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Abstract. New techniques for more accurate unsupervised segmenta-
tion of lung tissues from Low Dose Computed Tomography (LDCT) are
proposed. In this paper we describe LDCT images and desired maps
of regions (lung and the other chest tissues) by a joint Markov-Gibbs
random field model (MGRF) of independent image signals and interde-
pendent region labels but focus on most accurate model identification.
To better specify region borders, each empirical distribution of signals
is precisely approximated by a Linear Combination of Discrete Gaus-
sians (LCDG) with positive and negative components. We modify a con-
ventional Expectation-Maximization (EM) algorithm to deal with the
LCDG and develop a sequential EM-based technique to get an initial
LCDG-approximation for the modified EM algorithm. The initial seg-
mentation based on the LCDG-models is then iteratively refined using
a MGRF model with analytically estimated potentials. Experiments on
real data sets confirm high accuracy of the proposed approach.

1 Introduction

Lung Cancer remains the leading cause of cancer-related deaths in the US. In
2006, there were approximately 174,470 new cases of lung cancer and 162,460
related deaths [1]. Early diagnosis of cancer can improve the effectiveness of
treatment and increase the patient’s chance of survival. Segmentation of the lung
tissues is a crucial step for early detection and diagnosis of lung nodules. Accurate
segmentation of lung tissues from LDCT images is a challenging problem because
some lung tissues such as arteries, veins, bronchi, and bronchioles are very close
to the chest tissues. Therefore, the segmentation cannot be based only on image
signals but have to account also for spatial relationships between the region
labels in order to preserve the details of the lung region.

In the literature, there are many techniques developed for lung segmenta-
tion in CT images. Sluimer et al. [2] presented a survey on computer analysis
of the lungs in CT scans. This survey addressed segmentation of various pul-
monary structures, registration of chest scans, and their applications. Hu et al.
[3], proposed an optimal gray level thresholding technique which is used to se-
lect a threshold value based on the unique characteristics of the data set. A
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segmentation-by-registration scheme was proposed by Sluimer et al. [4] for auto-
mated segmentation of the pathological lung in CT. For more on lung segmen-
tation techniques, refer, e.g., to the survey by Sluimer et al. [2].

2 Joint Markov-Gibbs Model of LDCT Lung Images

Let R = {(i, j, z) : 1 ≤ i ≤ I, 1 ≤ j ≤ J, 1 ≤ z ≤
Z} denote a finite arithmetic grid supporting
grayscale LDCT images g : R → Q and their
region maps m : R → X. Here, Q = {0, . . . , Q−
1} and X = {1, . . . , X} are the sets of gray levels
and region labels, respectively, where Q is the
number of gray levels and X is the number of
image classes to separate by segmentation.

The MGRF model of images to segment is
given by a joint probability distribution of LDCT
images and desired region maps P (g,m) =
P (m)P (g|m). Here, P (m) is an unconditional
distribution of maps and P (g|m) is a condi-
tional distribution of images, given a map. The
Bayesian MAP estimate of the map, given the

Fig. 1. Illustration of joint Markov-
Gibbs model of LDCT lung images

image g, m∗ = argmaxm L(g,m) maximizes the log-likelihood function:

L(g,m) = log P (g|m) + log P (m) (1)

In this work we focus on accurate identification of the spatial interaction be-
tween the lung voxels (P (m)) and the intensity distribution for the lung tissues
(P (g|m)) as shown in Fig. 1.

2.1 Spatial Interaction Model of LDCT Images

Generic Markov-Gibbs model of region maps [5] that accounts for only pair-
wise interactions between each region label and its neighbors has generally an
arbitrary interaction structure and arbitrary Gibbs potentials identified from
image data. For simplicity, we restrict the interactions to the nearest voxels (26-
neighborhood) and assume, by symmetry considerations, that the interactions
are independent of relative region orientation, are the same for all classes, and
depend only on intra- or inter-region position of each voxel pair (i.e. whether
the labels are equal or not). Under these restrictions, the model is similar to the
conventional auto-binomial ones [5] and differs only in that the potentials are
not related to a predefined function and have analytical estimates.

The symmetric label interactions are three-fold: the closest horizontal-vertical-
diagonal in the current slice (hvdc), the closest horizontal-vertical-diagonal in the
upper slice (hvdu), and the closest horizontal-vertical-diagonal in the lower slice
(hvdl). The potentials of each type are bi-valued because only coincidence or dif-
ference of the labels are taken into account. Let Va = {Va(x, χ) = Va,eq if x = χ

and Va(x, χ) = Va,ne if x �= χ: x, χ ∈ X} denote bi-valued Gibbs potentials
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describing symmetric pairwise interactions of type a ∈ A = {hvdc, hvdu, hvdl}
between the region labels. Let Nhvdc = {(1, 0, 0), (0, 1, 0), (−1, 0, 0), (0, −1, 0)},
Nhvdu = {(0, 0, 1), (−1, −1, 1), (−1, 1, 1), (1, −1, 1), (1, 1, 1)}, and Nhvdl = {(0, 0,

−1), (−1, −1, −1), (−1, 1, −1), (1, −1, −1), (1, 1, −1)}be subsets of inter-voxel off-
sets for the 26-neighborhood system. Then the Gibbs probability distribution of
region maps is as follows:

P (m) ∝ exp

⎛

⎝

∑

(i,j,z)∈R

∑

a∈A

∑

(ξ,η,ζ)∈Na

Va(mi,j,z, mi+ξ,j+η,z+ζ)

⎞

⎠ (2)

To identify the MGRF model described in Eq. (2), we have to estimate the
Gibbs Potentials V. In this paper we introduce a new analytical maximum like-
lihood estimation for the Gibbs potentials1.

Va,eq =
X2

X − 1

(

f ′
a(m) −

1

X

)

and Va,ne =
X2

X − 1

(

f ′′
a (m) − 1 +

1

X

)

(3)

where f ′
a(m) and f ′′

a (m) denote the relative frequency of the equal and non-equal
pairs of the labels in all the equivalent voxel pairs {((i, j, z), (i+ ξ, j + η, z + ζ)) :
(i, j, z) ∈ R.; (i + ξ, j + η, z + ζ) ∈ R; (ξ, η, ζ) ∈ Na}, respectively.

2.2 Intensity Model of LDCT Lung Images

Let q; q ∈ Q = {0, 1, . . . , Q − 1}, denote the Q-ary gray level. The discrete
Gaussian is defined as the probability distribution Ψθ = (ψ(q|θ) : q ∈ Q) on Q

such that ψ(q|θ) = Φθ(q+0.5)−Φθ(q−0.5) for q = 1, . . . , Q−2, ψ(0|θ) = Φθ(0.5),
ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5) where Φθ(q) is the cumulative Gaussian function
with a shorthand notation θ = (µ, σ2) for its mean, µ, and variance, σ2.

We assume the number K of dominant modes, i.e. regions, objects, or classes
of interest in a given LDCT images, is already known. In contrast to a conven-
tional mixture of Gaussians and/or other simple distributions, one per region, we
closely approximate the empirical gray level distribution for LDCT images with
an LCDG having Cp positive and Cn negative components such that Cp ≥ K:

pw,Θ(q) =

Cp
∑

r=1

wp,rψ(q|θp,r) −

Cn
∑

l=1

wn,lψ(q|θn,l) (4)

under the obvious restrictions on the weights w = [wp,., wn,.]: all the weights are
non-negative and

Cp
∑

r=1

wp,r −

Cn
∑

l=1

wn,l = 1 (5)

To identify the LCDG-model including the numbers of its positive and negative
components, we modify the EM algorithm to deal with the LCDG.

1 The proof is provided on our web site: http://uofl.edu/speed/bioengineering/faculty
/bioengineering-full/dr-ayman-el-baz/elbazlab.html.
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First, the numbers Cp − K, Cn and parameters w, Θ (weights, means, and
variances) of the positive and negative DG components are estimated with a
sequential EM-based initializing algorithm. The goal is to produce a close initial
LCDG-approximation of the empirical distribution. Then under the fixed Cp and
Cn, all other model parameters are refined with an EM algorithm that modifies
the conventional one in [6] to account for the components with alternating signs.

Sequential EM-based initialization: Sequential EM-based initialization
forms an LCDG-approximation of a given empirical marginal gray level dis-
tribution using the conventional EM-algorithm [6] adapted to the DGs. At the
first stage, the empirical distribution is represented with a mixture of K posi-
tive DGs, each dominant mode being roughly approximated with a single DG.
At the second stage, deviations of the empirical distribution from the dominant
K-component mixture are modeled with other, “subordinate” components of
the LCDG. The resulting initial LCDG has K dominant weights, say, wp,1, . . . ,

wp,K such that
∑K

r=1 wp,r = 1, and a number of subordinate weights of smaller

values such that
∑Cp

r=K+1 wp,r −
∑Cn

l=1 wn,l = 0.
The subordinate components are determined as follows. The positive and

negative deviations of the empirical distribution from the dominant mixture are
separated and scaled up to form two new “empirical distributions”. The same
conventional EM algorithm is iteratively exploited to find the subordinate mix-
tures of positive or negative DGs that approximate best the scaled-up positive
or negative deviations, respectively. The sizes Cp − K and Cn of these mixtures
are found by sequential minimization of the total absolute error between each
scaled-up deviation and its mixture model by the number of the components.
Then the obtained positive and negative subordinate models are scaled down
and then added to the dominant mixture yielding the initial LCDG model.

Modified EM algorithm for LCDG: Modified EM algorithm for LCDG
maximizes the log-likelihood of the empirical data by the model parameters
assuming statistically independent signals:

L(w,Θ) =
∑

q∈Q

f(q) log pw,Θ(q) (6)

A local maximum of the log-likelihood in Eq. (6) is given with the EM process

extending the one in [6] onto alternating signs of the components. Let p
[m]
w,Θ(q) =

∑Cp

r=1 w
[m]
p,r ψ(q|θ

[m]
p,r )−

∑Cn

l=1 w
[m]
n,l ψ(q|θ

[m]
n,l ) denote the current LCDG at iteration

m. Relative contributions of each signal q ∈ Q to each positive and negative DG
at iteration m are specified by the respective conditional weights

π[m]
p (r|q) =

w
[m]
p,r ψ(q|θ

[m]
p,r )

p
[m]
w,Θ(q)

; π[m]
n (l|q) =

w
[m]
n,l ψ(q|θ

[m]
n,l )

p
[m]
w,Θ(q)

(7)
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such that the following constraints hold:

Cp
∑

r=1

π[m]
p (r|q) −

Cn
∑

l=1

π[m]
n (l|q) = 1; q = 0, . . . , Q − 1 (8)

The following two steps iterate until the log-likelihood changes become small:

E– step[m+1]: Find the weights of Eq. (7) under the fixed parameters w[m],
Θ[m] from the previous iteration m, and

M– step[m+1]: Find conditional MLEs w[m+1], Θ[m+1] by maximizing L(w,Θ)
under the fixed weights of Eq. (7).

Considerations closely similar to those in [6] show this process converges to a
local log-likelihood maximum. Let the log-likelihood of Eq. (6) be rewritten in
the equivalent form with the constraints of Eq. (8) as unit factors:

L(w[m],Θ[m]) =

Q
∑

q=0

f(q)

⎡

⎣

Cp
∑

r=1

π[m]
p (r|q) log p[m](q) −

Cn
∑

l=1

π[m]
n (l|q) log p[m](q)

⎤

⎦(9)

Let the terms log p[m](q) in the first and second brackets be replaced with the

equal terms log w
[m]
p,r + log ψ(q|θ

[m]
p,r )− log π

[m]
p (r|q) and log w

[m]
n,l + log ψ(q|θ

[m]
n,l )−

log π
[m]
n (l|q), respectively, which follow from Eq. (7). At the E-step, the condi-

tional Lagrange maximization of the log-likelihood of Eq. (9) under the Q restric-

tions of Eq. (8) results just in the weights π
[m+1]
p (r|q) and π

[m+1]
n (l|q) of Eq. (7)

for all r = 1, . . . , Cp; l = 1, . . . , Cn and q ∈ Q. At the M-step, the DG weights

w
[m+1]
p,r =

∑

q∈Q f(q)π
[m+1]
p (r|q) and w

[m+1]
n,l =

∑

q∈Q f(q)π
[m+1]
n (l|q) follow from

the conditional Lagrange maximization of the log-likelihood in Eq. (9) under the
restriction of Eq. (5) and the fixed conditional weights of Eq. (7). Under these lat-
ter, the conventional MLEs of the parameters of each DG stem from maximizing
the log-likelihood after each difference of the cumulative Gaussians is replaced
with its close approximation with the Gaussian density (below “c” stands for
“p” or “n”, respectively):

µ
[m+1]
c,r = 1

w
[m+1]
c,r

∑

q∈Q

q · f(q)π
[m+1]
c (r|q)

(σ
[m+1]
c,r )2 = 1

w
[m+1]
c,r

∑

q∈Q

(

q − µ
[m+1]
c,i

)2

· f(q)π
[m+1]
c (r|q)

This modified EM-algorithm is valid until the weights w are strictly positive.
The iterations should be terminated when the log-likelihood of Eq. (6) does not
change or begins to decrease due to accumulation of rounding errors.

The final mixed LCDG-model pC(q) is partitioned into the K LCDG-
submodels P[k] = [p(q|k) : q ∈ Q], one per class k = 1, . . . , K, by associat-
ing the subordinate DGs with the dominant terms so that the misclassification
rate is minimal.
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The whole iterative segmentation process is as follows:

◦ Initialization: Find an initial map by the voxelwise Bayesian MAP classi-
fication of a given LDCT image after initial estimation of X LCDG-models
of signals of each object class represented by one of the dominant modes.

◦ Iterative refinement: Refine the initial map by iterating these two steps:
1. Estimate the potential values for region map model using Eq. (3).
2. Re-collect the empirical gray level densities for the current regions, re-

approximate these densities, and update the map.

3 Experimental Results and Conclusions

Experiments were conducted with the Low Dose Computed Tomography
(LDCT) images acquired with a multidetector GE Light Speed Plus scanner
(General Electric, Milwuakee, USA) with the following scanning parameters:
slice thickness of 2.5 mm reconstructed every 1.5 mm, scanning pitch 1.5, 140
KV, 100 MA, and F.O.V 36 cm. The size of each 3D data set is 512× 512× 182.
The LDCT images contain two classes (K = 2), namely, darker lung tissues and
brighter chest region. A typical LDCT slice, its empirical marginal gray level
distribution f(q), and the initial 2-component Gaussian dominant mixture p2(q)
are shown in Fig. 2. Figure 3 presents the final estimated LCDG-model using
the proposed modified EM-algorithm. The final LCDG of each class are obtained
with the best separation threshold t = 109 as shown in Fig 3(c).

Table 1. Accuracy of our segmentation in
comparison to five algorithms (IT, MRS [7],
ICM [8], the gradient-based deformable model
DMG [9], and the deformable model based on
the gradient vector flow GVF [10])

Error, % Segmentation algorithm
Our IT MRS ICM DMG GVF

Minimum 0.1 2.81 1.90 2.03 10.1 4.10
Maximum 2.15 21.9 9.80 17.1 29.1 18.2
Mean 0.32 10.9 5.10 9.80 15.1 13.2
St.dev. 0.71 6.04 3.31 5.11 7.77 4.81

Significance
less than 10−4 10−3 10−4 10−4 10−4
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0.005

0.01

0.015
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p
2
(q)

q 

(a) (b)

Fig. 2. Typical LDCT scan slice
(a) and the empirical distribution
f(q) and the estimated dominant 2-
component mixture p2(q) (b)

The region map obtained first with only the class LCDG-models is further
refined using the iterative segmentation algorithm. Changes in the likelihood
L(g,m) become very small after 12 iterations. For this map the initial estimated
parameters are Va,eq = −Va,ne = 1.02, and the final estimated parameters are
Va,eq = −Va,ne = 1.67. The final region map produced with these parameters
using the Metropolis voxelwise relaxation is shown in Fig. 4. For comparison,
Fig. 4 presents also the initial region map, the map refined with the randomly
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Fig. 3. Final 2-class LCDG-model overlaying the empirical density (a), the LCDG model
components (b), and the estimated density for each class using LCDG-models (c)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Initial (a) and final (b) segmentation by the proposed approach (the final error
1.1% comparing to the ground truth); initial (c) and final (d) segmentation using the
conventional normal mixture obtained by the EM algorithm (the final error 5.1%);
refined lung regions (e) obtained from (a) using the randomly chosen Gibbs potentials
of the map model (the final error 1.8%); (f) best segmentation obtained by the MRS
algorithm with the potential values 0.3 and three level of resolution (error 2.3%); (g)
best segmentation obtained by the ICM algorithm with the potential values 0.3 (error
2.9%), and the ground truth (h) produced by a radiologist

selected potentials, segmentation obtained by MRS algorithm [7], segmentation
obtained by ICM algorithm [8], and the “ground truth” segmentation done by
a radiologist. More 3D segmentation results are shown in Fig. 5.

The above experiments, as well as additional experiments with 1820 different
bi-modal LDCT slices, have shown that our segmentation yields much better
results than several more conventional algorithms. As indicated in Table 1, the
most accurate algorithm among these latter algorithms, namely, the MRS [7],
has the larger error range of 1.9 – 9.8% the mean error of 5.1% with respect to
the ground truth. Our segmentation has the notably smaller error range of 0.1 –
2.15% and its mean error of 0.32% is more than fifteen times less.

Our experiments show that the proposed accurate identification of the
Markov–Gibbs random field model demonstrates promising results in segment-
ing the lung region from LDCT images. Our present implementation on C++
programming language on the Intel quad processor (3.2GHz each) with 16 GB
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Fig. 5. Results of 3D Lung segmentation projected onto 2D axial (A), coronal (C),
and saggital (S) planes for visualization: 2D profiles of the original LDCT images (a),
our segmentation (b), IT segmentation, and (d) the radiologist’s segmentation. Note
that our segmentation errors are only around the outer edge (Error 0.79%. and the
IT-based segmentation error is 4.57%. The errors are highlighted by yellow color.

memory and 2 TB hard drive with RAID technology takes about 296 sec for
processing 182 LDCT slices of size 512×512 pixels each, i.e about 1.65 sec
per slice.
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