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Abstract—Energy efficiency is one of the most critical issues in the design of wireless sensor networks. Observing that many sensor

applications for object tracking can tolerate a certain degree of imprecision in the location data of tracked objects, this paper studies

precision-constrained approximate queries that trade answer precision for energy efficiency. We develop an Energy-conserving

Approximate StoragE (EASE) scheme to efficiently answer approximate location queries by keeping error-bounded imprecise location

data at some designated storage node. The data impreciseness is captured by a system parameter called the approximation radius.

We derive the optimal setting of the approximation radius for our storage scheme based on the mobility pattern and devise an adaptive

algorithm to adjust the setting when the mobility pattern is not available a priori or is dynamically changing. Simulation experiments are

conducted to validate our theoretical analysis of the optimal approximation setting. The simulation results show that the proposed

EASE scheme reduces the network traffic from a conventional approach by up to 96 percent and, in most cases, prolongs the network

lifetime by a factor of 2-5.

Index Terms—Energy efficiency, data dissemination, data storage, location query, wireless sensor network.
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1 INTRODUCTION

OWING to the rapid advances in sensing and wireless
communication technologies, wireless sensor networks

have emerged as a promising solution for a wide range of
civil and military applications. In this paper, we consider
object-tracking sensor networks, one of the most important
classes of sensor networks. Example applications of object
tracking include wildlife animal monitoring in remote areas
and intrusion detection on military sites. Users in these
applications are interested in location queries, which return
the locations of tracked moving objects.

A sensor network is typically composed of a large
number of tiny sensor nodes equipped with data proces-
sing, sensing, and communication capabilities. The sensor
nodes usually operate in an unattended manner and are
battery powered. However, replacing the battery is not only
costly but also impossible in many situations (for example,
in a hard-to-reach area). Thus, energy efficiency is a critical
consideration in the design of large-scale sensor networks.
There has been significant research on energy-conserving
object-tracking sensor networks (for example, [9], [10], [35]).
Most of these studies aimed at reducing the number of

sensor nodes activated for tracking an object and/or
reducing the location update traffic in providing accurate
answers to location queries.1

Imprecision is an inherent property of object-tracking
sensor networks. State-of-the-art location positioning tech-
nologies such as GPS and triangulation are not error-free.
Moreover, many applications are willing to tolerate a
certain degree of imprecision or error in the data due to
either the application nature or the high resource con-
straints in sensor networks. As such, here, we take a
different approach to improve energy efficiency by exploit-
ing the trade-off between data quality and energy con-
servation. Instead of always feeding the most accurate
answers to location queries, we investigate the problem of
providing precision-constrained approximate locations
based on user tolerances. In our model, an approximate
location query is specified by an object identifier and a
precision constraint. The sensor network responds with a
location bounded by the required precision.

Inspired by [11] and [23], we develop an Energy-
conserving Approximate StoragE (EASE) scheme to effi-
ciently answer approximate location queries. Whereas most
prior work assumed centralized/designated storage for
data collection and query answering [9], [17], [32], EASE
innovatively maintains two versions of object location data
in the network. High-precision data are kept at some local
storage node close to a moving object in order to reduce long-
distance traffic resulting from remote updates. Meanwhile,
the same data with a lower precision are replicated at some
designated storage node that is known to users in order to
reduce the query traffic. In the EASE scheme, the impreci-
sion of location data at the designated storage node is
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1. The accuracy is achieved by best effort since the object location cannot
be 100 percent accurate due to network delay, discrete sampling instances,
etc.
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bounded by an approximation radius, which specifies a
geographical area in which the low-precision location data
are considered valid. In other words, a location update due
to object movement will not be sent to the designated
storage node if the object remains within the approximation
radius. Correspondingly, a query is answered by the
designated storage node if its precision constraint is weaker
than what is specified by the approximation radius.
Otherwise, the query is forwarded to the local storage node
for resolution. As such, the EASE scheme attempts to
optimize the network performance (in terms of reducing
network traffic and energy consumption) by balancing the
update traffic and query traffic. This is achieved by
properly setting the approximation radius. We derive the
optimal setting of the approximation radius based on the
mobility pattern and also devise an adaptive algorithm to
adjust the setting on the fly when the mobility pattern is
unknown or is dynamically changing. We show via
simulation experiments that the EASE scheme, working
together with the proposed methods for setting the
approximation radius, reduces the network traffic by up
to 96 percent from a conventional approach and, in most
cases, prolongs the network lifetime by a factor of 2-5.

We summarize the contributions made in this study as
follows:

. To the best of our knowledge, this is the first study
on data dissemination in object-tracking sensor
networks that attempts to address the issue of
energy efficiency by exploiting the trade-off between
data quality and energy conservation.

. An energy-efficient storage scheme, called EASE, is
proposed to efficiently answer precision-constrained
approximate location queries.

. The setting of the proposed storage scheme is
analyzed and optimized through a theoretical study.
The theoretical analysis is validated by simulation
experiments.

. An adaptive algorithm is proposed to adjust the
setting of the approximation radius for unknown/
dynamic workloads.

. An extensive performance evaluation is conducted
to evaluate the performance of the proposed EASE
scheme and the methods for setting the approxima-
tion radius.

The rest of this paper is organized as follows: Section 2
reviews related work. The system model is described in
Section 3. Section 4 presents the proposed EASE scheme in
detail. We analyze the performance of EASE and investigate
the setting of the approximation radius in Section 5.
Section 6 presents the results of the performance evaluation.
Finally, Section 7 concludes the paper.

2 RELATED WORK

2.1 Object-Tracking Sensor Networks

There are two research directions for improving the lifetime
of an object-tracking sensor network. One is to reduce energy
consumption in the sensingcomponent (for example, [18] and
[35]). The basic idea is to activate only the essential sensor
nodes needed to track the moving objects while leaving the
other nodes in a power-saving mode. In [31] and [33], the

sensor nodes are organized into a cluster-based architecture
such that a cluster head calculates object locations based on
signal readings from its slave nodes. Based on these studies,
we assume that object locations can be obtained by cluster
heads and only focus our task on where and how to store the
location data in support of energy-efficient approximate
location queries.

The other direction, aligned with ours, is to improve
energy efficiency by reducing network traffic in disseminat-
ing location updates. Nevertheless, the focuses of the prior
studies are different from ours. Goel and Imielinski [9]
proposed a prediction-based approach. A base station
collects sensor readings and periodically generates predic-
tions to be sent back to the sensor nodes. A sensor node
reports a location update only when its reading differs from
the predicted one. Xu et al. [32] suggested a dual-prediction
scheme where a fixed prediction model is deployed at both
the base station and the sensor nodes. These studies
complement our work in that prediction can be incorporated
intoourEASEscheme to further reduce remoteupdate traffic.
Kung and Vlah [17] investigated continuous location queries
and proposed a publish-and-subscribe tracking method. In
contrast, we leverage error tolerances to improve network
performance for one-shot location queries. Although there
has been research on the trade-off between energy conserva-
tionand trackingquality (for example, [10], [24]), the trade-off
has not been investigated in the dissemination of location
data, which is the topic of this paper.

Our work also bears some similarity to location manage-
ment for mobile networks [4]. As the purpose of location
management is to locate roaming users for call delivery,
locations are managed at a fixed granularity (that is, cell). In
contrast, our architecture is capable of adaptively storing
location data at different degrees of accuracy to improve the
efficiency of query processing.

2.2 Data Storage and Query Processing

A simple storage model is to have a centralized base station
collect and store the sensed data. This approach is good for
aggregate data collection (for example, sum, average,
maximum, and median) [21], [28], where excessive sensed
data can be pruned during aggregation along the routing
path, and only short summaries are maintained at the base
station. However, this is not efficient for nonaggregate data
collection (for example, the location queries considered in
this paper). The base station and the sensor nodes around it
can easily become hotspots, which would shorten the
network lifetime.

Recently, in-network storage has been advocated in many
research projects. In the TinyDB project, Madden et al. [20]
presented the pull-based acquisitional query processing
(ACQP), where the sensor nodes control where, when, and
howoftendata areacquiredanddelivered toqueryoperators.
The Cougar project [7] employed a hybrid pull-push model,
inwhich senseddata arepushed to someselectedviewnodes,
fromwhere the data are pulled to answer queries. Ratnasamy
et al. [26] proposed an in-network data-centric storage (DCS)
model: sensed data are pushed to the sensor node nearest to
some geographical location hashed from a predefined key.
Zhang et al. [36] suggested storing sensed data locally. A
centric ring-based index was proposed to facilitate query
processing. More recently, Lu et al. [19] proposed a
spatiotemporal query service called MobiQuery to allow
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mobile users to query their surrounding areas through a
sensor network. Jiang and Jin [14] developed robust aggrega-
tion techniques for extracting statistical information from
sensor networks. Unfortunately, none of these prior studies
have examined the ability of approximate data storage to
improve energy efficiency.

2.3 Approximate Query Processing

Early work on approximate query processing focused on
a wired network [23]. Han et al. [11] conducted a
pioneering study on answering approximate queries in
sensor networks. They developed an efficient data
collection protocol to fulfill the application-specified data
quality while minimizing the energy consumption of
sensor nodes. However, the solutions developed in [11]
are not applicable to object-tracking applications. This is
because they considered only a simple single-hop system
where each sensor node communicates with the server
directly, and each target phenomenon is always captured
by a fixed sensor. In contrast, we consider a dynamic
sensing scenario where the location of a moving object is
acquired by different nodes at different times; thus, a
cooperative location updating protocol is needed. More-
over, we consider a multihop sensor network. As a result,
the cost of location updates/queries also varies according
to the locations of moving objects. These differences make
our system modeling and performance analysis comple-
tely different from those in [11].

Precision-constrained queries [6], [27], [30] have also
been studied for in-network data aggregation, which has a
different focus from object-tracking sensor networks. Com-
pressing historical sensor readings for transmission also
saves energy [5]. However, it is applicable to querying
historical data only. In contrast, we consider applications
that are interested in querying the current locations of
moving objects.

2.4 Data Routing

A sensor network is typically connected by wireless links in
an ad hoc manner. To relay data in a sensor network, many
routing algorithms have been proposed to address energy
efficiency, scalability, and reliability issues. They can be
classified into three categories: data-centric, hierarchical, and
location-based routings [3]. In data-centric routing (for exam-
ple, directed diffusion [13]), the sink floods the query to a
certain region of interest, and the sources report data to the
sink through the route establishedbasedon thenamedquery.
Due to the high cost of flooding, such a protocol is suitable for
long-lived queries only. Hierarchical protocols (for example,
LEACH [12]) group the sensor nodes into clusters such that a
cluster head performs data aggregation/fusion and commu-
nicates with other heads on behalf of the nodes within its
cluster. Location-based protocols (for example, greedy
perimeter stateless routing (GPSR) [15]) make use of
geographical position information to transport data.

3 SYSTEM MODEL

We consider a sensor network consisting of a large number of
stationary sensor nodes deployed in some operational area.
Each sensor node is aware of its own location, through GPS
for example. We assume that the nodes organize themselves
into clusters and that every cluster has a cluster head. A

cluster head is more powerful than an ordinary sensor node.
It is equippedwith some local storage to store data and is also
capable of communicating with other cluster heads to
exchange data. The sensor nodes in a cluster can work
together to recognize and track the objects in their vicinity; for
example, a cluster head can triangulate object locations based
on signal readings from its slave nodes [31], [29], [33]. The
object locations are sampled at a fixed sampling rate.We also
assume that each moving object being tracked has a unique
identifier. Since this paper aims at energy-efficiently storing
and disseminating object location data in support of
approximate location queries, we shall focus on reducing
communication among cluster heads. Unless explicitly
specified, a sensor node refers to a cluster head in the rest of
this paper.

Approximate location queries. The sensor network
under consideration supports a large number of users
making one-shot queries for the locations of moving objects.
The queries can be made via a sensor node (known as the
querying node) from anywhere in the network. Each
approximate location query is specified by a tuple
< object id; p > , where object id is the identifier of the
target object, and p is the error in object location that the
query can tolerate.2

Local storage (LS) and centralized storage (CS). Intui-
tively, the object location data can be stored at 1) the sensor
node that detected the object or 2) a centric storage node,
which could be either a centralized base station or a sensor
node determined by the DCS scheme [26] (see Fig. 1a).3 If
the location data are stored locally at the detecting node
(known as LS), a query that wants to find the location of
some object has to be flooded over the whole network. Thus,
the query cost is high. In contrast, if the CS scheme is
adopted in the system, any location update of a moving
object should be sent to the centric storage node. This
results in high update traffic. In the next section, we
propose a hybrid in-network storage scheme that achieves a
good balance between the query cost and the update cost
for approximate location queries. Without loss of generality,
we shall assume for the rest of this paper that the DCS
scheme [26] is employed for CS.

4 EASE: ENERGY-CONSERVING APPROXIMATE

STORAGE

This section proposes the new EASE scheme that takes
advantage of the error tolerances of queries. We first give an
overview of EASE in Section 4.1. Section 4.2 describes the
location updating protocol for working with EASE. Finally,
we discuss how EASE handles node failures and message
losses in Section 4.3.

4.1 Overview

The EASE scheme attempts to cut down the update traffic
by maintaining two versions of the location data for each
object: an accurate version at a local storage node and an
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2. For simplicity, we assume in this paper that p is the error tolerance in
addition to the unavoidable system error such as the inaccuracy of the
positioning technique. In practice, p can be determined by the user’s error
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3. In DCS, the centric storage node of an object is determined by applying
a predefined hash function to the object identifier.



approximate version at the centric storage node. The
approximate location of an object at the centric storage
node is bounded by an approximation radius. A stored
location o with an approximation radius r means that the
object must be in an approximation area defined by a circle of
radius r centering at o.

In addition to storing the approximation location of an
object, the centric storage node also keeps track of the local
storage node of the object. That is, the centric storage node
maintains two attributes for an object: the approximate
location and the local storage node. The former is used to
answer queries with less stringent precision constraints,
whereas the latter is used to forward queries with more
stringent precision constraints (without this information, the
local storage nodes can only be found by flooding). Upon
receiving an approximate location query with an error
tolerance p, the centric storage node compares it against the
approximation radius r of the stored location. If p � r, the
stored location satisfies theprecision requirement and, hence,
it is returned to the querying node immediately (as shown by
case a in Fig. 1b). If p < r, the stored location is inadequate in
precision. Consequently, the query is forwarded to the local
storage node, and the result is returned from that node (as
shown by case b in Fig. 1b).

4.2 Location Updating Protocol

Initially, the local storage node of an object is the node that
first detected it. Every sensor node in the approximation
area is notified of the local storage node. At each
subsequent sampling instance, if the object location de-
tected is within its current approximation area, the
detecting node sends a local update including the new object
location to the local storage node, as shown in Fig. 2a.
Otherwise, if the object moves out of the current approx-
imation area, the detecting node elects itself as the new local
storage node and sends a remote update including its own

ID/location and the new object location to the centric
storage node (see Figs. 2b and 2c). It is likely that the object
is still in the current approximation area, but the detecting
node is not aware of the current local storage node (for
example, the detecting node is outside the approximation
area). In this case, the detecting node also elects itself as the
new local storage node and sends a remote update to the
centric storage node. A new approximation area is then
formed as a circle centered at the new object location.

To notify the sensor nodes in the new approximation
area, the new local storage node sends out a notification
geocast [22] message including its own ID/location and the
new approximation area (see below for how it works). If the
new local storage node is aware of the previous local
storage node (and, hence, the obsolete approximation area),
it also sends an invalidation geocast message to the sensor
nodes in the obsolete approximation area to invalidate the
recorded local storage node (see Fig. 2b). Otherwise, if the
new local storage node is not aware of the previous local
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Fig. 1. Illustration of a query processing procedure. (a) CS. (b) EASE.

Fig. 2. Location update dissemination with EASE. (a) Local update.

(b) Remote update: case 1. (c) Remote update: case 2.



storage node, it informs the centric storage node about this
in the remote update and asks the centric node to invalidate
the obsolete approximation area using geocast (see Fig. 2c).
Given an approximation radius r, Algorithms 1 through 3
summarize the protocols executed at the centric storage
node, the local storage node, and the detecting node,
respectively.

Algorithm 1. Protocol executed at the centric storage node.

1: if receiving a query < object id; p > then

2: if p � r then

3: return the stored location to the querying node;

4: else

5: forward the query to the local storage node of the

queried

object;

6: end if

7: end if

8: if receiving a remote location update message then

9: if the old approximation area is unknown at the

local storage node then

10: send an invalidation geocast message to the old

approximation area;

11: end if

12: store the new location and local storage node of the

object;
13: end if

Algorithm 2. Protocol executed at the local storage node.

1: if receiving a forwarded query < object id; p > then

2: return the stored location to the querying node;

3: end if

4: if receiving a local location update message then

5: store the new location of the object;

6: end if

Algorithm 3. Protocol executed at a node detecting an

object located at o.

1: if o is in the valid approximation area and the local

storage node is known then

2: send a location update to the local storage node;

3: else

4: send a location update to the centric storage node;

piggyback the information whether the old

approximation area is known or not;

5: elect itself as a new local storage node;

6: set the new approximation area A0  a circle

centered at o with radius r;
7: if the old approximation area A is known then

8: send an invalidation geocast message to A;

9: end if

10: send a notification geocast message to A0;
11: end if

The purpose of geocast is to send a message to all the
nodes in a given geographical area. It works in two phases.
In the first phase, the message is routed toward the target
area using some geographical routing protocol such as
GPSR [15]. If the geocast initiator is within the target area,
the first phase is not needed. After reaching the target area,
the message is flooded to all sensor nodes in the area

through broadcast. On receiving the message, a sensor node
further broadcasts it to the neighbors only if the message
has not been received before and the sensor node is within
the target area. Recall that in EASE, when the local storage
node changes, a notification message and an invalidation
message are geocast to the new and obsolete approximation
areas, respectively. In order to avoid redundant message
broadcast in the overlap region of these two areas, we do
not distinguish the notification message from the invalida-
tion message in implementation. A geocast message
specifying both the obsolete and new approximation areas
are sent to these two areas at the same time. On receiving
the geocast message, if the node is in the new approxima-
tion area, it records the new local storage node. Otherwise,
if the node is in the obsolete approximation area, it removes
the recorded old local storage node.

4.3 Discussion

Wireless sensor networks are unreliable in nature. In this
section, we discuss the strategies that EASE can employ to
deal with node failures and message losses. Note that these
issues are faced by any data dissemination schemes
including LS and CS.

The EASE scheme relies on a centralized base station or
DCS to store approximate location data. To tolerate node
failures, DCS enhances the centric storage nodes by
replication [8], [26]. EASE stores accurate location data at
local storage nodes, which can also be replicated to improve
reliability and availability using similar techniques em-
ployed by DCS.

As the link loss rate is high in sensornetworks, hop-by-hop
recovery (for example, by link-level retransmission) has been
suggested to remedy message losses [16]. In addition,
message losses can be handled at the application layer. For
example, for query messages, we set a TTL value (that is,
twice the round-trip time between the two farthest nodes in
the network). If a query is not answeredwithin the TTL time,
the application may assume that the previous query has got
lost in the network and resend the query.

There are two types of geocast messages in EASE (that is,
invalidation and notification). If a notification message is
lost, the sensor network still functions properly. In the
worst case, if a sensor node is not notified of the local
storage node, upon detecting the object, it will elect itself as
a new local storage node and send a remote update to the
centric storage node. If an invalidation message is lost, some
sensor nodes may not be aware of the change of local
storage node. We can request the previous local storage
node to acknowledge the receipt of the invalidation
message. The new local storage node will retransmit the
message until it is acknowledged. For other nodes in the
obsolete approximation area, if they do not receive the
invalidation message and continue to send the local update
to the previous local storage node, the previous local
storage node will notify them of the new local storage node.

5 PERFORMANCE ANALYSIS AND OPTIMIZATION

In this section, we first analyze the performance of EASE in
terms of message complexity (Section 5.1). Then, we study
the setting of the approximate radius for EASE. When the
mobility pattern is available, we analyze the optimal setting
of the approximation radius (Section 5.2). When the
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mobility pattern is not available, we devise an adaptive
algorithm to dynamically adjust the approximation radius

(Section 5.3).

5.1 Performance Analysis

This section analyzes the performance of EASE in terms of
message complexity (that is, the total number of message
transfers in the network). A summary of the notations used in
the analysis is provided in Table 1. For simplicity, data
transmission is assumed to be error-free. Assume that the
query rate is � and the sensor sampling rate is �. Let Cqn and
Cqf be the costs of answering a query by the centric storage
node and the local storage node, respectively, andCur andCul

be the costs of a remote update and a local update,
respectively. Given an approximation radius of r, it is easy
to see that the overall message complexity is given by

CðrÞ ¼ ð1� pqfðrÞÞ � � � Cqn þ pqfðrÞ � � � Cqf

þ �ðrÞ � Cur þ � � Cul;
ð1Þ

where pqfðrÞ is the probability that the approximate location
stored at the centric storage node does not satisfy the query-
specified precision requirement, and �ðrÞ is the rate of
remote updates (that is, the rate the object moves out of the
approximation area). The four terms in the above formula
represent the cost incurred by the queries answered by the
centric storage node, the cost incurred by the queries
answered by the local storage node, the cost of remote
updates, and the cost of local updates, respectively.

Assume that the sensor network consists of n uniformly

distributed sensor nodes. As in [26] and [36], we use n to

approximate the cost of flooding a message over the whole
network and

ffiffiffi

n
p

to approximate the cost of sending a

message between two nodes in the network. It is easy to see
(in Fig. 1b) that we obtain

Cqn ¼ 2
ffiffiffi

n
p

; ð2Þ

Cqf ¼ 3
ffiffiffi

n
p

: ð3Þ

Note that the costs of Cur and Cul are a function of

approximation radius r. We now derive these two costs and
pqfðrÞ. The rate of remote updates �ðrÞ depends on the

mobility pattern and will be discussed in the next section.

A remote update involves the local storage node
sending the update to the centric storage node and two
geocast messages to notify (invalidate) the new (obsolete)
approximation area. The remote update cost is approxi-
mated by

ffiffiffi

n
p

. We approximate the geocast cost by the
number of sensor nodes in the target area, that is, �r2f ,
where r is the approximation radius, and f is the density
of sensor nodes. Therefore, we obtain Cur as

Cur ¼
ffiffiffi

n
p
þ 2�r2f: ð4Þ

For a local location update, the average travel distance is
given by

R r
0
ðx� 2�xÞdx
R r
0
ð2�xÞdx ¼ 2=3�r3

�r2
¼ 2

3
r: ð5Þ

Thus, the local update cost can be approximated by the
average number of sensor nodes encountered when travel-
ing a distance of 2

3
r; that is

Cul ¼
2

3
r
ffiffiffi

f
p

: ð6Þ

We assume that the error tolerances of the queries are
uniformly distributed in the range of ½0; pmax�. Thus, the
probability of a query not being satisfied by the centric
storage node is

pqfðrÞ ¼ min
r

pmax
; 1

� �

: ð7Þ

Combining (1) through (7), we can rewrite (1) as

CðrÞ ¼� � 2
ffiffiffi

n
p
þmin

r

pmax
; 1

� �

� � �
ffiffiffi

n
p

þ �ðrÞ � ð
ffiffiffi

n
p
þ 2�r2fÞ þ � � 2

3
r
ffiffiffi

f
p

:

ð8Þ

As can be seen, the overall message complexity is
basically a function of approximation radius r. The next
two sections study the setting of r in detail.

5.2 Optimal Approximation Setting with Known
Mobility Pattern

This section studies the optimal approximation setting
based on the mobility pattern. We assume a two-dimen-
sional random walk model [17], in which the object moves
in steps.4 At each step, the object moves a distance of d
along an arbitrary direction (that is, with angle � uniformly
distributed in ½0; 2��). Each step takes a duration of l.

Let T ðrÞ be the average time an object takes to move out
of a circle of radius r. With a random walk model, we have
the following approximation (see the Appendix for details):

T ðrÞ ¼ r

d

� �2

�l: ð9Þ

Therefore, the rate at which the object moves out of the
circle (that is, the approximation area) is given by

�ðrÞ ¼ d2

lr2
: ð10Þ
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4. The two-dimensional random walk model is used in this paper as a
case study. The optimization technique presented here is applicable to other
mobility patterns as long as their �ðrÞ can be estimated.



Plugging (10) into (8), we get the following overall
message complexity:

CðrÞ ¼� � 2
ffiffiffi

n
p
þmin

r

pmax
; 1

� �

� � �
ffiffiffi

n
p

þ d2
ffiffiffi

n
p

lr2
þ 2�fd2

l
þ 2

3
�r

ffiffiffi

f
p

:

ð11Þ

Let @CðrÞ
@r ¼ 0. We obtain the optimal settings of r� in two

cases:

r� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6pmaxd2
ffiffi

n
p

l�ð3� ffiffinp þ2�pmax

ffiffi

f
p
Þ

3

r

if r � pmax;
ffiffiffiffiffiffiffiffiffiffi

3d2
ffiffi

n
p

l�
ffiffi

f
p3

r

if r > pmax:

8

>

>

<

>

>

:

ð12Þ

The one producing the lower message complexity CðrÞ will
be selected as the final setting of r�. From (12), we can
observe that the optimal setting of r� is affected by many
factors such as the network size, query rate, sensor
sampling rate, mobility pattern, and precision requirement.
Intuitively, a faster movement (that is, larger d or smaller l)
results in a larger r� so as to reduce the remote update
traffic; on the other hand, a smaller r� is desired at a higher
sensor sampling rate (that is, higher �) in order to reduce
the local update traffic. Also, note that if r� is set greater
than pmax, all queries will be relayed to the local storage
node via the centric storage node. In this case, the
approximate data storage is used to maintain the location
of the local storage node only.

5.3 Adaptive Approximation Setting with an
Unknown Mobility Pattern

It is obvious that the larger the approximation radius r, the
lower the rate of moving out of the approximation area �ðrÞ.
Following [11] and [23], we assume that �ðrÞ is proportional
to 1=r2; that is, �ðrÞ ¼ K

r2 , where K is a parameter depending
on the mobility model. We assume that pmax is sufficiently
large, in which case pqfðrÞ ¼ r

pmax
. Using the optimization

technique described in Section 5.2, we can derive the
optimal r� for r � pmax:

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6pmaxK
ffiffiffi

n
p

3�
ffiffiffi

n
p þ 2�pmax

ffiffiffi

f
p3

s

: ð13Þ

It is not difficult to observe that when r ¼ r�,

pqfðrÞ
�ðrÞ ¼

6
ffiffiffi

n
p

3�
ffiffiffi

n
p þ 2�pmax

ffiffiffi

f
p ð14Þ

is a constant (denoted by �). Motivated by this observation,
we propose an adaptive algorithm to dynamically adapt
approximation radius r. The basic idea is to maintain the
observed ratio of pqfðrÞ to �ðrÞ at �. To do so, the centric
storage node keeps track of the query forwarding prob-
ability pqfðrÞ. It also maintains the remote update rate using
an exponential aging method. At each remote update, the
estimate of the remote update rate is adjusted as

�ðrÞnew ¼ ð1� �Þ � �ðrÞold þ � � 1

Tc � Tl
; ð15Þ

where Tc is the current time, Tl is the time of the last remote
update, and � is a factor weighing the importance of the

current update against past updates. The setting of r is then
adjusted by the centric storage node based on Algorithm 4.
Recall that pqfðrÞ is proportional to r, and �ðrÞ is inversely
proportional to r2. If the observed ratio is greater than
� � ð1þ 	Þ, we decrease r by a factor of ð1þ 
Þ; if the
observed ratio is lower than � � ð1� 	Þ, we increase r by a
factor of ð1þ 
Þ. On computing the new approximation
radius, the centric storage node informs the new local
storage node of the radius. On receiving the radius, the new
local storage node performs the notification geocast (see
Section 4.2). We shall evaluate the performance of this
adaptive setting algorithm in the next section.

Algorithm 4. Adjustment of approximation radius (at the

centric storage node).
1: for each remote update do

2: update the rate of remote updates �ðrÞ according to

(15);

3: if
pqf ðrÞ
�ðrÞ > � � ð1þ 	Þ then

4: set r0  r
ð1þ
Þ ;

5: else if
pqf ðrÞ
�ðrÞ < � � ð1� 	Þ then

6: set r0  r � ð1þ 
Þ;
7: end if

8: return r0 to the new local storage node;

9: end for

6 PERFORMANCE EVALUATION

6.1 Simulation Setup

In this section, we conduct simulation experiments to
compare the proposed EASE scheme with the conventional
storage schemes. We have developed a simulator based on
ns-2 [1] and NRL’s sensor network extension [2]. Table 2
summarizes the system parameters and their settings used
in our experiments.

We simulate 225 sensor nodes as deployed in a 500�
500 m2 field. The field is divided into 225 34� 34 m2 grid
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TABLE 2
System Parameters and Settings



cells, each of which has a sensor node at the center. Each
sensor node can detect the objects located in its grid cell and
position them [31], [33]. Like in the previous work [13], [26],
the radio transmission range is set at 40 m. In order to save
the energy spent in idle listening, the simulator employs the
B-MAC [25] in its MAC layer. Specifically, a sensor node
can send a message at any time by including a preamble.
Each sensor node periodically wakes up to sample the
channel. If some incoming message is detected, it stays
awake to receive the message. Otherwise, the node enters
the sleeping mode. The simulator also includes an energy
model that measures the energy consumption of each
sensor node. Approximate location queries are issued
randomly from the sensor nodes in the field. The query
rate is set at 1=sec by default. The error tolerances of the
queries are randomly distributed between 0 and pmax. The
default setting of pmax is 50 m.

To facilitate geographical message routing (such as for
update reporting and query forwarding), the GPSR protocol
[15] is employed by the simulator. GPSR operates in two
modes: greedy mode and perimeter mode. In the greedy
mode, a sensor node forwards a message to a neighbor
closer to the destination than itself. If no such neighbor
exists, the algorithm switches to the perimeter mode, which
recovers by routing around the perimeter of the region.

Three mobility models, random walk, semirandom walk,
and random waypoint, are used to model the moving pattern
of objects in the simulation. The random walk model has
been described in Section 5.1. The semirandom walk is
similar to the random walk. However, unlike the random
walk, after each movement step, the direction is adjusted by
a random small angle 	� (uniformly distributed between
½� �

8
; �
8
�), and the speed is adjusted by a random small

percentage 	v (uniformly distributed between [�5 percent,
5 percent]). In the random waypoint model, an object selects
a destination at random in the simulated field and moves to
the destination at a speed randomly chosen from a
configured range; upon arrival, it pauses for a random
period and selects a new destination. The random walk
model is suitable for simulating small-scale scenarios,
whereas the random waypoint model is more suitable for
large-scale on-purpose movements [17]. The mobility
profiles used in the experiments, including slow, moderate,
fast, and mixed, are listed in Table 3.

We compare EASE with CS and LS (described in
Section 3). The performance is measured in terms of message
complexity (the number of messages transferred in the
network) and energy consumption of the sensor nodes.
Similar to [26], we do not measure the message overhead
incurred by the underlying routing protocol (for example,
beacons in GPSR). Such an overhead is usually of lower
order than the application data traffic. To facilitate an easy
illustration and performance comparison, we report the
normalized cost for each performance metric. The normalized

cost of a scheme is defined as the ratio of the measured cost
of the scheme to that of CS. The smaller the normalized cost
is, the better the scheme performs. Each simulation run
lasted for 500 seconds of simulated time; the first 20 seconds
were considered the warm-up period to eliminate initializa-
tion effects such as speed decay [34].

6.2 Optimal Setting of the Approximation Radius

The optimal approximation setting of EASE, r, can be
obtained using the optimization technique described in
Section 5.2 under the assumption of random walk mobility.
Fig. 3a shows the optimal settings of r for slow, moderate,
and fast random walk mobility profiles under a number of
increasing error tolerances. When the error tolerance is low
(that is, pmax ¼ 0 for slow and moderate profiles; pmax � 20 for
a fast profile), EASE selects a large r ð> pmaxÞ to suppress
remote location updates. In such cases, all queries will be
forwarded to the local storage nodes for high-precision
answers; the selection of a large r implies that the cost
reduction for location updates outweighs the overhead for
query forwarding. As the error tolerance becomes higher,
EASE chooses a smaller r ð< pmaxÞ to limit query forward-
ing, thus reducing the overall traffic. When the error
tolerance is further increased, approximation radius r is
slightly increased to reduce the update traffic.

Next, we compare the above approximation settings
obtained from the theoretical analysis with those obtained
from simulation experiments. In the simulation, we vary the
approximation radius from 0; 1; 2; . . . ; 50 and test the
performance of each radius. The results for pmax ¼ 50 are
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Fig. 3. Optimal setting of the approximation radius ð� ¼ 1=secÞ.
(a) Approximation setting obtained from theoretical analysis.

(b) Simulation results ðpmax ¼ 50 mÞ.



plotted in Fig. 3b. The analytical approximation radii are
also shown in the figure. As can be seen, the analytical
approximation settings are close to the actual optimal
points and approach the optimal performances. This
validates our analysis of the optimal approximation setting.

6.3 Message Complexity

This section examines the message complexity of EASE with
the optimal approximation setting. We use the randomwalk
mobility model in this set of experiments. Fig. 4a shows the
normalized message complexity under various error toler-
ances. Neither LS nor CS is aware of the systemworkload. LS
has the highestmessage complexity, that is, 6.36, which is not
plotted in the figure. In contrast, EASE is able to set a proper
approximation radius in optimizing the network traffic based
on thequery andupdatepatterns.As a result, EASE improves
the performance over CS by 49-72 percent. Even when the
error tolerance is set at zero, by selecting a large approxima-
tion radius, as shown in Fig. 3a, EASE significantly reduces
the update traffic at the cost of slightly increased query traffic
and achieves an improvement of 49-60 percent in the overall
traffic. In general, the higher the error tolerance, the greater is
the improvement achieved by EASE. This is expected since
EASE is designed to exploit the error tolerance in location
queries. A higher error tolerance implies more space for
performance improvement. Among the three mobility
profiles, the slow objects obtain the most significant perfor-
mance improvement. This is mainly because of the high
movement locality exhibitedby the slowobjects;most location

changes result in local updates that arepropagatedonly to the
local storage nodes.

To gain more insight into how EASE improves the
performance over CS, we provide a breakdown of the traffic
in Fig. 5, where pmax is set at 50 m. In the CS scheme, a
significant amount of traffic contributes to remote updates.
By keeping imprecise data at the centric storage node, EASE
reduces remote updates by several orders of magnitude.
Fig. 5 also shows that EASE’s overhead for forwarding
queries and geocasting is trivial compared to the reduced
update traffic. Overall, EASE reduces the total message
complexity of CS by 62 percent.

Fig. 4b shows the normalized message complexity as a
function of the query rate when pmax is fixed at 50 m. LS
performs the worst. For CS, when the query rate is low,
most network traffic is due to location updates. EASE
significantly cuts down the update traffic by setting a large
approximation radius and reduces the overall message
complexity by up to 96 percent. When the query rate is
extremely high (for example, 10), the approximation radius
is set close to zero and, hence, EASE has performance
similar to CS.

6.4 Energy Consumption

We now proceed to evaluate the energy consumption of
EASE with the optimal approximation setting. Figs. 6a and
6b show the total energy consumed by the sensor network
during a simulation run, which is normalized by that of CS.
In Fig. 6a, LS has the highest normalized energy (that is,
3.73) and is not plotted. Basically, the trends for energy
consumption are similar to those for message complexity
(Figs. 4a and 4b). However, the performance improvement
of EASE over LS and CS is less in terms of energy
consumption. This is partly because in addition to sending
and receiving messages, the sensor nodes spend energy in
idle listening and sleeping. The latter portion of the energy
cost is similar for all schemes.

We also measure the energy consumption of each
individual sensor node. The most energy-consuming node
generally determines the lifetime of the sensor network, and
thus, its energy consumption is used as the performance
metric in Fig. 7. We can see that EASE performs the best in
all cases except when the query rate is very low (leftmost
points in Fig. 7b). In most cases, the energy consumption of
EASE is only 20-50 percent of that of CS. This implies that
EASE can prolong the network lifetime over CS by a factor
of 2-5. It is also interesting to note that unlike the case of
total energy consumption, EASE achieves a better perfor-
mance for fast objects than moderate objects. This is
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Fig. 4. Message complexity. (a) Message complexity versus query

precision requirement ð� ¼ 1=secÞ. (b) Message complexity versus

query rate ðpmax ¼ 50 mÞ.

Fig. 5. Breakdown of message complexity (moderate, pmax ¼ 50 m).



explained as follows: With CS, all queries and updates are
sent to the centric storage nodes. Hence, the centric storage
node is a hotspot. However, with reduced update traffic by
EASE, the hotspot is no longer the centric storage node.
Instead, some local storage nodes become hotspots. On one
hand, a faster moving object generates more update traffic.
On the other hand, a faster moving object changes local
storage nodes more frequently and, hence, balances the
loads of the sensor nodes. Combining these effects, EASE
has a longer network lifetime for slow and fast objects than
for moderate objects.

6.5 Query Latency

The CS scheme is expected to have a very good perfor-
mance in query latency because the accurate location data
are always available at the centric storage node; thus, a
query can quickly be answered there. With the EASE
scheme, if a query is not satisfied by the centric storage
node due to insufficient precision, it is forwarded to the
corresponding local storage node. Thus, the average
querying path is lengthened due to such query forwarding.
In this section, we measure the average latency of
answering approximate location queries to examine how
well EASE can perform in terms of query latency.

As shown in Fig. 8, when the error tolerance is low (that
is, pmax ¼ 0, the worst case), EASE performs worse than CS
by no more than 52 percent. However, as the error tolerance
increases, EASE consistently improves the query latency
(and even outperforms CS for large values of pmax). This is
mainly because for a larger value of pmax, EASE incurs less

network traffic (as shown in Fig. 4a) and, hence, less
message transmission collisions, which reduces the overall
latency even though the querying path is lengthened.

6.6 Performance of the Adaptive Setting Algorithm

Finally, we evaluate the performance of the adaptive
algorithm for setting approximation radius r (Section 5.3).
Radius r is initialized by some seed value and is updated by
the proposed adaptive algorithm afterward. We set �, 	, and

 at 0.5, 0.1, and 0.1, respectively, in the adaptive algorithm.
Fig. 9 shows the normalized energy consumption for the
four mobility profiles of random waypoint mobility when
the maximum error tolerance pmax is set at 50 m and the
query rate � is set at 1=sec. We test two methods to seed r,
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Fig. 6. Total energy consumption. (a) Energy consumption versus query

precision requirement ð� ¼ 1=secÞ. (b) Energy consumption versus

query rate ðpmax ¼ 50 mÞ.

Fig. 7. Energy consumption of the most consuming node. (a) Highest

energy consumption versus query precision requirement ð� ¼ 1=secÞ.
(b) Highest energy consumption versus query rate ðpmax ¼ 50 mÞ.

Fig. 8. Query latency versus query precision requirement ð� ¼ 1=secÞ.



that is, initializing rwith the average error tolerance (that is,
25) or the maximum error tolerance (that is, 50). As can be
seen, the adaptive algorithm works effectively in both cases
tested. EASE improves over CS by 30-50 percent in terms of
total energy consumption, and its most consuming node
spends only 20-60 percent of the energy of CS’s (that is,
extends the lifetime of the sensor network by a factor of 1.5-
5). The two initial values of r achieve a similar performance.
Fig. 10 shows the message complexities, measured every
10 seconds, of CS and EASE (with two different initial
values) as a function of simulated time. It is clear that after
the warm-up period (that is, after 100 seconds), the two
EASE schemes converge. This also implies that the adaptive
algorithm is not sensitive to the initial setting of r. Similar
performance trends can be observed for the semirandom
mobility model. As shown in Fig. 11, EASE substantially
outperforms CS in terms of energy consumption.

7 CONCLUSIONS

This paper presents a study on the processing of precision-
constrained approximate location queries for object-track-
ing sensor networks. An energy-efficient storage scheme
called EASE has been developed to efficiently reduce the
network traffic, conserve the energy of sensor nodes, and
improve the network lifetime. We have analyzed the
optimal setting of the approximation radius when the
object mobility pattern is known and devised an adaptive
algorithm to adjust the approximation setting when the
mobility pattern is not available or is dynamically changing.
We have also evaluated the proposed techniques through
extensive simulation-based experiments. The experimental
results validated our theoretical analysis of the optimal
approximation setting. They also demonstrated that the
EASE scheme, working together with the proposed approx-
imation setting methods, saves significant energy for sensor
networks and prolongs the network lifetime.

With regard to future work, we plan to extend EASE to
answering approximate spatial queries such as finding
k nearest neighbors. Besides one-shot queries, we will also
investigate continuous monitoring queries. In addition, we
are planning to develop a testbed using Berkeley Motes to
validate the proposed schemes.

APPENDIX

ANALYSIS OF THE TWO-DIMENSIONAL

RANDOM WALK MODEL

Consider a two-dimensional randomwalkmodel inwhich at
each step, an object moves a distance of d in a direction
uniformly distributed in ½0; 2�Þ. Assume that the object starts
a randomwalk frompointO.We divide the plane into a set of
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Fig. 9. Performance of adaptive settings (waypoint mobility). (a) Total

energy consumption. (b) Energy consumption at the most consuming

node.

Fig. 10. Message complexity along time series (waypoint, slow mobility

profile).

Fig. 11. Performance of adaptive settings (semirandom mobility).

(a) Total energy consumption. (b) Energy consumption at the most

consuming node.



rings of sufficiently smallwidth�. As shown in Fig. 12, ring 0

is enclosed by a circle centered at O with radius 1

2
�, that is,

ring 0 contains all points that are within distance 1

2
� fromO.

For each i � 1, ring i is enclosed by two circles centered at O

with radii ði� 1

2
Þ� and ðiþ 1

2
Þ�, respectively, that is, ring i

includes all points that are ði� 1

2
Þ� to ðiþ 1

2
Þ� away from O.

Without loss of generality, we assume that d ¼ k�,

where k is an integer. Consider an object located in ring i.

We approximate its distance to O as � ¼ i�. Fig. 13 shows

that if the object moves in direction �, its new distance to O

is given by

�
0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðd sin �Þ2 þ ði�þ d cos �Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þ ði�Þ2 þ 2di�cos �

q

¼� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ i2 þ 2ki cos �
p

:

The object is located in ring j after the move if and only if

j� 1

2

� �

� � � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 þ i2 þ 2ki cos �
p

� jþ 1

2

� �

�;

or, equivalently,

ðj� 1

2
Þ2 � i2 � k2

2ki
� cos � � ðjþ

1

2
Þ2 � i2 � k2

2ki
:

If j < ji� kj or j > iþ k, the above condition is impos-

sible to satisfy. In this case, the transition probability from

ring i to j is given by 0.

If j ¼ ji� kj, the new distance can be in the range
½j�; ðjþ 1

2
Þ�� only. Due to symmetry, only the range ½0; ��

needs to be considered for �. Thus, the transition probability
from ring i to j is given by

1

�
� arccos

j2 � i2 � k2

2ki
� arccos

ðjþ 1

2
Þ2 � i2 � k2

2ki

 !

:

If j ¼ iþ k, the new distance can be in the range ½ðj�
1

2
Þ�; j�� only. Hence, the transition probability from ring i
to j is given by

1

�
� arccos

ðj� 1

2
Þ2 � i2 � k2

2ki
� arccos

j2 � i2 � k2

2ki

 !

:

If ji� kj < j < iþ k, the new distance can be in the range
½ðj� 1

2
Þ�; ðjþ 1

2
Þ��. Therefore, the transition probability

from ring i to j is given by

1

�
� arccos

ðj� 1

2
Þ2 � i2 � k2

2ki
� arccos

ðjþ 1

2
Þ2 � i2 � k2

2ki

 !

:

We model each ring as a state and represent the object
location during a random walk as a probability vector
½p0; p1; p2; . . .�, where pi is the probability that the object is
located in ring i. Starting from the vector ½1; 0; 0; . . .� (that is,
the object starts a random walk from point O), the vector
after each move can be computed iteratively with the above
transition probabilities. It is then easy to calculate the
probability of the object’s first move beyond a given ring i
(that is, distance x ¼ ðiþ 1

2
Þ� from O) at each step. In this

way, the average number of steps t the object takes to first
move beyond x away from O can be derived numerically.

Fig. 14 shows the simulation results, where the x-axis
represents the normalized distance x=d from the starting
point O, and the y-axis represents the ratio of t to ðx=dÞ2. As
seen in Fig. 14, when x is beyond a few times d, the ratio
approaches a constant 1. Therefore, t can be approximated by
ðx=dÞ2.
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