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Abstract

The goal of the current study was to introduce a new stopping rule for computerized adaptive
testing. The predicted standard error reduction stopping rule (PSER) uses the predictive posterior
variance to determine the reduction in standard error that would result from the administration of
additional items. The performance of the PSER was compared to that of the minimum standard
error stopping rule and a modified version of the minimum information stopping rule in a series of
simulated adaptive tests, drawn from a number of item pools. Results indicate that the PSER
makes efficient use of CAT item pools, administering fewer items when predictive gains in
information are small and increasing measurement precision when information is abundant.
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According to Wainer (2000) an adaptive test can be considered complete after a
predetermined number of items have been administered, when a predetermined level of
measurement precision has been reached, or when a predetermined length of time has
elapsed. The two most commonly used methods for determining when a computerized
adaptive test is complete are the fixed length and variable length stopping rules.

Under a fixed length stopping rule, an adaptive test is terminated when a predetermined
number of items have been administered. Accordingly, all examinees are administered the
same number of items, regardless of the degree of measurement precision achieved upon
termination of the test. The primary advantage of the fixed length stopping rule is its
simplicity. However, one consequence of the implementation of the fixed length stopping
rule is that examinees will be measured with different degrees of precision, with larger
measurement error typically occurring at extreme trait levels. Additionally, a fixed length
stopping rule may limit the efficiency of an adaptive test through the unnecessary
administration of items that contribute little information about examinee trait level.

In contrast, variable length stopping rules typically seek to achieve a certain degree of
measurement precision for all examinees, even when doing so means that some examinees
are given more items than others. Two types of variable length stopping rules have been
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used (Dodd, Koch, & De Ayala, 1993). These are the standard error (SE) stopping rule and
the minimum information stopping rule. Of these, the most commonly used has been the SE
stopping rule, which terminates an adaptive test when a predetermined standard error has
been reached for the most recent examinee trait estimate (Boyd, Dodd, & Choi, 2010). One
advantage of the SE stopping rule is that, when the item pool information function if
relatively flat, it typically yields near equivalent measurement precision across the examinee
trait continuum. A disadvantage of the SE stopping rule is that it may limit the efficiency of
an adaptive test by unnecessarily administering additional items to examinees for which a
predetermined standard error criterion cannot be met. This negates the trademark efficiency
of the adaptive test and results in an unnecessary testing burden for examinees, which may
be especially undesirable when the adaptive test serves as a brief screening device, as is the
case for some medical and psychiatric CAT applications (Gardner et al., 2004). A second
potential disadvantage of the SE stopping rule is that it may limit measurement precision by
terminating the adaptive test, even though informative items are still available for
administration. In health outcomes research a SE stopping rule that is conditional on the trait
estimate has been used because there is a desire to measure individuals with severe medical
problems more accurately than those with less severe symptoms (Ware et al., 2000, 2003;
Ware, Gandek, Sinclair, & Bjorner, 2005).

Under the minimum information stopping rule, the CAT is terminated when there are no
more available items capable of providing a predetermined minimum level of information
for an examinee at the most recent trait estimate. This approach attempts to prevent the
administration of items that contribute little information about the examinee trait level. The
primary strength of the minimum information stopping rule is that it tends against the
needless administration of items to examinees for which a high degree of measurement
precision is not possible. A weakness of the minimum information stopping rule is that it
typically delivers less accurate measurement precision than the minimum standard error
stopping rule, due to its reluctance to administer additional items when information is
relatively scant. Dodd, Koch, and De Ayala (1989) compared the minimum SE and
minimum information stopping rule approaches in simulated adaptive tests based on the
graded response model. Results indicated that the SE stopping rule yielded higher
correlations between known and estimated abilities, while also producing considerably
fewer floor/ceiling cases. Additionally, Dodd, Koch, and De Ayala (1993) found that, for
adaptive test scored with the partial credit model, the SE stopping rule produced fewer floor/
ceiling cases, while also resulting in shorter tests with greater measurement precision than
the minimum information stopping rule.

Whether they are fixed or variable length, all stopping rules attempt to yield adaptive tests
that are both accurate and efficient. However, the difficult balance between measurement
precision and testing efficiency can subject existing stopping rules to two potential problems
that are of particular interest in the current study. The first of these occurs when an adaptive
test is stopped, even though desired gains in information would result from the
administration of additional items. In this scenario, measurement precision is unwittingly
sacrificed in favor of a shorter test. Both the fixed length and minimum SE stopping rules
are prone to this problem because their respective stopping criteria do not consider potential
gains in measurement precision that would result from the administration of more items.
This is problematic because, in some cases, meaningful gains in measurement precision may
be both desirable and possible with the administration of only one or two additional items.

A second potential problem for existing stopping rules occurs when items are unnecessarily
administered to examinees for which more precise trait estimates are unlikely. Both the
fixed length and minimum SE stopping rules are prone to this problem. This can be
especially problematic when the match between the item pool information function and the
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examinee trait distribution is poor, and thus, high degrees of measurement precision are
unachievable for large numbers of examinees. The minimum information stopping rule is
also subject to the efficiency problem, albeit in a different way. Because it is unguarded
against administering excessive amounts of items to examinees for which informative items
are abundant, the implementation of the minimum information rule may limit the efficiency
of the adaptive test when the match between the item pool information function and the
examinee trait distribution is good. To prevent this, the minimum information stopping rule
may be combined with the minimum SE stopping rule. However, combining these
approaches will limit the ability of the minimum information stopping rule to decrease
standard error beyond the minimum limit imposed by the SE component.

Figure 1 can be used to illustrate potential inefficiencies of the minimum SE and fixed
length stopping rules. This figure displays the maximum attainable information over the trait
continuum, for the 28-item PROMIS depressive symptoms pool on which a portion of the
current study was based (Choi et al., 2010). The vertical bars above the horizontal axis show
the locations of the category threshold parameters across all items. The outermost curve
represents the item pool information function, while the inner curves represent the maximum
information that would result from the administration of a given number of items. Note that,
at a theta level of −1, the maximum attainable information peaks near 10, regardless of the
number of items administered. In this situation, both the minimum SE and fixed length
stopping rules would administer high numbers of items, even though doing so would result
in diminishingly small gains in measurement precision. Figure 1 also demonstrates the
potential sacrifices in measurement precision that result from the use of the minimum SE
stopping rule. For instance, at a theta level of 1, the minimum SE stopping rule would
terminate the test after administering only a few items, even though substantial gains in
measurement precision could be achieved through the administration of only one or two
additional items.

Figure 2-a further illustrates the aforementioned efficiency problem associated with
minimum SE and fixed length stopping rules, by displaying the minimum attainable
standard error as a function of test length, at five trait levels for the same 28 item pool. Note
that, for a theta level of −2, the minimum attainable standard error is above that which
would typically be required to terminate the test under the minimum SE stopping rule. For
this trait level, the minimum SE stopping rule would administer all 28 items in the pool,
even though the desired standard error is unobtainable. A fixed length stopping rule would
also administer the maximum number of items to examinees at this trait level, resulting in an
unnecessarily long test. Figure 2-a also illustrates the potential sacrifices in measurement
precision that result from the use of the minimum SE stopping rule. For instance, at a theta
level of 1, the minimum SE stopping rule would terminate the test after administering less
than five items, even though the favorable match between the examinee trait level and the
item pool would allow for a considerable further reduction in standard error.

Figures 1 and 2-a suggest that the potential problems inherent in both fixed length and
minimum SE stopping rules stem from the fact that both rules are relatively insensitive to
the relationship between examinee trait level and the item pool information function. For
instance, by considering only the final standard error achieved, the SE rule fails to
acknowledge that, for some examinees, the amount of information provided by the item pool
prohibits a high degree of measurement precision. Though minimum information stopping
rules are sensitive to potential changes in measurement precision, using them in combination
with a standard error rule can limit their ability to decrease standard error beyond the
minimum limit imposed by the SE component. Accordingly, it seems that a more sensitive
approach to stopping an adaptive test would involve a more systematic evaluation of the
potential change in measurement precision that would result from the administration of
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additional items. Figure 2-b illustrates this point by displaying the change in standard error
as a function of test length, at five points along the examinee trait level, for the 28 item pool
used in the previous examples. Note that the decreases in standard error that result from the
administration of additional items are similar for each level of theta. This suggests that the
size of the predicted change in measurement precision may be a more stable criterion for
terminating a test than would be the overall standard error, which may vary considerably
across the ability continuum.

For a number of CAT applications, including medical and psychiatric assessments, there is
strong motivation to reduce testing burden. For these applications, where adaptive tests are
typically short and testing efficiency is paramount, the needless administration of items is
especially problematic (Gibbons, et al., 2008; Haley, et al., 2008). Additionally, medical and
psychiatric CATs are typically designed to target a more narrow range of trait levels than
most achievement or aptitude tests. For examinees that fall outside the targeted trait level
range, a high degree of measurement precision is either not necessary or untenable. For
examinees whose trait levels fall within the targeted range, a higher degree of measurement
precision is desirable. For these CAT applications, the ideal stopping rule would facilitate a
high degree of measurement precision for examinees whose trait levels fall within the
targeted range (for which the item pool is designed), and limit testing burden for those
examinees whose trait levels fall outside the targeted range. The stopping rule introduced in
the current study is designed for use in such situations and will be subsequently described in
greater detail.

The current study proposes a new stopping rule that attempts to address the efficiency and
measurement precision problems associated with commonly used stopping rules. The new
stopping rule, called the predicted standard error reduction stopping rule, (PSER) seeks to
balance the dual concerns of measurement precision and testing efficiency by considering
the predicted change in measurement precision that would result from the administration of
additional items. This is accomplished by evaluating the predictive posterior distribution and
the expected incremental improvement in precision that would result from subsequent items
administrations. Under this approach, an adaptive test is terminated when the predicted gain
in measurement precision brought on by the administration of an additional item is below a
predetermined criterion. Alternatively, the adaptive test is allowed to continue when the
predicted gain in measurement precision brought on by the administration of an additional
item is greater than the preset criterion. The purpose of the research is to explore the
properties of the PSER and assess its performance with regard to the number of items
administered and the accuracy of theta estimation in comparison with existing stopping
rules.

Method

Stopping Criteria

The PSER stopping rule is based on the predictive posterior variance of theta, which is also
the objective function of the minimum expected posterior variance (MEPV) item selection
criterion (Owen, 1975; Thissen & Mislevy, 2000; van der Linden & Pashley, 2000). The
MEPV (or equivalently maximum expected posterior precision) criterion can be expressed
as follows:
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where pj (r|ui1,ui2,…,uik−1) denote the posterior predictive distribution (van der Linden &
Pashley, 2000), which is the probability of giving response r to item j with mj categories
given the previous response history, and Var(θ|ui1,ui2,…,uik−1,Uj = r) is the posterior
variance for item j with predicted response category r. This objective function is the
Bayesian counterpart of the maximum information selection criterion (Thissen & Mislevy,
2000).

In conjunction with the minimum SE stopping rule, the PSER defines two additional
threshold parameters. For the current study, these are referred to as the hyper and hypo
parameters. The hyper parameter determines a minimum expected reduction in standard
error. If satisfied the “stop” cue called by the minimum SE stopping rule will be overridden
and the adaptive test will continue. The hypo parameter also specifies a minimum expected
reduction in standard error. If unsatisfied the “continue” cue called by the SE stopping rule
will be overridden and the adaptive test will terminate. Suppose that the hyper and hypo
parameters are set equal to 0.03 and 0.01, respectively. When the standard error associated
with the current theta estimate falls below the target stopping threshold, the minimum SE
stopping rule calls a stop cue. Then the PSER assesses if any remaining item in the pool is
expected to reduce the standard error by 0.03 or more. An affirmative answer overrides the
stop cue and continues the CAT. Likewise, when a continue cue is called because the
minimum standard error threshold is unsatisfied, the PSER assesses if any remaining item in
the pool is expected to reduce the standard error by at least 0.01. A negative answer will
override the continue cue and the CAT will be stopped.

The performance of the PSER stopping rule was compared to two existing procedures: the
minimum SE stopping rule and the minimum information stopping rule. The minimum
information stopping rule was modified and combined with the minimum SE stopping rule
such that it terminates an adaptive test either when no item remaining in the pool can
provide a predetermined minimum level of information or when a predetermined standard
error criterion has been satisfied. The purpose of this modification was to avoid
administering additional items beyond achieving a predetermined level of measurement
precision. Thus the minimum information threshold is used to assess an exit condition
without meeting a standard error threshold but is not used to sustain beyond achieving the
standard error threshold. While the minimum SE stopping rule was included in the current
study primarily to provide a basis of comparison for the PSER stopping rule in terms of
measurement precision, the minimum information stopping rule was included to provide a
basis of comparison for the PSER stopping rule in terms of the number of items
administered. It is important to note that the primary purpose of the current study was not to
compare the minimum SE and minimum information rules on measurement precision or
number of items administered

Construction of Item Pools

Item pools with 30 to 60 items have been found adequate for successful CAT procedures
with polytomous items (Dodd, Koch, & De Ayala, 1989; Dodd, Koch, & De Ayala, 1993).
For the current study, two real pools of 28 and 95 items, respectively, served as models to
generate small (30) and large (90) item pools. Real item pools were based on actual items
from a real medical CAT item pool. All items had five response categories and calibrated
according to the graded response model (Samejima, 1969). Two types of item pool
distributions were also generated: matched vs. mismatched. The item pool information
function for the 28-item pool was shifted markedly (+1.5) to the right in relation to the trait
distribution (mismatched), whereas the 95-item pool was roughly centered on the trait mean
(matched). A total of four banks were generated by crossing the item pool sizes (30 and 90)
and the information distributions (matched and mismatched).
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CAT Simulations

A sample of 1,000 simulees was drawn from the standard normal distribution to serve as
known theta values. Conventional procedures were used to simulate the item responses for
the four item pools according to the graded response model. The item response data were
then submitted to CAT simulations under the three stopping rules. The standard normal
distribution was chosen as the prior for θ for the expected a posteriori (EAP) estimation and
the minimum expected posterior variance (MEPV) item selection criterion. The minimum
standard error threshold was set equal to 0.3. The hyper and hypo parameters for the PSER
stopping rule were set equal to 0.03 and 0.01, respectively. The minimum information
threshold for the minimum information stopping rule was set equal to 0.5 (Dodd, Koch, &
De Ayala, 1989). The logic for this choice of information threshold was, if the threshold was
set too low, the minimum information stopping rule (as it is combined with the minimum SE
stopping rule for the current study) would essentially simplify to the minimum SE stopping
rule. This would be undesirable because the minimum information stopping rule is included
in the current study primarily so that it can be compared to the PSER stopping rule in terms
of the number of items administered. Under all three stopping rules the CAT was restricted
in length between a minimum of three and a maximum of 15 items. Because the current
study simulates a medical or psychiatric CAT application, item overexposure was not seen
as problematic (Bjorner, Chang, Thissen, & Reeve, 2007), and therefore, no item exposure
control procedure was implemented. The above steps were replicated 100 times to measure
random variations in the results. The two main outcome variables of interest were the
average number of items administered and the measurement precision (i.e., RMSE, bias). To
further examine the results conditional on theta, the study was replicated using a separate
sample of simulees generated from fixed theta intervals (−2.5 to 2.5 by 0.5), 1000 per theta
point totally 11,000 simulees.

Results

Figure 3 shows the item pool information functions for the 30- and 90-item matched and
mismatched pools. The matched information functions were symmetrical around 0 and
provided roughly consistent, maximal information in the range from −1 to +1 on the theta
scale. The mismatched information functions had roughly the same shape but were shifted to
the right about 1.5 logits. Consequently, the measurement precision in the mismatched
pools, regardless of size, would be inevitably poor at lower theta levels.

Of particular interest in the current study were the performances of the PSER and SE
stopping rules in two specific scenarios. The first scenario occurred when a standard error of
0.3 had been achieved, but sufficiently informative items were still available for
administration. In these cases, the SE stopping rule would terminate the adaptive test, while
the PSER stopping rule would continue administering items. In the current study, these are
referred to as “hyper” cases. The second scenario of interest occurred when a standard error
of 0.3 had not been achieved, but no sufficiently informative items were available for
administration. In this scenario, the SE stopping rule would continue administering items,
while the PSER stopping rule would terminate the adaptive test. These are referred to as a
“hypo” cases.

Number of Items Administered

Table 1 summarizes the number of items administered for the three stopping rules by
information distribution and pool size averaged across the 100 replications. The minimum
information stopping rule administered the fewest items on average. Because the minimum
information stopping rule terminates the CAT when either the minimum information
threshold is unsatisfied or the minimum standard error has been reached, by design it always
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administers fewer items than the minimum standard error stopping rule. As a result, the
differences in the number of items administered between the two stopping rules are always
hypo cases where the CAT is terminated before reaching the predetermined standard error
threshold. As expected, the differences were smaller when the information distribution
matched the trait distribution and the item pool was larger. On average, the minimum
information stopping rule administered 1.68 fewer items than the minimum standard error
stopping rule under the 30-item mismatched pool, whereas the difference was merely 0.037
under the 90-item matched pool condition. Overall, the PSER stopping rule administered
fewer items (−0.635) than the minimum standard error stopping rule under the 30-item
mismatched item pool condition, and slightly more items (+0.436) under the 90-item
matched item pool condition. The differences between the PSER and minimum standard
error stopping rules, however, are determined by the prevalence of both hyper and hypo
cases and hence warrant a close examination. Table 2 summarizes the prevalence of hyper
and hypo cases under different conditions averaged across the 100 replications. The average
percentage of hyper cases ranged from 28.4 to 45.8. The highest percentage was observed
under the 90-item matched pool condition. The average percentage of hypo cases ranged
from 1.2 to 18.4. The highest percentage was observed under the 30-item mismatched
condition.

The number of items administered for the PSER and minimum standard error stopping rules
differed for hyper and hypo cases. For hyper cases, the PSER stopping rule administered an
average of about one item more than the SE stopping rule, regardless of the size or
distribution of the item pool. This was because the PSER rule could override the minimum
standard error criterion in favor of increasing measurement precision where possible. For
hypo cases, the PSER averaged two to five items fewer than the SE stopping rule, depending
on the size and distribution of the item pool. For the 30 item mismatched item pool
condition, the PSER averaged five items less than the SE. For both matched items pool
conditions, the PSER administered about three fewer items than the SE. For the 90 item
mismatched pool condition, the PSER administered about two fewer items than the SE. This
is because the PSER was capable of assessing the potential standard error reduction that
would result from the administration of the additional items.

In terms of the minimum number of items administered, the PSER averaged about one item
more than the SE stopping rule for hyper cases. This was true for all item pool conditions.
For hypo cases, the PSER administered anywhere from five to seven items fewer than the
SE, depending on the size and distribution of the item pool. For the 30 item matched pool,
the minimum number of items administered was about seven fewer than for the PSER than
for the SE. For both 90 item pools, the difference was five items in favor of the PSER. For
the 30-item mismatched pool, the minimum number of items administered was six fewer for
the PSER than for the SE.

In terms of the maximum number of items administered, the PSER averaged about two to
three items more than the SE, depending on the size and distribution of the item pool. For
hypo cases, the maximum number of items administered was about one item fewer for the
PSER, regardless of the size and distribution of the item pool.

Without regard to hyper and hypo cases, the PSER administered slightly more items than the
SE stopping rule for the two 90-item pools and for the 30-item matched pool. However, this
was likely due to the fact that these three pools resulted in relatively high numbers of hyper
cases and low numbers of hypo cases. For the 30-item mismatched pool, the PSER
administered fewer items than the SE stopping rule. This is likely due to the fact that the 30
item mismatched pool yielded fewer hyper cases, while also producing the highest number
of hypo cases.
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RMSE

The RMSEs produced by the three stopping rules are closely tied to the number of items
administered in the CAT. Table 3 summarizes the RMSEs for the three stopping rules under
different conditions averaged across the 100 replications. The PSER produced the lowest
RMSEs under all conditions with an exception of the 30-item mismatched pool condition
where the PSER and minimum standard error stopping rules produced the same RMSEs.
This is a noteworthy result because the PSER administered an average of 0.635 fewer items
(or equivalently about 10 percent fewer items).

As with the number of items administered, the RMSEs produced by the three stopping rules
differed for hyper and hypo cases. Again, hyper cases can occur only under the PSER
stopping rule, whereas hypo cases can occur under both the PSER and minimum
information stopping rules. For hyper cases, the PSER stopping rule produced lower RMSEs
than the SE stopping rule, regardless of the size or distribution of the item pool. This was
due to the fact that the PSER could override the SE stopping criterion when additional
informative items were available in the pool. For hypo cases, however, the PSER stopping
rule produced slightly higher RSMEs than the SE stopping rule. This was because, for hypo
cases, the PSER was willing to sacrifice a small degree of measurement precision in order to
limit the test length.

Results Conditional on Theta

As mentioned previously, the RMSE differences are due to the numbers of hyper and hypo
cases produced by the PSER and the number of hypo cases by the minimum information
stopping rule under the four item pools. Table 4 summarizes the prevalence of hyper and
hypo cases for the simulees generated from fixed intervals (N=11,000). To get better sense
of the implications of using the PSER criterion the RMSEs and the changes in the number of
items administered (compared to the SE stopping rule) are presented for the hyper and hypo
cases in the table. The prevalence of hyper and hypo cases is directly related to the item pool
distribution and size, and can vary across trait levels. Figure 4-a illustrates the prevalence of
hyper and hypo cases as a function of theta. The curves representing the prevalence of hyper
and hypo cases showed inverse relationships and revealed some distinctive patterns: the
prevalence of hyper cases is the highest at the center of the item pool information function;
and the prevalence of hypo cases is peaked where the item pool information function floors.

Figure 4-b shows the average number of items administered by information distribution and
pool size for the three stopping rules conditional on theta. For both the 30-item and 90-item
mismatched item pool conditions, the minimum standard error stopping rule administered
the maximum number of items (i.e., 15) to almost all simulees at or below theta = −1.5. For
the 30-item mismatched item pool condition, the PSER administered about six items less
than the minimum standard error stopping rule. For the 90-item pool condition, the PSER
administered about 2 items less. The fact that the PSER administered more items under the
90-item mismatched pool condition than the 30-item condition indicates that the hypo (H−)
threshold may need to be adjusted based on the pool size when the information distribution
does not matched the trait distribution. The minimum information stopping rule
administered substantially less items at or below theta = −1.5 than the other two stopping
rules, implying that the measurement precision at lower theta levels under this stopping rule
will be unacceptably poor. This also indicates that the minimum information threshold value
of 0.5 has been set too high for the two mismatched item pools. The PSER administered
about 0.6 more items than the other two stopping rules at or above theta = 0.0 where the
item pools provided good information. For the matched pool conditions regardless of size,
the PSER administered about 0.6 more items than the other stopping rules in the middle. The
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minimum standard error stopping rule administered about two more items at the two
extreme theta levels under the 30-item matched item pool condition.

Figure 4-c displays the RMSEs produced by the three stopping rules for each level of bank
size and information conditional on theta. As expected from the number of items
administered examined previously, the PSER produced lower RMSEs where the item pool
information was at its maximum: at or above theta=0.0 for the mismatched item pool
conditions and in the middle for the matched item pool conditions. For the mismatched item
pool conditions, seemingly inconsistent patterns were observed for the minimum
information stopping rule at the bottom end. For instance, at theta=−1.5 the minimum
information stopping rule appeared to be associated with the smallest RMSEs. However,
these patterns were artifacts of having degenerative theta estimates produced under the
minimum information stopping rule. Almost all true theta values of −1.5 or lower ended up
with an estimate of −1.43 and hence the small RMSE for theta=−1.5. Bias was also
examined for the three stopping rules under each experimental condition by theta level (data
not shown). With an exception of the minimum information stopping rule showing larger
bias values at the lower end, no substantial differences were observed among the three
stopping rules.

In order to examine the potential risk of terminating the CAT prematurely under the PSER
we closely examined the hypo cases individually under all item pool conditions by studying
the impact of terminating the CAT early on the recovery of the true theta. Figure 4-d
displays box-and-whisker plots showing the change in the absolute error |θ − θ ̂| incurred for
the hypo cases, as a result of administering fewer items compared to the SE stopping rule.
For each hypo case, the change in absolute error was calculated as |θ − θ ̂PSER| − |θ − θ ̂SE|.
Under this formation, large positive difference values represent premature CAT termination
on the part of the PSER relative to the SE stopping rule. Interestingly, the expected change
is minimal and the mean absolute error is actually smaller for the PSER at some theta
locations. There are, however, individual cases displaying a substantial amount of increase
in error by reducing the CAT up to 6 items.

Discussion

Stopping is one of the three key components in CAT (Thissen & Mislevy, 2000).
Determining when to stop can be more complex than whether or not a predetermined
number of items have been administered or a desired level of measurement precision has
been attained. This is particularly true when the match between the item pool and the
examinee trait distribution is poor. In the present study we introduced a new stopping rule
based on the predictive posterior variance. This statistic is computed as part of most fully
Bayesian item selection procedures, including the minimum expected posterior variance
criterion (MEPV, or equivalently maximum posterior precision: Owen, 1975; Thissen &
Mislevy, 2000; van der Linden & Pashley, 2000). The predictive posterior variance can be
used to determine whether or not administering one or more additional items from the pool
is likely to reduce the standard error below a certain level.

Based on the conventional minimum standard error stopping rule, the PSER asks one basic
question: is it worth continuing? The “worth” is conceptualized as the amount of reduction
in uncertainty, and measured against two threshold values, the hyper (H+) and hypo (H−)
thresholds. Prior to satisfying a standard error cutoff, the minimum worth is defined by the
H− threshold, whereas it is defined by the H+ threshold once the standard error cutoff has
been satisfied. Initial results were promising: the PSER shortened the CAT when
information was scarce without unduly compromising measurement precision; and it
attained higher precision when information was abundant without unduly lengthening the
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CAT. Because the PSER stopping rule is capable of evaluating the predicted reduction in
standard error associated with the administration of additional items, it seemed to take better
advantage of the item pool.

Our comparison of the new stopping rule against the two existing procedures was performed
under a specific set of threshold values (e.g., a minimum SE of 0.3; an H+ threshold of 0.03,
an H− threshold of 0.01, a minimum information threshold of 0.5 etc.). Because the results
are expected to vary depending on the threshold parameters chosen, the generalizability of
the present study is limited and subject to the reasonability of the particular threshold
parameters chosen. One approach to overcome the limitation is to examine the results by
systematically varying the threshold values. However, a more fundamental solution would
be to develop a method to derive optimal threshold values for specific test settings. We set
the H+ threshold at three times as large as the H− threshold, because the risk associated with
terminating the CAT after satisfying a minimum standard error threshold was considered
smaller than the risk associated with prematurely terminating a CAT prior to satisfying the
minimum standard error threshold. The optimal H+ and H− threshold values can be
determined numerically by defining an objective function based on the expected cost of
administering additional items (which can differ by the current test length and measurement
precision), testing burden, measurement precision, and other measurable and/or quantifiable
factors. Computer simulations can be used to search for optimal threshold values that
optimize a predetermined objective function for a given item pool and other imposed testing
parameters or settings.

In evaluating the PSER criterion, understanding the behavior of hypo cases is of particular
interest because of the potential for aberrant cases in which the CAT is terminated at a very
early stage with a much larger error in the trait estimate than the SE stopping criterion. Hypo
cases occur where information is scarce. Therefore, given that the provisional theta estimate
is in the neighborhood of the true value, a steep descent in error is highly unlikely after
administering a few items. In the event that the provisional and true theta values are not
converging rapidly, the risk of terminating the CAT prematurely is present under the PSER
criterion. As a safeguard against premature terminations, the CAT is sustained at least until a
preset minimum number of items have been administered. Then the question is whether the
minimum is sufficiently long for the provisional theta estimate to fall in the neighborhood of
the true value. Conversely, setting the minimum too high negates the relative efficiency of
the PSER and CAT in general. Optimizing various components of CAT is by no means a
substitute for having an item bank with ideal characteristics, e.g., a large pool of items
collectively covering a broad range of the continuum with individual items covering narrow,
targeted trait levels. However, for many psychological and health outcomes constructs those
seem to be uncommon prescriptions for item banks. For example, it is intrinsically difficult
to have items that measure the lower (healthier) end of the construct of depression. Items
that capture low levels of depression overlap with transient negative affect, which is present
across a range of psychopathology other than depression (for review, see Watson, 2009).

Finally, the stopping rule proposed in the current study is designed primarily for CAT
applications where test length is short, and where reduction of testing burden is of great
importance. Short adaptive tests simulated in this study may not provide the equality or
degree of measurement precision desirable for a high stakes achievement or aptitude test.
Future research on the PSER stopping rule should also consider implementing item exposure
control procedures as this may be desirable for some short CAT applications.
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Figure 1.

Maximum attainable information curves.
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Figure 2.

(a) Minimum standard error and (b) changes in standard error by test length at different theta
locations.
Note: Horizontal reference lines drawn at 0.3 (left) and −0.01 (right)
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Figure 3.

Item bank information functions.
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Figure 4.

(a) Number of hyper (H+) and hypo (H−) cases; (b) average number of items administered;
(c) RMSE; and (d) difference in absolute error for hypo (H−) cases compared to the
minimum standard error stopping rule.
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