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Abstract
Using imbalanced historical yield data to predict performance and select new lines is an arduous breeding
task. Genome-wide association studies (GWAS) and high throughput genotyping based on sequencing
techniques can increase prediction accuracy. An association mapping panel of 227 Texas elite (TXE) wheat
breeding lines was used for GWAS and a training population to develop prediction models for grain yield
selection. An imbalanced set of yield data collected from 102 environments (year-by-location) over ten
years, through testing yield in 40–66 lines each year at 6–14 locations with 38–41 lines repeated in the test
in any two consecutive years, was used. Based on correlations among data from different environments
within two adjacent years and heritability estimated in each environment, yield data from 87 environments
were selected and assigned to two correlation-based groups. The yield best linear unbiased estimation
(BLUE) from each group, along with reaction to greenbug and Hessian �y in each line, were used for GWAS
to reveal genomic regions associated with yield and insect resistance. A total of 74 genomic regions were
associated with grain yield and two of them were commonly detected in both correlation-based groups.
Greenbug resistance in TXE lines was mainly controlled by Gb3 on chromosome 7DL in addition to two
novel regions on 3DL and 6DS, and Hessian �y resistance was conferred by the region on 1AS. Genomic
prediction models developed in two correlation-based groups were validated using a set of 105 new
advanced breeding lines and the model from correlation-based group G2 was more reliable for prediction.
This research not only identi�ed genomic regions associated with yield and insect resistance but also
established the method of using historical imbalanced breeding data to develop a genomic prediction
model for crop improvement.

Introduction
The complex nature of grain yield makes it di�cult for precise selection of lines with high yield potential.
Accumulation of favorite alleles combinations for yield would lead to lines with improved yields. For
identifying favorite alleles, genome-wide association studies (GWAS) (Atwell et al. 2010; Rafalski 2010)
have showed advantages over traditional QTL mapping using bi-parental mapping populations. GWAS
uses the natural collection of germplasm lines such as landraces, varieties, and breeding lines as mapping
panels, and detects historical recombination events and linkage disequilibrium (LD) to identify the non-
random association between allele loci and traits (Flint-Garcia et al. 2003). GWAS can identify multiple
alleles simultaneously since a wider range of germplasms in a panel would contain more diverse genetic
composition (Atwell et al. 2010; Myles et al. 2009; Zhu et al. 2008).

Increasing marker coverage in the genome will enhance the power of GWAS for allele identi�cation. Single
nucleotide polymorphisms (SNPs), the variations on a single nucleotide at the speci�c position, are the
most abundant and widely distributed genome markers (Agarwal et al. 2008). With the advances in DNA
sequencing technology, the genotype-by-sequencing (GBS) (Elshire 2011) and later double-digested
restriction-site associated DNA sequencing (ddRADseq) (Baird et al. 2008; Peterson et al. 2012) are robust
approaches of identifying SNPs that are randomly distributed throughout the whole genome and thus are
suitable for investigating genome-wide genetic variations. Particularly, by aligning SNP �anking DNA
sequences to assembled whole genome sequences of hexaploidy wheat (IWGSC 2014; Zimin et al. 2017),
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tetraploid wheat (Avni et al. 2017) and Ae. tauschii (Jia et al. 2013b), chromosomal location of each SNP
can be precisely located to accurately track favorite alleles.

Previously, QTL analysis was widely used to identify genomic regions associated with the traits and then
develop molecular markers for marker-assisted selection (MAS). However, most important traits such as
grain yield, yield components, end-use quality, etc., are all highly polygenic with each locus contributing only
a very small proportion of total phenotypic variance (Collard and Mackill 2008; Jia et al. 2013a; Simmonds
et al. 2014; Tyagi et al. 2014), which leads to weak stability and low repeatability in those QTLs and thus
limits the application of MAS for accumulating desirable genes in crop improvement. Genomic selection
(GS) utilizes a large set of markers covering a whole genome to detect all possible alleles within the LD and
their effects on the trait, and to estimate the genomic breeding value of each line to conduct selection in
breeding (Bernardo and Yu 2007; Bhat et al. 2016; Daetwyler et al. 2008; Meuwissen et al. 2001; Rutkoski et
al. 2016; Sun et al. 2019; Tsai et al. 2020). Therefore, using GWAS to identify favorite alleles and form the
training population to develop prediction models for conducting GS will be an e�cient way of accumulating
desirable alleles for improving yield and other polygenic traits.

To conduct GWAS and GS, the composition of training populations and precision of phenotyping are two
additional critical factors affecting prediction accuracy (He et al. 2016; Marulanda et al. 2015; Michel et al.
2017). Using advanced lines from the same breeding program as a training population has showed a
positive effect on prediction accuracy (Daetwyler et al. 2008; Endelman et al. 2014). It was demonstrated
that a training population including lines from the same family, half sibs and more distant lines could be
e�cient for a GS scheme (Verges and Van Sanford 2020). Using historical advanced breeding lines
developed at different periods together with germplasm lines from the same breeding program may also be
a good strategy for association mapping and genomic prediction studies, simply because all those lines
could represent all genetic sources in the program with historical recombination maintained to ensure
mapping resolution, particularly when the training population is keeping updated as the new germplasm
lines were introduced into the program.

Another advantage of using advanced breeding lines in GWAS and genomic prediction is that the lines have
been evaluated in many years under different environmental conditions and have phenotypic data already
available. This would be especially helpful for traits such as grain yield that requires many resources for
phenotyping (Verges and Van Sanford 2020). However, the most signi�cant di�culty in using phenotypic
data of the historical breeding lines for GWAS is that the lines are evaluated at different time and that the
data were typically imbalanced. Research using imbalanced data in historical breeding lines for GWAS and
genomic prediction have been seldom reported. The possibility of using imbalanced data for GS was
explored by clustering analysis of data through pre-de�ned mega-environments based on climatic patterns,
farming systems, water regimes and the incidence of biotic and abiotic stress, but this strategy appears
ineffective for genomic selection (Dawson et al. 2013). Therefore, it is necessary to identify an appropriate
way that can directly utilize the imbalanced historical data for GWAS and genomic prediction.

During the past few decades, the Texas A&M AgriLife Research and Extension Center at Amarillo, TX has
released several drought tolerant cultivars such as ‘TAM 105’, ‘TAM 107’, ‘TAM 111’ and ‘TAM 112’ (Lazar et
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al. 2004; Porter et al. 1980; Porter et al. 1987; Rudd et al. 2014). Among them, TAM 111 and TAM 112 were
two broadly planted cultivars in the Great Plains hard red winter wheat regions since 2010 based on planted
acreages (NASS, 2011–2013 http://www.nass.usda.gov). A newer release ‘TAM 114’ has superior bread-
making quality and drought tolerance (Rudd et al. 2018). A grain and forage dual purpose awnless wheat
‘TAM 204’ has higher yield, drought tolerance and a good level of resistance to insects such as greenbug,
Hessian �y, and wheat curl mite (Rudd et al. 2019). These widely adapted winter wheat cultivars have been
used as germplasm lines in wheat breeding programs in the U.S. and many other countries. To localize their
genes conferring the superior traits will greatly improve selection e�ciency for improving yield, end-use
quality, and tolerance to biotic and abiotic stresses.

In this research, we used a set of 227 elite breeding lines (including the aforementioned released cultivars)
developed by Texas A&M AgriLife Research wheat breeding programs in the last ten years as the mapping
panel for conducting GWAS to identify favorite alleles and as the training population to build a genomic
prediction model for selecting grain yield. By combining correlation analysis with genetic heritability
estimation using the imbalanced yield data collected from diverse environments, we successfully
developed a data management strategy of using the imbalanced historical yield data for conducting GWAS
and building genomic prediction models. In addition, the genomic prediction model was further validated
using a set of newly developed advanced breeding lines from Texas wheat breeding programs.

Materials And Methods
Plant materials 

The set of 227 Texas elite (TXE, F9) breeding lines were developed by the two Texas A&M AgriLife Research
wheat breeding programs located at Amarillo and College Station, TX during 2009 – 2018, which included
13 released TAM cultivars. Brie�y, the lines were originally selected at the F6 generation according to their
performance in the observation yield trials conducted at two locations followed by evaluation preliminary
yield trials in six locations and advanced yield trials in ten locations at the F7 and F8 generations,
respectively. The state-wide yield TXE trials were conducted at 16 locations across Texas with three
replicates per location.  The superior TXE lines were further evaluated for traits of yield, end-use quality,
biotic and abiotic tolerance, and agronomic traits either toward the new cultivar release or as the
germplasms to enter the new breeding cycles. Therefore, the set of TXE lines represented the major gene
sources in Texas wheat breeding programs and were appropriate materials for building genomic prediction
models to improve selection e�ciency. In addition, a set of 105 lines entered into the advanced yield trials
was evaluated at ten locations with two replications per location, and their yield data were used to validate
the genomic prediction model developed from the TXE collection.

Grain yield data analysis

The TXE trials were conducted during 2009 - 2018 were conducted in three replications at 16 locations that
represented four typical wheat growing regions (High plains, Rolling plains, Blacklands and South Texas) in
Texas (Fig. S1), and grain yield data were collected from 6 to 14 locations each year (Table 1) due to the
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abandoned harvest in some locations experienced serious damage caused by severe weather. Totally, yield
data were from 102 environments de�ned as year-by-location combinations (Table 1). However, TXE yield
data were typically imbalanced with 40 to 66 lines evaluated each year and 38 to 41 lines were also tested
in the following year (Table 1). Three cultivars, ‘TAM 112’, ‘TAM 401’ and ‘TAM W-101’ were used as controls
across all years.

To manage the imbalanced yield data for using in GWAS and then developing genomic prediction model for
grain yield in Texas wheat breeding programs, genetic correlations coe�cients among yield data of
common TXE lines in different environments were calculated through R package META-R (Alvarado et al.
2020), and the signi�cantly positive correlation indicated that those common TXE lines showed similar
trends of reacting to growing condition under those environments. Yield data collected from all
environments were then grouped according to their correlations. For example, if data of common lines in
datasets A and B were correlated and data of common lines in datasets B and C were correlated, the three
datasets A, B and C will be kept in one correlated group though no common lines between A and C for
correlation calculation. The best linear unbiased prediction (BLUP) in each correlation group was calculated
using the mixed model y = Xβ + Zu + ε using the R package lme4 (Bates et al. 2015) with genotype was set
as the only random effect, where y represents the vector of observations, β and u mean �xed and random
effects, respectively, X and Z are matrices of observations related to �xed and random effects, respectively,
and ε is the residual of the model. Since genotype was the only random effect in this model, variation from
random effect will be the genetic variance (VG) and thus can be used to estimate the heritability (H2) of

grain yield in each correlation group using the formula H2 = VG / (VG + Ve), where Ve is the residual variance.
If a dataset from one environment was included in heritability estimation and lead to an increase in yield
heritability of one correlation-based group, the dataset was kept in that correlation-based group. Such a
heritability estimation was conducted for each environment, including the datasets that were non-correlated
in correlation analysis in the previous step, to �nally determine if the dataset should be kept in the
corresponding correlation-based group. 

Once correlation-based groups of yield data were �nalized through heritability estimation, the R package
lme4 and the mixed model y = Xβ + Zu + ε were used again to calculate the best linear unbiased estimation
(BLUE) of each line in each correlation-based group with genotype was set as the �xed and environment set
as the random effects. The yield BLUEs calculated in each group were used for GWAS and developing
genomic prediction models.

Evaluation resistance to greenbug and Hessian �y 

Growth chamber and greenhouse experiments were conducted to evaluate resistance to greenbug
(Schizaphis graminum Rondani) and Hessian �y (Mayetiola destructor Say) in the TXE lines. Brie�y, wheat
plants grown in one-gallon pots were maintained in 60 × 60 × 60 cm cages (MegaView Science Co., Ltd.,
Taichung, Taiwan) equipped with insect proof mesh. Greenbug biotype E and Hessian �y biotype GP
colonies were established and maintained on caged wheat plants for approximately six weeks prior to the
evaluation experiments and were used as the source for the subsequent assays. 
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Greenbug infestation was done according to Weng and Lazar (2002). Cultivars ‘TAM 105’ or TAM 111, and
‘TAM 110’ were used as susceptible and resistant controls, respectively.  Sixteen lines and two controls were
grown in a 30 × 50 cm flat with 20 seeds per line. At the three-leaf stage, about 500 greenbugs were
scattered over each test flat and the �ats were then kept in a growth chamber at 22 °C with a day length of
8 hours. The plant was scored as either resistant (normal healthy) or susceptible (chlorotic leaf and necrotic
stem lesions) 10 -14 days after infestation. Percentage of resistant plants in each line was recorded for
GWAS.

Hessian �y infestation was conducted as described in (Chen et al. 2009). Wheat accessions ‘Carol’ (H3),
‘Cardwell’ (H6) and ‘Molly’ (H13) were used as the resistant checks, and ‘Danby’ as the susceptible control.
Twenty lines and four checks with 25 seeds per line were planted in one plastic �at (56 × 36 cm) in a
greenhouse at 18 ± 3 °C with day length as 14 hours. When the �rst leaf was fully expanded and the second
leaf started emerging, about 200 newly mated female �ies were released to each �at covered with a
cheesecloth tent (540 × 120 × 40 cm). Resistance rating were conducted three weeks later and the stunted
plants having bloated live larvae at stem base were considered as susceptible (S), and the normally healthy
plants with small dead larvae or tiny live larvae between leaf sheaths as resistant (R). Percentage of
resistant plants per line was calculated for GWAS.

SNP genotyping and marker data management

Whole genomic DNA was extracted from leaf samples using CTAB (cetyl trimethylammonium bromide)
method (Stewart and Via 1993) with slight modi�cation (Liu et al. 2013). SNP genotyping was done
through ddRADSeq procedure (Peterson et al. 2012). Brie�y, genomic DNA was co-digested with two
restriction enzymes PstI (CTGCAG) and MspI (CCGG) and barcoded adapters were then ligated to DNA
segments of each individual sample.  Adapter oligos were synthesized from Integrated DNA Technologies
(IDT), Inc. (Coralville, Iowa), and were mixed in equimolar amounts (30 µM of top and bottom oligos).  After
denaturing at 95°C for 10 sec, oligos were cooled to 12°C at a rate of 0.1°C per sec. P5-Index adapters were
made through annealing the top and bottom oligos (Top oligo (5’ - 3’): AAT GAT ACG GCG ACC ACC GAG
ATC TAC ACX XXX XXX XTC TTT CCC T; Bottom oligo (5’ -3’): /5Phos/AXX XXX XXX GTG TAG ATC TCG
GTG GTC GCC GTA TCA TT, where XXXXXXXX represents 8-base i5 index sequences).  The P5-PstI-Bridge
adapters were made by annealing top (Pster_T, 5’ to 3’): /5Phos/ACA CGA CGC TCT TCC GAT CTT GCA and
bottom (Pster_B, 5’ to 3’): AGA TCG GAA GAG CGT CGT GTA GGG AAA G oligos.   P7-MluCI Adapter was
made by annealing top (P7-MluCI_T, 5’ to 3’): AAT TAG ATC GGA AGA GCA CAC GTC TGA ACT CCA GTC AC
and bottom (P7-MluCI_B, 5’ to 3’): GTG ACT GGA GTT CAG ACG TGT GCT CTT CCG ATC T.

The ddRADSeq libraries were constructed using 96-plex plate with a single random blank well used for
quality control, and were then sequenced through an Illumina HiSeq 2000 at the Genomics & Bioinformatics
Services of Texas A&M AgriLife Research at college station, TX (Yang et al. 2020), and SNP calls were
made using the reference-based Stacks Pipeline (Catchen et al. 2013) using IWGSC v1.0 as the reference
genome (IWGSC 2014), which obtained over 247,000 raw SNP data with missing rate below 50%.
Considering all TXE lines were at F9 generation or later that have a very low level of heterozygosity and thus
the homozygous SNP readings should be more reliable, which is also approved by comparison of SNP
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readings of few control lines with 2 - 4 replications included for DNA sequencing and SNP calling (data not
shown). Majority of heterozygous SNP readings were more likely due to technique error during sequencing
according to their extra high heterozygosity rate. Therefore, heterozygous marker data from TXEs thus were
all converted as the missing data, and all SNP data were �ltered again using criteria of data-missing rate
less than 30% and minor allele frequency (MAF) below 5% through the computer package Tassel v5.0
(http://www.maizegenetics.net/) (Bradbury et al. 2007), which retained over 75,000 SNPs with a higher level
of reliability. Genotype imputation with accuracy of 98% was then conducted using computer program
Beagle (v5.0) (Browning and Browning 2007) and achieved data-missing rate to less than 10%. Imputed
data were �ltered again through MAF less than 5% and obtained the �nal set of 70,525 SNPs were used for
GWAS.

In the set of 105 advanced breeding lines from yield trial in 2018, SNP genotyping and marker data
management was done using the similar methods as indicated for TXE collections. A total of 384,648 SNPs
was called and imputed in the 105 advanced lines with marker data missing rate less than 10%. Among
those SNPs, 37,975 were the common set between TXE and advanced breeding lines and were extracted for
validating the accuracy of genomic prediction model developed from TXE by comparing the predicted with
observed yield in those 105 advanced lines.

Population structure analysis 

From the raw 247,000 SNPs in TXE with a data missing rate of less than 50%, a set of 8,401 SNPs with
data missing rate less than 18% and heterozygosity less than 5% was considered the most reliable markers
for analyzing population structure in TXE lines. The computer program Structure v2.3.4
(https://web.stanford.edu/group/pritchardlab/structure.html) (Falush et al. 2003; Pritchard et al. 2000) was
used with the number of presumable sub-populations (K) set from three to ten with iteration number equal
to ten. For simulation running under each K, length of burn-in period was set to 10,000 and number of
MCMC replicates was set to 100,000 with the model of admixture and correlated allelic frequency was
used. The number of sub-populations was then determined using delta K (ΔK) method described in Evanno
et al. (2005) through the online tool Structure Harvester
(http://taylor0.biology.ucla.edu/structureHarvester/). Meanwhile, phylogenetic tree using 70,525 imputed
SNP data through UPGMA (unweighted pair group method with arithmetic mean) hierarchical clustering
method was also carried out through Tassel v5.0 (Bradbury et al. 2007) and the clade tree was drawn using
the online tool Interactive Tree Of Life (iTOL v5) (Letunic and Bork 2019, https://itol.embl.de/). The
phylogenetic tree was used to verify the results obtained from Structure v2.3.4.

Genome-wide association studies

GWAS was carried out using the set of 70,525 imputed SNPs through Tassel v5.0 (Bradbury et al. 2007).
Principal component analysis (PCA) was conducted with the number of sub-populations determined by
Structure v2.3.4 to generate the Q-matrix that incorporated as the covariate in association analysis, and the
�xed and random effect mixed model (MLM) (Liu et al. 2016) was used for association mapping with the K-
matrix showing the relationship of all individuals that was used to account for effects due to kinship. For

http://www.maizegenetics.net/
https://web.stanford.edu/group/pritchardlab/structure.html
http://taylor0.biology.ucla.edu/structureHarvester/
https://itol.embl.de/
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detecting genomic regions associated with grain yield, the yield BLUE of each line calculated using the R
package lme4 in correlation-based groups was used as the trait data and GWAS was separately conducted
in each correlation-based group. Bonferroni adjustment using R package simpleM
(http://simplem.sourceforge.net/) (Gao et al. 2010) determined the signi�cant threshold of LOD = 4.0 for
grain yield and LOD = 6.0 for insect resistance. 

SNP allele frequency change during new TXE lines development

According to the time of line development, the 227 TXE lines were divided into three groups using a three-
year interval with the �rst group including 92 lines developed during 2009 – 2011(namely the old group),
the second group containing 67 lines from 2012 – 2014, and the third group had 68 lines from 2015 – 2017
(namely the newly developed group). Therefore, comparing allele frequency between the �rst and the third
groups would have a good indication of allele drifting due to breeding selection in Texas wheat breeding
programs. Allele frequency change was investigated focusing on the major allele genotype of SNPs in the
TXE collection. The frequency of each SNP major allele was respectively calculated in the �rst and third
groups and then to �nd the difference between the two frequencies.

Genomic prediction model development

For developing genomic prediction models, 7,573 SNP markers from all chromosomes with at least one
million bases (Mb) apart were selected for estimating the mean effect of each marker. The R package
rrBLUP (ridge regression best linear unbiased prediction, Endelman 2011) was used for developing genomic
prediction model. The mixed model y = µ + Xβ + ε was used with y as the vector of phenotypic means, µ as
the overall mean, X as the marker matrix, β as the vector of marker effects and ε as the vector of residual
effects. The genomic estimated breeding values (GEBVs) of each line were calculated by adding the grand
mean to the product of genotypic matrix and the vector of mean effect of each marker. The prediction
accuracy was measured by the correlation between the predicted and observed yield BLUEs. Genomic
prediction models were developed separately in each of the correlation-based groups, and the prediction
accuracy was estimated at three times using 60%, 70% and 80% of TXE lines as training sets and 40%, 30%
and 20% as testing sets, accordingly. For each training/testing set, prediction accuracy was obtained based
on a calculation using 500 repeated runs. 

To validate the prediction models developed in each correlation-based group, all TXE lines were used as the
training set and 105 advanced breeding lines were used as the testing set. The common SNPs between
TXEs and advanced breeding lines with at least one Mb apart on each chromosome were selected. Marker
effects were estimated using BLUEs of each correlation-based group through rrBLUP mixed model y = µ +
Xβ + ε. The GEBVs of each advanced breeding line were calculated by adding the grand mean to the
product of genotypic matrix and the vector of mean effect of each marker. Prediction accuracy was then
measured through the correlation between predicted and observed yield in 105 advanced breeding lines.

Results
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Grain yield in two correlation-based groups
Based on correlations among yield of overlapped lines in different environments, yield data from eighteen
environments were not correlated with any of the remaining 84 environments (Tables S1 and S2). Data
from those 84 environments were divided into two correlation-based groups with groups G1 containing 36
and G2 including 48 environments (Table 1). After heritability estimation, data from �ve non-correlated
environments were added into the group G1 but data from two environments were dropped from the group
G2. Therefore, group G1 contained data of 41 environments and group G2 carried data from 46
environments for further analysis, and data from 15 non-correlated environments were abandoned (Table
S3). Interestingly, the majority of dataset in correlation-based group G1 included environments from the
High Plains and Rolling Plains that normally have low level of rainfall and represented the drought-prone
areas of wheat acreage in Texas, whereas the majority of data in group G2 contained environments from
Blacklands and South Texas that usually received relatively a higher level of rainfall and represented the
wet growing conditions of Texas (Table S3).

Of the two correlation-based groups that respectively included data collected from 41 and 46 environments,
the best linear unbiased estimation (BLUE) of each line was calculated through R package lme4 and the
skewed yield distributions were observed in both groups (Fig. 1). In correlation-based group G1, the grain
yield of all lines ranged from 2,000 to 4,500 Kg/Ha, but 201 (88.5%) lines have grain yield in the range of
3,250–4,000 Kg/Ha. Whereas in the correlation-based group G2, grain yield of each lines was in the range
of 2,250–4,750 Kg/Ha but with more lines distributed in a broader range (Fig. 1). The grain yield in two
datasets were not correlated and Bartlett's test also indicated heterogeneous variances in the two datasets.
Since the correlation-based groups G1 and G2 were corresponding to dry and wet growing condition in
north and south Texas, respectively, the broader trait variation in group G2 corresponding to the less
stressful growing conditions in south Texas may more likely explain the genetic variance.

Snp Genotyping And Population Structure In Txe Collection
Of the 70,525 imputed SNPs with data missing rate less than 10%, the B-genome chromosomes carried the
most (37,773) SNPs, followed by the chromosomes in the A-genome (23,782) and the D-genome (8,970)
(Table S4), indicating the relatively lower level of genetic diversity in the D-genome. Particularly, only 731
and 708 SNPs were identi�ed on chromosomes 4D and 5D, respectively, suggesting that the two
chromosomes in TXE lines have the least variations.

Population structure analysis revealed �ve sub-populations in the TXE collection (Fig. 2) and the population
was mainly admixed with all released cultivars (Fig. S2) spread into different sub-populations, which
indicated that the TXE collection covered primary gene sources in Texas wheat breeding programs.
Phylogenetic tree developed using 70,525 imputed SNPs also suggested the similar population structure
(Fig. 3).

Genome wide association studies of grain yield in TXE lines
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Association analysis identi�ed 74 genomic regions in two correlation-based groups associated with grain
yield with signi�cant level above threshold LOD = 4.0 (Fig. 5, Tables S5 and S6). Of those associations, two
regions were commonly detected in both groups and located on chromosome 1D at 229.6 and 345.4 Mb
with LOD scores of 4.4 and 4.8 and each contributing around 10% of yield variation. The favorite alleles at
two regions had the additive effects of increasing yield by 330.5 and 325.0 Kg/Ha in group G1 and 406.7
and 343.5 Kg/Ha in group G2, respectively. In addition, 17 genomic regions identi�ed only in correlation-
based group G1 and 55 regions only in group G2 were associated with grain yield. In Group G1, those
genomic regions were located on nine chromosomes, namely 2A, 3A, 3B, 5A, 5D, 6B, 6D, 7B, and 7D. The
LOD scores ranged from 4.0 to 5.8 and explained 7–14% of yield variations with favorite alleles having the
potential of increasing yield 220.9–816.3 Kg/Ha. There were ten genomic regions with each explaining 10%
or more of phenotypic variations located on chromosome 2A at 308.1 Mb, 3A at 12.8 Mb, 3B at 245.3 Mb,
5A at 24.1 Mb, 6B at 32.8 and 682.6 Mb, 6D at 454.1 Mb, 7B at 627.2, 637.8, and 676.8 Mb. In group G2, the
signi�cant genomic regions were detected from all chromosomes with the signi�cance varying from LOD = 
4.0 to 8.1 and each accounting for 7 to 16% of trait variations with the favorite allele having the additive
effects of increasing yield 258.0–516.1 Kg/Ha. The most signi�cant association was located at 14.7 Mb on
chromosome 7D and explained 16% of the phenotypic variations with the favorite allele having the
potential of increasing yield by 516.1 Kg/Ha (Tables S5 and S6). A total of 16 regions on seven
chromosomes each explained over 10% of trait variations in group G2 (Table S5 and Fig. 5).

Genome wide association studies of greenbug and Hessian �y resistance in TXE lines

For reaction to greenbug, 173 and 42 TXE lines were susceptible and resistant, respectively, and twelve lines
showed partial resistance (Table S7). GWAS indicated three genomic regions on chromosome 3DL (565.0
Mb), 6DS (7.2 Mb) and 7DL (597.9 Mb) were associated with greenbug resistance in TXE lines (Fig. 6a and
Tables S8 and S9). A region on chromosome 7DL showed the largest effect and explained 48.7% of the trait
variation in TXE lines, and the regions on 3DL and 6DS explained 10.7% and 15.3% of phenotypic variation,
respectively. For reaction to Hessian �y, data were obtained from 219 TXE lines with 166 susceptible, 18
resistant, and 35 partially resistant (Table S7). Only the genomic region on 1AS at 7.8 Mb were signi�cantly
associated with the resistance and explained 17.0% of trait variation in TXE lines (Fig. 6b and Tables S8
and S9).

SNP allele drift in TXE lines due to breeding selection

By comparing frequency of major alleles in 70,525 SNPs between TXE groups of 2009–2011 (old) and
2015–2017 (new), allele frequencies of 10,034 SNPs decreased. Meanwhile, allele frequency in a different
set of 974 SNPs each increased over 20% in the new TXE group. Of the SNPs with allele frequency
decreasing in the newly developed TXEs, the allele genotype of 2,000 SNPs that have been the major alleles
in TXE group of 2009–2011 were changed to minor allele. Whereas in SNPs with allele frequency
increasing in the newly developed TXEs, 300 SNPs changed the allele status from minor in the group of
2009–2011 to major in the group of 2015–2017 (Table S10). Comparing the SNPs that had signi�cant
associations in increasing yield, several were located in the vicinity of the SNPs that had allele status
changing from minor to major in new TXEs, such as the ones on 2A at 101.9 Mb, 3B at 245.3 and 738.3 Mb,
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6D at 454.1 Mb, 7A at 620.3 Mb, 7D at 621.2 Mb, and 7B at 654.1, 711.9 and 741.0 Mb. Each of these
alleles showed the potential of increasing yield by 281.8–611.3 Kg/Ha (Table S5). Among the 74 SNPs
signi�cantly associated with yield in groups G1 or G2, there were trends that the newer lines or cultivars had
more favorite alleles for increasing yield (Table S6). Based on the pseudomolecule physical position
indicated in the reference wheat genome sequence (IWGSC 2014), markers with allele frequency changing
over 20% were mostly located at the distal sides of the chromosomes (Fig. 4), and agreed with the higher
rate of recombination observed at the distal regions of the chromosomes.

Genomic prediction in TXE lines and model validation using advanced breeding lines

Genomic prediction models were tested in three situations that randomly picked 60%, 70% and 80% of TXE
lines as training populations to predict the remaining TXE lines. After 500 independent runs in each
situation, prediction accuracy using yield data from correlation-based group G2 is higher than using data
from correlation-based group G1 (Table 2). Average prediction accuracies in group G1 varied from 0.42 to
0.44 but that increased from 0.68 to 0.70 in group G2 as the size of training population increased. The
lowest range of the prediction accuracies were 0.14–0.19 in group G1 and 0.49–0.52 in group G2 and the
maximum prediction accuracies were 0.61–0.75 in group G1 and 0.81–0.89 in group G2. This indicated
that yield data in correlation-based group G2 were more reliable for genomic prediction.

To validate the prediction models developed in two correlation-based groups, yield data in a set of 105
advanced breeding lines were collected in 2018 from four environments including rain-fed and irrigated
location in Bushland, TX, irrigated location in Etter, TX, and the rain-fed location in McGregor, TX. All TXE
lines were used as the training set and 105 advanced breeding lines were used as the testing set. From the
common 37,975 SNPs between TXE and advanced breeding lines, a total of 5,542 SNPs that were at least
1-Mb apart on each chromosome were selected for genomic prediction, and the prediction accuracies using
the models developed from the correlation-group G2 ranged from 0.12 to 0.29, but none of the predictions
based on the models from correlation-group G1 were correlated with the observed yield (Table 3). This is
consistent with previous results of models from correlation-group G2 which were more reliable for genomic
prediction when using TXE lines as both training and testing sets.

Discussion
Wheat grain yield is a very complex trait and is affected by numerous genes involved in many different
biological processes affecting plant development, photosynthesis, carbon mobilization, grain �lling and
maturity. The effect of each gene is very limited and varied under different environments. Testing grain yield
in breeding lines thus demands major efforts and breeding resources since it needs to be done in many
locations under multiple years with replications included. Using historical yield data in the past or current
breeding lines or cultivars to conduct genome-wide association analysis and genomic prediction will
provide a cost-effective way of identifying bene�cial genes for increasing yield and cumulating favorite
alleles for crop improvement. However, imbalanced historical data obtained during breeding are hard to use
since each environmental condition is unique and cannot be repeated. Interactions between genotypes and
environments vary at different times and locations, which greatly increased di�culties of identifying
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favorite alleles. In this study, we developed a strategy of using correlations among yield data of overlapped
lines evaluated at different times and locations to group different environments that have showed
interactions with similar magnitudes. The grouping is further tested through heritability estimation. The
best linear unbiased estimation (BLUE) calculated in each correlation-based group was then used for GWAS
and developing genomic prediction models, which were further validated through a set of advanced
breeding lines. This research thus developed a method of using the imbalanced historical data for genetic
studies.

There are numerous QTLs for yield and yield components identi�ed from bread wheat trials worldwide.
Chromosome regions with signi�cant SNPs associated with yield from GWAS in this study were very close
to the QTLs identi�ed from previous research from bread wheat trials conducted in the US Great Plains or
other regions (Table S5). Yield associated genomic regions in this research at 71.4 Mb on 2A, 21.8 Mb on
2D, 12.8 Mb on 3A, 42.6 Mb on 3B, 682.6 Mb on 6B, 627.2 Mb and 654.1 Mb on 7B, and 592.2 Mb on 7D are
very close to the QTLs at 79.8 Mb on 2A, 15.7 Mb on 2D, 9.6 Mb on 3A, 48.6 Mb on 3B, 673.8 Mb on 6B,
617.0 Mb and 647.8 Mb on 7B, and 591.2 Mb on 7D that were associated with yield and yield components
identi�ed from a bi-parental mapping population derived from the cross between TAM 111 and TAM 112
(Yang et al. 2020). Particularly, the region around 591.2 Mb on 7D is harboring gene Gb3 conferring
greenbug resistance (Liu et al. 2014). Breeders found that the majority of the TAM 112 derivatives had a
decent yield in dry environments as Gb3 was kept (J Rudd, personal communication, 2020).

Yield-associated regions at 603.0 Mb on chromosome 3D and 25.4 Mb on 7B were very close to the QTLs
associated with spikes per square meter at 603.8 Mb on 3D linked to XIWA6485 and kernel per spike at
22.6–24.7 Mb on 7B linked to XIWB71684 with favorite alleles from ‘TAM 111’ (Assanga et al. 2017). The
yield-associated region at 603.0 Mb on 3D was very close to a QTL at 603.4 Mb on 3D of ‘ND 705’ that was
associated with spikes per square meter and linked to XIWB17317 (Kumar et al. 2019).

Yield-associated regions at 532.8 Mb on 1A and at 711.5 Mb on 7B from this study were physically close to
a �our yield QTL at 533.4 Mb on 1A and a grain volume weight QTL at 709.6 Mb on 7B detected in a
recombinant inbred mapping population derived from cross between TAM 111 and TAM 112 population
(Yang et al. 2020). The yield-associated region at 531.3 Mb on 2D from this study was also identi�ed in the
mapping population derived from TAM 112/TAM 111 and associated with thousand kernel weight and
kernel diameter (Dhakal et al. 2021; Yang et al. 2020). Since cultivars TAM 111 and TAM 112 were core
parents used in the Texas A&M AgriLife Research wheat breeding programs, it is very possible that these
favorite alleles were carried through generations due to selections.

The yield-associated region at 16.2 Mb on 7D was close to gene TaGS3-D1 located in region 6.5–6.8 Mb on
7D affecting wheat kernel weight and length (Rasheed et al. 2016; Zhang et al. 2014). Two QTLs at 32.8 Mb
and 47.5 Mb on 6B associated with thousand kernel weight (Zou et al. 2017) coincided with the two yield-
associated regions at 32.8 and 47.5 Mb on 6B in this study. The regions at 709.2 Mb on 3A, 625.7 Mb on
5A, 633.9 Mb on 6B from this study were very close to gene TaTGW6-A1 at 711.1 Mb on 3A, a QTL at 619.5
Mb on 5A for thousand kernel weight, and a QTL at 631.8 Mb on 6B for grain volume weight (Juliana et al.
2019).
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The region at 597.9 Mb on 7DL showed signi�cant association with greenbug resistance and is
corresponding to Gb3, the gene known to be carried by germplasms used for developing TXE lines and
present in cultivars such as TAM 110, TAM 112, ‘TAM 115’, and TAM 204 (Lazar et al. 1997; Liu et al. 2014;
Rudd et al. 2014; Rudd et al. 2019; Weng and Lazar 2002). The other two regions on 3DL and 6DS with
minor effects on greenbug resistance might be novel genes since no greenbug resistance have been
reported from these two genomic regions. Hessian �y resistance was associated with a region on 1AS (7.8
Mb) in this study, the position coincided with a Hessian �y resistance QTL on 1AS in ‘Duster’ (PI 644016,
Edwards et al. 2012) (Li et al. 2015). It is likely that Hessian �y resistance in TXE lines is derived from
Duster since many TXE lines had this cultivar in their pedigree.

From this study, eight chromosome regions signi�cantly associated with yield, along with several major
genes in TXE lines such as wheat curl mite resistance genes CmcTAM112 and Cmc3 (Dhakal et al. 2018;
Dhakal et al. 2017), seed storage protein subunit genes Gli-B1 and Glu-D1, dwarf gene Rht-B1, and grain
weight and length gene TaGS-D1 (Liu et al. 2014; Zhang et al. 2014). These mostly coincided with regions in
which allele frequencies were greatly increased in the newly developed lines (Fig. 4b; Table S10), which may
be a good indication of accumulating favorite alleles during selection. Particularly, the recently released
cultivars fall into different sub-populations (Figs. 3 and S2) showing improved yield, disease and/or insect
resistance, drought tolerance, and enhanced baking and milling quality attributes. As aforementioned,
cultivars TAM 111 (Lazar et al. 2004) and TAM 112 (Rudd et al. 2014) were used as parental lines in new
releases due to their high yield and superior drought tolerance in addition to the greenbug and wheat curl
mite resistance carried in TAM 112. For example, cultivar TAM 114 derived from crosses of using TAM 111
as parents showed excellent baking and milling quality, and intermediate resistance to Hessian �y (Rudd et
al. 2018), and cultivar TAM 204 selected from the crosses involving TAM 112 showed a good level of
resistance to greenbug, Hessian �y and wheat curl mite in addition to the high grain yield (Rudd et al. 2019).
The newly released TAM 115 is also a selection from crosses involving TAM 112 and showed high yield,
good drought tolerance and resistance to greenbug and wheat curl mite (Rudd et al., not published).
Therefore, further research focusing on the regions where allele frequency greatly increased in those newly
developed TXE lines may provide an e�cient way of revealing bene�cial alleles for wheat improvement.

Of the two correlation-based groups G1 and G2 developed through historical yield data of TXE lines, results
from GWAS and genomic prediction both indicated that yield data from group G2 may be more reliable.
This is supported by the fact that group G2 contained environments either in north Texas under irrigated
conditions or from south Texas with relatively higher level of rainfall and thus had better growing
conditions. On the other hand, the group G1 included mainly dryland environments with severer drought
stress, which greatly limited the expression of yield potential in each line and led to a much narrow yield
variation (Fig. 1). Similarly, GWAS detected fewer genomic regions signi�cantly associated with yield in
group G1 than in G2 (Table S5), and genomic prediction models in two groups using 60–80% of lines as
training set also pointed to lower prediction accuracy in group G1 (0.14–0.75) than in G2 (0.49–0.89)
(Table 2). Validation of genomic prediction models through a set of advanced breeding lines also indicated
that predictions made using yield data of group G2 showed stronger correlation with the observed data
(Table 3). Therefore, the strategy of combining correlation and heritability estimates to group data from
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different environments used in this study also provided a way of selecting appropriate data from diverse
environments for genetic analysis.
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Tables
Table 1

List of datasets in two correlation-based groups formed by correlation analysis and broad-sense heritability
estimation using yield data of 227 Texas Elite (TXE) breeding lines collected during 2009–2018

Year Yield
dataset

Dataset grouped through correlation Dataset group adjusted by heritability
test

Correlation-
Group 1

Correlation-
Group 2

Non-
correlated

Correlation-
Group 1

Correlation-
Group 2

abandoned

2009 9 5 3 1 7 2 0

2010 14 6 5 3 7 6 1

2011 10 4 4 2 6 4 0

2012 14 3 8 3 3 9 2

2013 9 5 3 1 2 6 1

2014 10 2 7 1 3 7 0

2015 6 1 4 1 3 3 0

2016 9 6 3 0 6 1 2

2017 11 3 5 3 3 5 3

2018 10 1 6 3 1 3 6

Total 102 36 48 18 41 46 15
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Table 2
Prediction accuracy using different portions of TXE lines as training and testing sets in two correlation-

based groups G1 and G2

Percentage ration of
training : testing

Correlation-based group G1 Correlation-based group G2

Average minimum maximum Average minimum maximum

60% : 40% 0.42 ± 
0.07

0.19 0.61 0.66 ± 
0.04

0.52 0.81

70% : 30% 0.45 ± 
0.08

0.14 0.65 0.68 ± 
0.04

0.52 0.82

80% : 20% 0.46 ± 
0.10

0.18 0.75 0.69 ± 
0.06

0.49 0.89

Table 3
Prediction validation using yield data obtained from a set of advanced breeding lines in 2019 based on

genomic prediction models developed in two correlation-based groups G1 and G2

Model Environment a

BD BI EI MCG

Correlation-based group G1 -0.06 -0.03 0.01 -0.06

Correlation-based group G2 0.29 0.12 0.14 0.23

a BD and BI mean rain-fed and irrigated land in location at Bushland, TX, respectively. EI means irrigated
land in location at Etter, TX. MCG means rain-fed land location in McGregor, TX.

Figures
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Figure 1

Distribution of the best linear unbiased estimations (BLUEs) for grain yield in the two correlation-based
groups G1 and G2. BLUEs were calculated using the R package lme4 (Bates et al. 2015).
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Figure 2

Population structure analysis using Structure v2.3.4 (Evanno et al. 2005; Pritchard et al. 2000) based on the
most reliable set of 8,401 SNPs in 227 TXE lines. Five sub-populations were contained in the collection.
Number of sub-populations were determined using Delta K method through Structure Harvester (Earl and
vonHoldt 2012).
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Figure 3

Phylogenetic tree developed using 70,525 imputed SNPs in 227 TXE lines. The released cultivars were
indicated in the corresponding clusters. Phylogenetic tree was produced using Tassel v5.0 (Bradbury et al.
2007) through UPGMA (unweighted pair group method with arithmetic mean) hierarchical clustering
method and was drawn using the Interactive Tree Of Life (iTOL v5) (Letunic and Bork 2019).
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Figure 4

Diagram of allele frequency change among sets of TXE lines developed during 2009 – 2011 (old TXE, 92
lines) and 2015 – 2017 (newly developed TXE, 68 lines). a) allele frequency decreased in newly developed
TXEs. b) allele frequency increased in newly developed TXEs with some major genes indicted in the
corresponding position according to previous research (Dhakal et al. 2018; Liu et al. 2014; Zhang et al.
2014). Physical position of SNPs was determined according to pseudomolecule position in wheat reference
genome v1.0 (IWGSC 2014). Darker regions indicated more markers have frequency changed.
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Figure 5

GWAS in TXE collections using Tassel v5.0 identi�ed genomic regions signi�cantly associated with grain
yield in correlation-based groups G1 and G2. Critical threshold was set at LOD = 4.0.
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Figure 6

GWAS in TXE collections using Tassel v5.0 identi�ed genomic regions signi�cantly associated with
greenbug resistance (a) and Hessian �y resistance (b). Critical threshold was set at LOD = 6.0.
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