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In recent years, more and more scholars devoted themselves to the research of the target detection algorithm due to the continuous
development of deep learning. Among them, the detection and recognition of small and complex targets are still a problem to be
solved. The authors of this article have understood the shortcomings of the deep learning detection algorithm in detecting small
and complex defect targets and would like to share a new improved target detection algorithm in steel surface defect detection. The
steel surface defects will affect the quality of steel seriously. We find that most of the current detection algorithms for NEU-DET
dataset detection accuracy are low, so we choose to verify a steel surface defect detection algorithm based on machine vision on
this dataset for the problem of defect detection in steel production. A series of improvement measures are carried out in the
traditional Faster R-CNN algorithm, such as reconstructing the network structure of Faster R-CNN. Based on the small features of
the target, we train the network with multiscale fusion. For the complex features of the target, we replace part of the conventional
convolution network with a deformable convolution network. The experimental results show that the deep learning network
model trained by the proposed method has good detection performance, and the mean average precision is 0.752, which is 0.128
higher than the original algorithm. Among them, the average precision of crazing, inclusion, patches, pitted surface, rolled in scale
and scratches is 0.501, 0.791, 0.792, 0.874, 0.649, and 0.905, respectively. The detection method is able to identify small target
defects on the steel surface effectively, which can provide a reference for the automatic detection of steel defects.

1. Introduction

It will produce a variety of defects in the steel rolling process
due to the environment, production process, and other
restrictions, which have a certain influence on the wear
resistance and toughness of steel. For example, it will
produce crack defects during steel heating due to improper
processing or the quality of the steel. It may lead to inclusion
defects on the steel surface if some nonmetallic inclusions
are rolled into the steel surface or the rolling mill envi-
ronment is not clean. It may produce plaque defects if the
steel surface has corrosion, emulsification, and other con-
ditions. Due to the high temperature and long time, it will
lead to surface defects pitted surface, that is, coarse grains
and other phenomena. There will be an oxide layer and rust
on the surface when the steel is exposed to air for a long time,
and then the steel will contact with the air at a high tem-
perature to form the rolling scale [1] in the rolling process.
The steel surface may show a scratch phenomenon because

the steel oxide scale or other foreign matters contact with the
high temperature rolled piece and scratch. The images of
several common defects on the steel surface are shown in
Figure 1, including crazing, inclusions, patches, and pitted
surface, rolled in scale and scratches.

The traditional steel surface defect detection [2-4] is
completed by manual visual inspection combined with
traditional machine vision [5-7]. There are some short-
comings in manual testing, such as low confidence and
high labor intensity. The traditional target detection [8]
selects candidate regions on a given image; then, the
features are extracted manually and the trained classifier
is used for classification. This method has high time
complexity and low precision and is difficult to meet the
actual production needs of the steel industry. With the
continuous development of the convolutional neural
network [9], target detection based on deep learning has
become the mainstream surface defect detection method.
Qu et al. [10] designed an improved Gabor filter
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FIGURE 1: Steel surface defect image. (a) Crazing, (b) inclusions, (c) patches, (d) pitted surface, (e) rolled in scale, and (f) scratches.

optimization method to complete the defect detection of
strip steel surface by comparing the shortcomings of the
traditional gray projection model and HTM model. Xu
et al. [11] proposed a rapid detection method for visual,
significant defects based on spectral residual, which re-
alized the accurate detection and classification of various
defects on the strip surface. Versaci et al. [12] was
committed to the development of ultrasonic nonde-
structive testing and classification technology based on
the continuous wave and proposed a fuzzy similarity
based method. The above detection and classification
methods for steel surface defects are mainly to extract the
shallow features of the target, so the adaptability of this
method in the practical application of steel surface defect
detection is poor because the defects on the steel surface
are complex and uncertain. In contrast, deep learning has
multilayer perceptron with multiple hidden layers, which
can form more abstract category features by combining
low-level features. Therefore, the steel surface defect
detection method based on deep learning is widely used in
steel production, and more scholars begin to improve and
perfect it [13, 14]. Fu et al. [15] proposed a convolutional
neural network model which emphasizes the training of
the underlying features and realized the rapid and ac-
curate classification of steel surface defects by combining
with multiple receptive fields. Lv et al. [16] proposed a
new end-to-end defect detection network (EDDN) to deal
with different types of steel surface defects. Marco et al.
[17] discussed the improved methods of steel surface
defect detection and classification by comparing the
traditional machine learning model and deep learning
model in steel defect classification. Song et al. [18] pro-
posed a new saliency detection method based on an
encoder-decoder residual network (EDR-Net). In the
coding stage, the full-convolution neural network is used
to extract defect features, and an attention mechanism is
integrated to accelerate the convergence of the model. As
the mainstream target detection framework, Faster
R-CNN is used in surface defect detection of steel and

metal widely. Wang et al. [19] proposed a Faster R-CNN
algorithm integrating multilevel features, which solved
the problem of detection of diverse and random defects
on the surface of metal plate and strip. Dai et al. [20]
designed a defect detection algorithm based on improved
Faster R-CNN in order to solve the problems of limita-
tions and low precision of workpiece surface defect de-
tection, which improves the detection performance of
defects compared with traditional methods. The research
of automatic detection of steel surface defects is focused
on in this paper. At the first, the ResNet-50 [21-24]
network is reconstructed by deformable convolution as
the prefeature extraction network of Faster R-CNN
[25-27]. Then, the fixed convolution layer and pooling
layer are replaced with deformable convolution layer and
deformable pooling layer. Finally, the FPN [28-30] net-
work is used for multifeature fusion, and the soft non-
maximum suppression (soft NMS) [31] is used to reduce
the confidence of the detection frame larger than the
threshold, so as to alleviate the situation of the target
missing detection. According to the test results on the
open dataset NEU-DET, the proposed algorithm can
effectively detect a variety of defects on steel surface,
which is higher than the ordinary steel surface detection
algorithms in accuracy.

2. Steel Defect Detection Method

2.1. Faster R-CNN Model. Faster R-CNN is the mainstream
two-stage target detection algorithm, which is used in face
detection and defect detection widely. The detection accu-
racy of Faster R-CNN is higher than SSD [32, 33], Fast
R-CNN [34], and other algorithms verified on multiple
datasets. Faster R-CNN algorithm structure includes feature
extraction network, region proposal network (RPN), and
regional convolution neural network mainly. The algorithm
structure is shown in Figure 2. Firstly, the features of the
input image are extracted by the feature extraction network;
then the extracted features are shared to the RPN network
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FIGURE 2: The structure diagram of Faster R-CNN.

and R-CNN network. Next, the region of interest (ROI) of
the image is extracted. Finally, the detection results are
output through ROI pooling and fully connected layer.

2.2. Steel Defect Detection Algorithm Based on Improved Faster
R-CNN. In this paper, a steel defect detection algorithm
based on the deformable network [35] and multiscale feature
fusion is proposed. Faster R-CNN is used as the basic
framework, which is composed of feature extraction network,
regional recommendation network, and detection network.
The improved method is shown in Figure 3, in which ResNet-
50 is used as a feature extraction network. Firstly, the de-
formable convolution is used to reconstruct the ResNet-50
network. Secondly, the feature pyramid network FPN is used
to fuse the multiscale features, and the fixed region of interest
(ROI) pooling layer is replaced by the variable pooling layer.
Finally, the soft nonmaximum value suppression algorithm is
used to suppress the detection frame with obvious overlap
with the highest score detection frame.

The conventional convolution network or fully connected
network will lead to the loss of partial information in infor-
mation transmission, which can not train a deep network.
However, the ResNet transmits the input information to the
output directly, which can protect the integrity of information
and reduce the learning difficulty. Therefore, ResNet-50 is
selected as the feature extraction network in this paper. A
bottleneck module is used in ResNet-50, as shown in Figure 4.
It reduces the amount of computation and speeds up the
operation by 1x 1 convolution. Firstly, a 1 x 1 convolution is
used to reduce the input dimension characteristic matrix
channel from 256 to 64. In the middle, a 3 x 3 convolution is
used to deepen the network. Finally, the dimension is restored
by the 1x 1 convolution. Aiming at the small and complex
defects on the steel surface, convolution layers of stages 2 and
stage 4 (as shown in Figure 5) are reconstructed by deformable
convolution to improve the ability to extract features.

2.3. Deformable Network. The block convolution kernels of
fixed size are often used in the conventional convolution
neural network while building model transformation, which
is usually limited to fixed geometry structure. The convo-
lution unit is weak in feature extraction of convolution layer
with fixed sampling points, which makes the network dif-
ficult to adapt to geometric transformation. To solve the
above problems, Dai et al. [36] introduced deformable
convolution and deformable pooling into convolution
neural network to enhance the modeling ability of the
network. The end-to-end training is carried out through
standard backpropagation to generate a deformable con-
volution network. There is no fixed geometric structure due
to the different shapes of steel surface defects. Therefore, the
idea of deformable convolution is introduced to reconstruct
ResNet-50 for the poor adaptability to the ability of un-
known changes and weak generalization, so as to improve
the recognition ability of the neural network for irregular
targets.

The offset variable is added to each element of the
convolution kernel in deformable convolution, which is
calculated by standard convolution unit. Therefore, the
range in the training process can be expanded by the
convolution kernel. In addition, the size and position can
be adjusted dynamically to adapt to the geometric de-
formation of different objects in accordance with the
information of the image recognized. A convolution layer
is added to the input feature map extracted by the con-
ventional convolution kernel to obtain the deformation
offset of deformable convolution. The convolution kernel
is used to generate feature map and offset to realize
synchronous learning. The various forms of the con-
ventional convolution kernel and the deformable con-
volution kernel are shown in Figure 6, where Figure 6(a)
represents the conventional convolution kernel sampling
point, Figure 6(b) represents the deformable convolution
kernel sampling point after adding offset variables,
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FiGURrE 4: The bottleneck structure of ResNet-50 network.

Figures 6(c) and 6(d) are special cases of deformable
convolution kernel sampling.

In the conventional convolution kernel, the convolution
of each pixel in the input image at position of p, is expressed
as follows:

y(po) = Y. w(p,)x(py + Py)- 1)

Prer

An offset variable {Ap, |n=1,2,...,N} is introduced
into the deformable convolution; the deformation convo-
lution of each pixel in the input image is expressed as
follows:

y(Po) = Y, w(pn)x(Po + Pu+ AP,): @)
Pner
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FIGURE 5: Reconstruction of ResNet-50 using variable convolution.

In formulas (1) and (2) [36], y is the output feature map,
x is the input feature map, p,, is the position of pixel, w is the
parameter of weight, p,, is any pixel in convolution, and Ap,,
is the offset value. The bias domain of deformable convo-
lution points to the sampling point with a strong purpose
and outputs more feature information because the bias
matrix makes the sampling position of convolution trans-
form freely, so when the effect of deformable convolution is
stacked, the feature extraction ability is greatly improved.
Taking a 3 x 3 convolution as an example, the author uses
Figure 7 to show the difference between conventional
convolution and deformable convolution. The sampling
position of the conventional convolution on the target is
fixed, as shown in Figure 7(a), while the receptive field can be
learned adaptively by the deformable convolution during
calculation in Figure 7(b), which has a strong adaptive
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Ficure 7: The calculation process of conventional and deformable convolution.

extraction ability for complex and irregular targets. It can be
adjusted adaptively under the shape and size of the target.
Therefore, this adaptive learning receptive field is very
necessary in steel defect detection.

ROI pooling module is introduced to maximize the pool
of the proposed regions after segmentation in order to map

the input regions of different sizes into feature vectors of the
same length and output a fixed size feature map. The fixed
ROI pooling module is replaced with the deformable ROI
pooling module in the proposed method in order to enhance
the modeling ability of the network for geometric trans-
formation and increase the pool area of defects to obtain the



location accurately of complex defects on the steel surface.
The network structure of deformable ROI pooling is shown
in Figure 8.

The regions of interest are divided into blocks of k x k by
ROI pooling, and the size of each area is w x h. The output of
normal ROI pooling [36] is as follows:

Z x(po+ P)_

ni’j

y (i j) = (3)

pebin (i,5)

As can be seen from Figure 7, in the deformable ROI
pooling, ROI pooling generates convolution feature graphs
and then generates regularized offsets with the size of 2 x
k-k at each position through the full-connection layer.
Finally, the region with enhanced offset is pooled to generate
the output feature map. Referring to the idea of deformable
convolution, the expression of deformable ROI pooling [36]
is as follows:

yop- Y Aprering)

pebin(i,j) Nij

where y (i, j) is the output characteristic graph after pooling,
x is the input feature map, p,, is the upper left corner pixel of
RO, p is a pixel at any position, bin (i, j) is the set of
horizontal and vertical coordinates of the pixel, n; ; is the
pixel value of the grid, and Ap; ; is the offset at each location,
where 0<14, j<k.

2.4. Multiscale Feature Fusion. The features of the last layer
are used in RPN because the top-level features of the net-
work have the strongest semantic information in Faster
R-CNN, but this idea is not suitable for small target de-
tection. The feature pyramid network FPN is introduced into
Faster R-CNN to perform degree scale fusion operation on
the feature map in order to improve the ability of the
network to detect small area defects on the steel surface. The
structure is shown in Figure 9.

The characteristics of all layers are integrated into FPN
and the feature activated output of the last residual structure
of conv2_x, conv3_x, conv4_x, and conv5_x phases in
ResNet-50 network is used as input. The channel number of
C2-C5 is reduced to 256 by the 1 x 1 convolution, and M2-
M5 are obtained. The output P2-P5 of FPN is obtained by
adding the same size of shallow feature map and deep feature
map by upsampling, and then the 3 x 3 convolution is used.
The P6 is obtained by downsampling with the two largest
pools on P5, and the multiscale fusion feature combination is
output. The target candidate frame of interest is generated by
using the fused features in RPN, and the detection results are
obtained by classification.

2.5. Soft Nonmaximum Suppression. Nonmaximum sup-
pression (NMS) is used as a postprocessing method com-
monly to eliminate duplicate frames and reduce the false
detection rate in the target detection. However, other similar
targets attached to the box with higher prediction score are
removed by the NMS, which will lead to missed detection
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and false detection of similar targets with close proximity
and overlapping. The reduction range of the prediction
accuracy of dense targets nearby is determined by soft NMS
in light of the intersection over union (IOU) [36] of the
highest score box, so as to improve the prediction accuracy
of dense targets. For example, the IOU of the detection
frames A and B [35] is the following:

ANB S

10U = = ,
AUB S, +S5-S,

(5)

where S, Sy are the areas of the detection frame A and B,
respectively, and S, is the overlapping area of the detection
frames A and B. The expressions of traditional NMS and Soft
NMS algorithms are as follows [35]:

S, 10U (M, b)) < N,,
Si = (6)
0, IOU(M,b;) > N,,
_[S,10U(M,b)< N, -
"7 (1-10U(M, b,)), IOU (M, b,) > N,,

where S; is the score of the detection box i, M is the
maximum score box, b; is the collection of detection frames i,
N, is the threshold set. The NMS sets the score of the de-
tection frame whose IOU is greater than the threshold value
to 0, while the soft NMS attenuates the score of the detection
frame whose IOU is greater than the threshold value, which
can alleviate the problems of missed detection and false
detection of targets. The IOU threshold of soft NMS is 0.5
and the minimum score is 0.05.

2.6. Experimental Results and Analysis

2.6.1. Experimental Environment and Parameter Setting.
The experimental platform is shown in Table 1 and the
initialization model parameters of the experiment are shown
in Table 2.

The average precision (AP) is used as the evaluation
index of each defect detection in this experiment after the
model training is completed, and the mean average precision
(mAP) is used as the evaluation index of the whole model
performance. The definitions of precision (P), AP, and mAP
[37] are shown as follows:

TP
pP-—— (8)
TP + FP
1
AP = H Z Pinterp (r)> 9)
0,0.1,0.2,,1}
AP ! (10)
m = o 10
n; Xt AP,

where TP is the number of samples with correct detection,
FP is the number of negative samples with detection, and r is
the value of recall (R). The definition of recall rate is shown in
formula (10), pjperp () can be expressed as formula (11) [37],



Computational Intelligence and Neuroscience

Input feature map

—
Fully connected layer

Deformable pooling

I

X
|
R

Offsets

“ |V |\

Output feature map

FIGURE 8: The network structure of deformable pooling.

conv5

& stride 32 1x1

convl
stride 2

Input image

FIGURE 9: The network structure diagram of multiscale feature fusion.

j is the category index, ; is the total number of categories,
and AP; is the average precision of each category:

TP

R=—— 11

TP + EN (1)

_ maxp(?) (12)
Pinterp(r) T Trer

where FN is the number of samples with error detection and
p(7) is the recall rate of 7.

The results and discussion may be presented separately,
or in one combined section, and may optionally be divided
into headed subsections.

2.7. Analysis of Experimental Results. The proposed algo-
rithm is verified on the open dataset of steel defects, and the
experimental results are shown in Table 3. The test dataset is
NEU-DET, which is the open dataset of Northeast Uni-
versity. There are 1800 pictures in total. Among them, there
are 300 pictures of six kinds of defects. The six defects are
marked as “crazing,” “inclusion,” “patches,” “pitted_
surface,” “rolled-in_scale,” and “scratches.” The test results
are shown in Figure 10, and four different pictures are listed
for each defect result.

It is not hard to see that the average accuracy of “scratch”
is the highest and the “pitted_ surface” is the second in
Table 3, which can reach 90.5% and 87.4%, respectively. The
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TaBLE 1: Hardware and software parameters of the experimental platform.

Name Parameter

CPU Intel core i7-6800 @ 3.4 GHz

GPU NVIDIA GTX 1080Ti

Operating system
Deep learning framework

Linux Ubuntu 16.04
PyTorch 1.3.1

Language Python 3.7.5
TABLE 2: Setting of the training parameter value.

Parameters Learning rate Weight decay Momentum Epochs Pictures/GPU Threads/GPU
Settings 0.02 0.0001 0.9 20 2 2

TaBLE 3: The experimental data of the algorithm on all defects.
Defects Crazing Inclusion Patches Pitted_surface Rolled-in_scale Scratches
AP 0.501 0.791 0.792 0.874 0.649 0.905
mAP 0.752

average accuracy of “crashing” is the lowest, which is 50.1%,
and the overall mean average accuracy is 75.2%. As shown
in Figure 10, the defect of “inclusion,” “patches,”
“pitted_surface,” “rolled-in_scale,” and “scratches” can be
detected and located accurately. The proposed algorithm still
has the possibility of optimizing the detection of small
targets due to the fuzzy and small size of crazing defects and
a small number of missed detection. It can be seen from
Figures 10(a)-10(c) that the defect target can also be de-
tected in the case of light or dark, which indicates that the
algorithm proposed in this paper is also suitable for defect
detection on steel surface under complex background.
Generally speaking, the proposed algorithm has high test
effectiveness on the NEU-DET dataset.

2.8. Ablation Experiments. The proposed scheme is com-
pared with different improved schemes on the same dataset
in order to verify the effectiveness of it. The specific im-
provement schemes are shown in Table 4.

The five specific schemes in Table 4 are as follows:

(1) Scheme 1 is the original Faster R-CNN model.

(2) Scheme 2 uses ResNet-50 as the feature extraction
network of Faster R-CNN.

(3) Scheme 3 introduces a deformable network on the
basis of ResNet-50 as the feature extraction network
of Faster R-CNN.

(4) Scheme 4 adds the feature pyramid network on the
basis of Scheme 5.

(5) Scheme 5 replaces nonmaximum suppression
scheme with a soft nonmaximum on the basis of
Scheme 4.

The final test results of the four schemes are shown in
Figure 11.

The experimental results show that Schemes 1, 2, and 3
have missed detection for six kinds of defects, and the

detection accuracy is low. Scheme 2 has overlapping de-
tection frames for “inclusion” and “pitted_surface” defects,
but the score of detection frames on these two defects is
higher than that of Scheme 1. Scheme 3 has obvious
overlapping detection frames for “patches” and “pitted_-
surface”, but the overall detection effect is better than
Schemes 1 and 2. The defects of “inclusion,” “roll-in_scale,”
and “scratches” are all detected in Scheme 4, but the
“crashing” is still missed. The NMS algorithm was replaced
by soft NMS on the basis of Scheme 4 in Scheme 5 to at-
tenuate the nonmaximum detection frame score, rather than
removing it completely by NMS. Therefore, the non-
maximum score detection frame is less suppressed com-
pared with Schemes 1-3, and the detection of crazing defects
is more accurate. The specific test results are shown in
Table 5.

In Table 5, a is “crazing,” b is “inclusion,” c is “patches,” d
is “pitted_surface,” e is “rolled-in_scale,” f is “scratches.”
When the original Faster R-CNN model (Scheme 1) is used,
the overall mean average accuracy is 62.4%. After replacing
the original feature extraction network with ResNet-50, the
average overall accuracy of Scheme 2 is 1.9% higher than that
of Scheme 1, in which the average accuracy of “crashing,”
“roll-in_scale,” and “scratches” is not improved significantly,
but the accuracy of the pitted surface is improved to a certain
extent. The mean average accuracy of Scheme 3 is 9% higher
than that of the original Faster R-CNN, and 7.1% higher than
that of Scheme 2, in which the average accuracy of
“crashing” is the highest, which is 20.6%. The mean average
accuracy of Scheme 4 is 12.1% higher than that of the
original Faster R-CNN model, 3.1% higher than that of
Scheme 3, and the average accuracy of “pitted_surface” is
increased by 7.2%. The proposed algorithm (Scheme 5) is
better than the original Faster R-CNN model and the av-
erage accuracy of “crashing” is reduced by 1.5% compared
with Scheme 4, but the average accuracy of other defects is
improved. The mean average accuracy is increased by 10.9%,
3.8%, and, 0.7%, respectively, compared with Schemes 2-4.
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FiGure 10: The detection results of the proposed algorithm on all defects. (a) Crazing. (b) Inclusion. (c) Patches. (d) Pitted_surface. (e)
Rolled-in_scale. (f) Scratches.

TaBLE 4: Five schemes based on different improvement methods.

Schemes ResNet-50 Deformable networks FPN Soft NMS
1 X X X X
2 N X X X
3 v v X X
4 J v y x
5 J J J J

Crazing Inclusion Patches Pitted_surface Rolled-in_scale Scratches

<
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Scheme 2 |

Scheme 3 |

Scheme 4

Scheme 5

FiGure 11: The results of different schemes.
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TaBLE 5: The data results comparison of five schemes.

Schemes AP mAP mAP increasing
a b c d e f

1 0.250 0.652 0.752 0.735 0.545 0.811 0.624 -

2 0.252 0.677 0.772 0.789 0.555 0.816 0.643 +0.019

3 0.458 0.738 0.841 0.782 0.583 0.881 0.714 +0.090

4 0.516 0.754 0.768 0.854 0.610 0.902 0.745 +0.121

5 0.501 0.791 0.792 0.874 0.649 0.905 0.752 + 0.128

TaBLE 6: The algorithms of SSD, RetinaNet, and Cascade R-CNN are compared with the experimental results of the proposed algorithm.

Algorithms AP mAP mAP increasing
a b c e f

SSD 0.302 0.522 0.620 0.390 0.709 0.515 0.510 +0.242

RetinaNet 0.391 0.676 0.772 0.711 0.546 0.542 0.606 +0146

Cascade R-CNN 0.321 0601 0.794 0.723 0.509 0.805 0.626 +0.126

This paper 0.501 0.791 0.792 0.874 0.649 0.905 0.752 -

We can see that the introduction of deformable convolution
and deformable ROI pooling has a great impact on the
network under the data in Table 5, which can improve the
network’s ability to extract complex features. It can be seen
that the idea of fusing multiscale features with FPN has a
certain positive impact on the network from the data of
Scheme 4, and the effect is better than that of the model
obviously with only deformable network. The scheme of
replacing NMS with soft NMS reduces the average accuracy
of crazing defects but improves the average accuracy on the
whole. It also has a certain attenuation on the suppression of
nonhighest detection frame and reduces the situation that
defects with the large overlapping area are missed. Therefore,
the combination of the deformable network and multiscale
feature fusion scheme can improve the detection perfor-
mance of the model.

2.9. Algorithm Comparison. The proposed algorithm is
compared with other mainstream target detection algo-
rithms in order to further verify the advantages of the
proposed algorithm, as shown in Table 6. The comparison
algorithms include single-stage target detection algorithms
SSD and RetinaNet [38, 39] and double-stage target de-
tection algorithm Cascade R-CNN [40].

In Table 6, a is “crazing,” b is “inclusion,” c is “patches,” d
is “pitted_surface,” e is “rolled-in_scale,” fis “scratches.” It
can be seen that the overall mean average accuracy of defects
in SSD algorithm is only 51.0% from the data in Table 6,
which cannot identify multiple defects effectively. The
overall mean average accuracies of RetinaNet and Cascade
R-CNN algorithms are all about 10% higher than that of SSD
algorithm. The proposed algorithm has a great improvement
in the detection accuracy of “crashing,” “inclusion,” “pit-
ted_surface,” and “scratches” compared with other main-
stream algorithms. The mean average accuracy of the
proposed algorithm is 24.2%, 14.6%, and 12.6% higher than
that of SSD, RetinaNet, and Cascade R-CNN, respectively. It

shows that the proposed algorithm has a certain break-
through in steel surface defect detection.

3. Conclusion

The surface defects of steel are taken as the research object in
this paper. A new defect detection algorithm based on a
deformable network combined with multiscale feature fu-
sion algorithm is proposed in this paper in order to solve the
problem of small size and complex shape of steel defect. (1)
The deformable convolution is used to reconstruct the
feature extraction network in order to enhance the network’s
ability to extract features. (2) Feature pyramid network is
introduced to fuse the multiscale feature graph output to
extract the deep semantic features of defect features. (3) The
pooling of ROI is replaced by deformable pooling of ROI in
order to improve the perception ability of the network to
target defect location information. (4) The soft NMS method
is used to alleviate the false detection and missing detection
of the target. The proposed algorithm and other improved
methods are tested on the NEU-DET dataset, and the de-
tection effect is better than other improved methods. At the
same time, the superiority of the proposed algorithm is
verified by comparing with other mainstream target de-
tection algorithms. The processed images in this paper could
be affected by uncertainty. Therefore, it is necessary to use
soft computing technology to improve image quality [41] in
the future research. In addition, the detection time of this
algorithm is long, so we need to further optimize the al-
gorithm in the future to reduce the detection time. Based on
the optimization of the algorithm, the fuzzy and similar
defects will be deeply studied in order to improve the ac-
curacy of defect detection further.
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