE algorithm in this case). To

the best of the authors’ knowledge, none of the existing algo-

rithms is able to estimate all of the closely spaced MPCs within

a cluster accurately. However, the resolution achieved by the

FD-SAGE algorithm is far greater than the resolution limit im-

posed by the HIPERLAN/2 or IEEE802.11a systems. Hence,

the model proposed here is generic and suitable for system sim-

ulation of both of these standards. Furthermore, the number of

clusters and MPCs detected are also dependent on several other

factors such as the TX-RX separation and location, the phys-

ical layout of the environment, as well as the dynamic range of

the channel sounder. Fewer clusters and MPCs were observed at

large TX-RX separations or when they were located in different

rooms because at large TX-RX separations, MPCs impinging on

the RX have a weaker power. If their path weights are beyond

the useful dynamic range of the channel sounder, they will not

be observable and thus reducing the number of effective clus-

ters and MPCs. Meanwhile in a heavily cluttered environment,

more clusters and MPCs were observed because many MPCs

will undergo more complex propagation mechanisms such as

multiple-order reflections, scattering, diffraction, etc.

VI. CHANNEL POWER DENSITY SPECTRA

The channel PDS are used to characterize the channel

impulse response. For a directional channel, this is character-

ized by the power-delay-azimuth density spectrum (PDADS),

given by

(12)

where and denote the expectation and absolute value,

respectively. The clustering effect give rise to the intercluster

PDADS, and the intracluster PDADS, ,

which describe the power density of clusters and MPCs, respec-

tively, at a particular delay and angle.

Fig. 10 shows a series of superimposed curves for the

empirical intercluster partial power-azimuth density spec-

trum (PADS), and the empirical intracluster

partial PADS, for ns and

ns, respectively, under the LOS scenario.

All partial PADS are normalized so that the maximum value

is always one, which enables all curves to be superimposed

for ease of comparison. These curves reveal that the variation

of the standard deviation in both cases is negligible. Hence,

and can be simplified as two separable

functions as follows

(13)

(14)

where and are the intercluster and intra-

cluster power-delay density spectrum (PDDS), respectively,
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Fig. 10. (a) Empirical intercluster partial PADS and (b) empirical intracluster
partial PADS, under the LOS scenario.

while and are the intercluster and intra-

cluster PADS, respectively. Due to the limited amount of data

available here, this can only be an approximation. In order to

gain further insight, a larger amount of data would be required.

Both and were estimated from the mea-

surement data and were found to be accurately modeled by a

decaying exponential function as follows

(15)

(16)

where and are the rms delay spread (DS) of

and , respectively. was obtained by taking

into account all the cluster powers, and cluster TOAs,

while was obtained by accumulating all

MPCs relative powers, and MPCs relative TOAs,

. On the other hand, was found to be accu-

rately modeled by a Laplacian function under the LOS scenario

Fig. 11. (a) Intracluster PDDS and (b) intracluster PADS, under LOS scenario.

and uniformly distributed over the range of [0, 360] for the

OLOS and NLOS scenarios. Meanwhile, was found to

be well modeled by a Laplacian function for all three scenarios.

The Laplacian function for (LOS scenario only) and

are given as follows

(17)

(18)

where and is the rms azimuth spread (AS) of

and , respectively. Likewise, and

is the accumulation of at and at

, respectively. Fig. 11 shows and

for the LOS scenario. The estimated exponential and Lapla-

cian functions (dashed curves) were also plotted on the empir-

ical power spectra (solid curves) and their parameters were es-

timated using the least squares method. Exponential PDDS and

Laplacian PADS are also reported in [23] for the macrocell out-

door environment.
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TABLE I
CHANNEL PARAMETERS OF THE INTERCLUSTER AND INTRACLUSTER PDFS AND POWER DENSITY SPECTRA AND COMPARISON

WITH THE ESVM AND SRCM MODEL PARAMETERS

VII. COMPARISON WITH OTHER MODELS

Channel parameters of all of the proposed pdfs and PDS

extracted from the measurement data for all three scenarios are

given in Table I. Also listed in the table are the channel pa-

rameters for the ESVM and SRCM models introduced earlier.

Notice that both models were derived from the measurement

data collected under the NLOS scenario. Parameters given for

the ESVM model correspond to the Clyde Building [6]. In

general, the temporal parameters of the new proposed model

(NLOS scenario only) are larger than the values obtained by

both ESVM and SRCM except for , which is approximately

the same as the value from SRCM but less than the value from

ESVM. The possible explanation for these discrepancies is due

to several factors such as the physical structure and size of the

room, the TX-RX separation, as well as buildings construction.

On the other hand, the angular parameters obtained are much

smaller than the values given by both ESVM and SRCM. The

azimuth dispersion is dependent on the resolution capability of

the AOA estimation technique and the degree of clutter of the

environment under consideration. The use of a super-resolution

technique to estimate MPC AOAs in the SRCM and the model

proposed here is one reason for the smaller angular spread

obtained as compared with the ESVM model. Meanwhile, the

higher degree of clutter in the environment where the SRCM

was derived is the likely explanation for the larger azimuth

dispersion obtained.

VIII. CONCLUSION

A new statistical wideband spatio-temporal indoor channel

model has been proposed based on the measurement data col-

lected at the 5.2-GHz band in three different scenarios—LOS,

OLOS, and NLOS. The proposed model incorporates the spatio-

temporal clustering phenomenon observed in the measurement

data, as well as the correlation between these two domains. The

super-resolution FD-SAGE algorithm is deployed to extract the

MPC parameters prior to cluster identification using a nonpara-

metric density estimation procedure.

A detailed statistical characterization of the model parame-

ters was described, which include the average number of clus-

ters, the MPCs distribution within a cluster and the joint pdf

for the cluster and MPC positions. The main contribution of

the paper is the introduction of these joint pdfs which fully de-

scribe the intercluster and intracluster spatio-temporal correla-

tion properties. Such investigation has not been considered in

detail as most previous researchers have assumed these two do-

mains to be independent a priori. The modeling approach de-

scribed here combines the pdfs of the channel parameters, which

define the stochastic properties of the channel, with its channel

PDS. The channel spatial and temporal PDS are also derived

from measurement data and have been found to be well mod-

eled by exponential and Laplacian functions, respectively. By

having both the statistical pdfs and PDS, the channel can be

easily reproduced by computer simulation. The validity of the

new model is evaluated by comparing its parameters with two

other models reported in the literature. Analysis results show

that the a priori assumption concerning the independence be-

tween the spatial and temporal domains made by the ESVM

and SRCM is appropriate only under the OLOS and NLOS sce-

narios. However, under the LOS scenario these two models fail

to model the channel well due to the dependency that exists be-

tween the spatio-temporal domains.

Since the channel model developed in this work is focused on

the indoor (picocell) WLAN application based around 5 GHz,

the measurement for supporting the statistical analysis of the

channel was conducted in the 5-GHz band. Hence, the proposed

model is most suitable for simulating any HIPERLAN/2 and

IEEE802.11a systems that employ smart antenna architectures,

as well as for the evaluation of space–time processing applica-

tions in the indoor environment. However, we expect the statis-

tical property of the channel to be different for other frequency

bands (e.g., 2.4, 40, and 60 GHz) since the pathloss, AOA anal-

ysis, and radiowave propagation mechanisms are dependent on

the carrier wavelength.
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