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Abstract: The crucial step of building a high performance QSAR/QSPR model is the detection of outliers in the

model. Detecting outliers in a multivariate point cloud is not trivial, especially when several outliers coexist in the

model. The classical identification methods do not always identify them, because they are based on the sample mean

and covariance matrix influenced by the outliers. Moreover, existing methods only lay stress on some type of out-

liers but not all the outliers. To avoid these problems and detect all kinds of outliers simultaneously, we provide a

new strategy based on Monte-Carlo cross-validation, which was termed as the MC method. The MC method inher-

ently provides a feasible way to detect different kinds of outliers by establishment of many cross-predictive models.

With the help of the distribution of predictive residuals such obtained, it seems to be able to reduce the risk caused

by the masking effect. In addition, a new display is proposed, in which the absolute values of mean value of predic-

tive residuals are plotted versus standard deviations of predictive residuals. The plot divides the data into normal

samples, y direction outliers and X direction outliers. Several examples are used to demonstrate the detection ability

of MC method through the comparison of different diagnostic methods.
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Introduction

Quantitative structure-activity/property relationship (QSAR/

QSPR) is an important method which has been applied to mod-

eling and prediction of many physicochemical and biological

properties successfully, such as boiling point, melting point,

aqueous solubility, toxicity, retention index, and the activities of

many drugs, etc.1–15 The basis of such relationships is based on

an assumption that compounds of similar structure will exhibit

similar properties. That is to say, a data set with very similar

chemical structures should give accurate prediction of analogous

molecular property when used to establish a QSAR/QSPR

model. In addition, a crucial issue in QSAR/QSPR is the predic-

tive ability of the models, good predictive ability is essential for

practical use of the model (e.g., directing the synthesis of more

active or less toxic chemicals, contributing to the toxicological

profiling of chemicals for regulatory purposes). Whereas, there

are tens of thousands of chemical molecules spanning the whole

chemical space.16 Thus, the diversity of chemicals will bring

about some difficulties for the establishment of QSAR/QSPR

model undoubtedly.17 Among these difficulties we may list: (1)

it is well known that the model built by some training set will

be strongly dependent upon the structures defined by the training

set. Moreover, if there are some special chemicals called as out-

liers departing from the bulk of the data set, they will destroy

the similarity of the chemicals and influence the fitting and the

subsequent prediction ability of the QSAR/QSPR model. A num-

ber of detection methods were reported in the QSAR/QSPR lit-

erature.18–20 (2) For multiple linear regression (MLR) models,

which are in general recommended for QSAR/QSPR modeling,

the criterion to decide whether a model generated is good or not

is commonly defined by the square coefficient of fitting model

(R2) and the square coefficient of cross validated (Q2). Generally

speaking, the values of R2 and Q2 should approximate mutually

for a good model.21 However, as a result of the diversity of
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chemicals, R2 is sometimes quite different from Q2. Finding out

the reason is very important for the establishment of a good

model. (3) Since any linear QSAR/QSPR model based on MLR

is constructed on a particular dataset, it is important to build a

model by using a dataset, in which the structures of the chemi-

cals could be well defined, and then to test the model by using

the other different dataset of chemicals with similar structures.

So, how to select a training set and a test set without outliers to

establish a QSAR/QSPR model is worthy of discussing and

studying.22,23

On the basis of the above difficulties, the present investiga-

tion aims to detect the outliers in the model in that the afore-

mentioned problems are related to the existence of the outliers

to a great extent. Outliers are observations that appear to break

the pattern shown by the main body of the data. There are many

reasons for the presence of outliers, from recording errors to a

non-representative sampling design. So important is outlier

detection in multivariate regression calibration that Kutner and

Neter have a comprehensive discussion in their book.24

There are two approaches in current statistics to cope with

outliers: diagnostics and robust estimators. As discussed by

Rousseeuw and Leroy, diagnostics and robust regressions have

the same goal although they proceed in opposite order.25 Diag-

nostic approach starts by identifying the outliers and then fits

the rest of the data by many regression methods. The commonly

used diagnostic methods,26–30 such as the mean standard devia-

tion and the hat matrix leverage, depend on testing whether a

statistic exceeds some critical value derived from a special dis-

tribution, such as the normal or v2 distribution. These methods

have a good ability when used solely for the identification of the

prediction outliers and single calibration outlier. But, they will

give inaccurate diagnostic results when multiple outliers coexist

in the model established.31 Multiple outliers will distort the

measures of the mean value and the covariance matrix to such

an extent that these observations may not be recognized when

analyzed by hat matrix leverage. This phenomenon is termed the

masking effect. Moreover, many spiffy diagnostic methods, such

as minimum volume ellipsoid (MVE),32,33 ellipsoidal multivari-

ate trimming (MVT),34,35 minimum covariance determinant

(MCD)36,37 resampling by half-means (RHM) and smallest half-

volume (SHV),38 have been used to detect outliers. The RHM

and SHV methods proposed by Egan and Morgan have a high

computational effectiveness than the other methods. Although

the aforementioned methods can handle the masking effect to

some extent, they just emphasized the outliers in samples direc-

tion. They are also based on the idea of classification and

attempt to find the main body of the data, and then outliers are

looked upon as the other sort which are different from the ma-

jority of the data and are therefore removed. In the process, nei-

ther of them takes the dependent variables into account. So,

these methods are not sufficient to discover all outliers in regres-

sion analysis when used solely to detect the outliers.

In a robust regression model, the capital goal is to construct

estimator which fits the majority of the data and examine the

residuals from this fit to detect the outliers. So, many robust

regression methods such as M-estimators, least median of

squares (LMS), least trimmed squares (LTS), robust principal

component regression (RPCR), robust partial least squares

(RPLS), and robust principal components regression based on

principal sensitivity vectors (RPPSV), have been used to detect

the outliers.39–50 These methods use the robust estimators instead

of the minimum of error sum of squares, for this reason, they

are not susceptible to the outliers. In all methods, LMS provides

a breakdown point of 50%, which is the maximum that can be

achieved by a robust method. The RPCR method developed by

Massart45 was made up of two steps which were also stabilized

with the help of the combination of MVT and LMS. A more

thorough discussion of these methods can be found in Rous-

seeuw and Leroy.32 These robust methods have a good perform-

ance to detect the outliers in dependent variable direction, but

they become somewhat incompetent to detect the sample outliers

(except for RPCR and RPLS).

The discarding of the outliers is based on the model estab-

lished; the different models may generate different outliers. So,

taking the outliers into account solely without the model is not

suitable. Moreover, the coexistence of the outliers in sample and

dependent variable direction may also influence the quality of

the model established. On the basis of the aforementioned, we

offer a different view of the multivariate outlier detection prob-

lem, which is based on the Monte-Carlo cross-validation method

and should handle all the outliers simultaneously.

Theory and Method

Notation

The data matrix X has m observations in the rows and n varia-

bles in the columns. Vectors are shown a bold lowercase, while

scalar variables are shown in lowercase.

Outliers in QSAR/QSPR

In fact, there may be three types of outliers influencing the qual-

ity of the model in QSPR/QSAR study. Figure 1A illustrates dif-

ferent outliers in an example of simple regression. The first one

is the outliers in the dependent variable y direction which break

away from the normal distribution of y and will cause a large

error sum of squares. In the example, point 1 is an outlier in y

direction. Robust regression methods should cope with this prob-

lem easily, if there are a few outliers without masking effect.

The second one is the outliers in the predictor or independent

variable X direction. This sort of outliers is far away from the

main body of the samples. In the example, point 2 and 3 are X
outliers or leverage points, because their x value is outlying.

But, point 2 is a good leverage point which does not cause a

large error sum of squares and point 3 is a bad leverage point.

When the QSAR/QSPR data contaminated by the leverage

points are used to establish the model, a negligible variation

may cause a large fluctuation for this model. A third type of out-

liers, so called outliers towards the model, can be found only af-

ter building the regression model. They represent a different

relationship between X and y. Model outliers are a special sort

of outliers which exist in the QSAR/QSPR data set extensively

due to diverse molecular structures in QSAR/QSPR study. In

Figure 1A, points marked by 4 may be an example of the out-

liers toward the model which are not only an outlier in y, also
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an outlier in X. In addition, these three types of outliers men-

tioned commonly coexist in a model. A good outlier detection

method should identify them exhaustively and simultaneously.

Cook’s Distance

Cook’s distance considers the influence of each case on all m fit-

ted value,22 which could be usually regarded as a good measure

for outlier detecting. Cook’s distance measure, denoted by Di, is

an average influence measure, showing the effect of the ith case

on all m fitted values and model parameters:

Di ¼
Pm

j¼iðŷj � ŷjðiÞÞ2
pMSE

¼ ðb� bðiÞÞTðXTXÞðb� bðiÞÞ
pMSE

(1)

where ŷj is the fitted value for the jth case when all m cases are

used in fitting the regression function and ŷjðiÞ is the predicted

value for the jth case obtained when the ith case is omitted in

fitting the regression function. p and MSE are the freedom

degree of this regression model and the mean squares of error,

respectively. Cook’s distance measure Di can also be calculated

without fitting a new regression function each time a different

case is deleted. An algebraically equivalent expression is:

Di ¼ e2i
pMSE

hii

ð1� hiiÞ2
" #

(2)

where ei and hii is the fitting residual value and the leverage

value for the ith case. Note from the above formula that Di

depends on two factors: (1) the size of the residual ei and (2)

the leverage value hii. So, the Cook’s distance measure considers

the effect of both the predictor variables and the dependent vari-

ables. Cook’s distance can also be extended to diagnostics of

multiple outliers by measuring the joint effect of deleting more

than one case.

DiðIÞ ¼
Pm

j¼i;j62Iðŷj � ŷjðIÞÞ2
pMSEðIÞ ¼ ðb� bðIÞÞTðXTXÞðb� bðIÞÞ

pMSEðIÞ (3)

Here, I represent the indices corresponding to a subset of cases.

The other symbols have the same meanings as in Cook’s dis-

tance for the case of a single observation. The quantity Di(I) can
be interpreted in an analogous way to Di. However, the selection

of cases to be included in I is not at all obvious. Therefore, the

computation for all pairs, triplets and so on, lead to Cm
n runs,

where m 5 1, 2, . . ., n/2. This is such a difficult task that the

computers are not able to finish it.25

Fitting Residual and Predictive Residual

It may be worth noting the difference between the fitting resid-

ual and the predictive residual. If yi is far outlying, both from y

direction and X direction, the fitted least squares regression

function based on all cases including the ith one may be influ-

enced to come close to yi, yielding a fitted ŷi near yi. In that

event, the fitting residual, say ei, will be small and will not dis-

close that yi is outlying. On the other hand, if the ith case is

excluded before the regression function is fitted, the least

squares fitted value ŷiðiÞ is not be influenced by the outlying yi
observation, and the residual for the ith case will then tend to be

larger, and therefore, more likely to disclose the outlying y ob-

servation. A simple figure is useful to illustrate ordinary resid-

ual, predictive residual, and the notion of influence (Cook’s dis-

tance). Figure 1B shows such a single regressor. Clearly, the

slope and intercept of the regression change considerably if the

single observation, say point *, is set aside. It can be seen that

the predictive residual is considerably larger in magnitude than

the fitting residual. Compared with the Cook’s distance, which

measures the average difference between the fitted value ŷi and
the estimated expected value ŷiðiÞ, the predictive residual reflects

the difference between the actual observed value yi and the esti-

mated expected value ŷiðiÞ and hence can help to reduce the risk

caused by the masking effect without involvement of the fitted

values ŷi.
Moreover, in the cross-validation cases, n21 cases are gener-

ally used for predicting the ‘‘new’’ nth case, we can obtain the

estimated variance of ei(i):

Figure 1. (A) Simple regression example with (1) y outlier; (2)

good leverage point; (3) bad leverage point; (4) model outlier (the

two curves represent the margin of 3D). (B) A data set with a single

influential data point. Cook’s distance measures the difference

between PRESS residual and ordinary residual. So, PRESS residual

is more likely to disclose the y outlying samples.
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s2feiðiÞg ¼ MSEðiÞð1þ xiðXt
ðiÞXðiÞÞ�1xtiÞ (4)

where xi is the ith observation vector, MSE(i) is the mean square

error when the ith case is omitted in fitting the regression func-

tion, and X(i) is the X matrix with the ith case deleted. An alge-

braically equivalent expression for s2{ei(i)} is:

s2feiðiÞg ¼ MSEðiÞ=ð1� hiiÞ (5)

From the eqs (4) and (5), we can see that the variability of the

sampling distribution of ei(i) is effected by how far xi is from

the centroid XðiÞ, through the term xi(X
t
ðiÞX(i))

21xi
t or hii. The

further xi from XðiÞ is, the greater the quantity is and the larger

the variance of ei(i) is. Hence, the variation of ei(i) obtained from

different cases will be greater when xi is far from the mean

value than the ones near the mean value.

From discussion earlier, we can clearly see that predictive

residuals reflect the difference between normal samples and out-

liers. They can effectively identify the single outlier existing in

the data set. Nevertheless, when multiple outliers coexist in the

model, the case will be not as the same as the one discussed ear-

lier. To detect all the outliers and overcome the masking effect,

the Monte-Carlo method as sampling without replacement is

employed to extract the information and used as statistical infer-

ence.51–53 In general, the Monte-Carlo method can be used to

generate a distribution of some statistic of interest by repeatedly

calculating that statistic randomly selected portions of the data

because of its good asymptotic property54,55 (see ref. 56 for

more detail). Suppose that one does Monte-Carlo cross-valida-

tion many times, one may obtain some kind of distribution of

predictive errors for every sample. What kind of information

one could extract from these distributions?

Figure 2 shows such a situation, in which the histograms of

prediction errors from a 130-sample dataset, containing three

kinds of outliers (30%), randomly generated using Monte-Carlo

cross-validation for every sample. From Figure 2, one could get a

very clear impression that there exist three kinds of samples in

the dataset investigated. Figure 2A shows a distribution of predic-

tive errors from a normal sample, looking like a normal distribu-

tion with a small mean value and standard deviation. Whereas,

Figure 2D shows a distribution of prediction errors for an X out-

lier, which has a small mean value but a large standard deviation

with a tailing toward large mean value direction. The distribu-

tions of the prediction errors of outliers in y direction are shown

in Figures 2B and 2C. Their distributions of prediction errors are

far away from the origin and have small standard deviations.

The MC Method

Inspired by the above discovery, we developed a Monte-Carlo

cross-validation procedure for detecting outliers by studying the

distribution of prediction errors of each sample obtained from

original data set. We refer to this method as Monte-Carlo

method (MC). Figure 3 shows a flow chart for the complete

Figure 2. Histogram of sample residuals calculated by the MC

method for a data set randomly generated using a multivariate nor-

mal distribution (a) normal sample; (b) y outlier; (c) model outlier;

(d) X outlier.

Figure 3. Flow chart showing the steps used in the MC method of

outlier detection.
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algorithm. The number of principle components was firstly

determined using cross-validation in PLS and PCR methods

(MLR method will be lack of this procedure). Then, with the

help of the Monte-Carlo method, the whole data was randomly

divided into two parts which are training set and validation set,

respectively. Generally speaking, the size of the training set

varies from 70 to 90% of all the data. Similar to other models,

the training set was used to establish the model using the deter-

mined principle component. The validation set was used to pre-

dict and the prediction error would be obtained for each valida-

tion sample. This cycle was executed according to the predeter-

mined number of times. Finally, the prediction error distribution

for each sample was obtained. The histograms of these distribu-

tions were plotted and their statistic features were used to detect

the outliers. Then, the mean value m(j) and the standard devia-

tion s(j) of the error distribution for the jth sample were

employed to describe this distribution.

mðjÞ ¼ 1

k

Xk
i¼1

errorðiÞ (6)

sðjÞ ¼ 1

k � 1

Xk
i¼1

ðerrorðiÞ � mðjÞÞ2
 !1=2

(7)

Here k is the total times of which the jth sample was found in

the validation set. The error (i) is the prediction error of the jth
sample in the ith cycle.

The property of a sample in the model established can be

reflected by its residual generated by the model.

propertyi ¼ f ðeiÞ (8)

where propertyi is the property of predictive sample i and ei is
the ith predictive sample residual generated by the model. (Here,

different samples are selected to form the calibration set, thereby,

they determine a model.) So, the distribution of the predictive

residuals generated by many models can contain more sample in-

formation about whether this sample is an outlier or not. This is

the important reason why we use Monte-Carlo to obtain multiple

models. For a normal sample, its residual distribution will

approach the origin and have a small uncertainty, that is to say,

the predictive residual distribution will have a high and narrow

peak close to the origin, because the normal samples occupy the

bulk of all the data. Whereas, for a y or a model outlier, no mat-

ter how the models change, the predictive residual distribution of

y outlier all have a large expectation value far away from the ori-

gin and moderate standard deviation. However, an X outlier is a

case different from the y outlier. Because X outliers break away

from the main body of all the samples, different models which

are made up of different samples should predict a broad band of

standard deviation for this X outlier. So, the distribution of its

predictive residuals will have a wider peak around the origin.

Here, we have used the empirically derived distribution, as is

commonly done in bootstrapping.

In the MC method, the number (N) of Monte-Carlo experi-

ments seems an important parameter which affects the quality of

the predictive distributions. Given n (n is the number of the total

samples) total observations contaminated by m outlier observa-

tions, more precisely, if k observations are set aside to generate

the predictive residuals, the times Ni of selecting some observa-

tion i among N Monte-Carlo experiments is about given by:

Ni ¼ Ck�1
n�1

Ck
n

3N ¼ Nk

n
(9)

Notice that if Ni is big enough, the experiential distribution such

obtained will be dominated by the inherent feature of the sample.

On the other hand, the probability p of selecting at least one outlier
observation for each Monte-Carlo experiment is given by:

p ¼ C1
mC

k�1
n�m þ C2

mC
k�2
n�m þ � � � þ Cm

mC
k�m
n�m

Ck
n

(10)

Given n 5 100, m 5 10, k 5 20, N 5 10,000, we can get Ni �
2000, p 5 0.9049. From these two numbers one could see that if

we do 10,000 MC experiments, we could obtain around 2000 pre-

dictive residuals for each sample, which could be big enough to

get some useful distribution parameters, say mean value and var-

iance, to evaluate the features of the distribution. On the other

hand, we could also obtain some information from outliers

through each MC experiment, since we have the chance of 90 per-

cent (p 5 0.9049) to acquire at least one sample from the outliers

for their predictive errors. Moreover, by means of the Monte-

Carlo method, the computational complexity can be reduced

substantially.

Theoretically, the fewer samples are selected randomly from

the calibration samples, the more repeats are needed. Whereas,

it has been proven that N 5 n2 (n is the number of the total

samples) is generally enough to make Monte-Carlo strategy bet-

ter performance according to Zhang.57 Besides, the size (n–k) of
the calibration samples is also an important parameter according

to our observation. If the calibration samples are too large, the p
value may become somewhat small, that is to say, the chance of

selecting at least one outlier observation is relatively small. So,

the masking effect can be not disclosed well without the interac-

tion of outlier observations, the division between X outliers and

normal samples is not quite clear. So, to uncover the masking

effect, it is very important to maintain a relative large p value.

In practice, about 70–90% of the total samples are a relative

suitable choice when used as calibration samples.

A visual diagnostic for the distribution of prediction errors is

insufficient and complex. The MC method inherently provides a

feasible way to detect all the outliers. To identify the outliers

conveniently and directly, we offer a schema analogous to prin-

ciple component plot. The statistic features of the distribution,

say the absolute value of mean value and the standard deviation,

were employed. Here, two histogram distributions were gener-

ated by the mean value and the standard deviation, respectively.

Figure 4 shows the two distributions for the mean value and

standard deviation of 1060 simulated samples. From Figure 4, it

is shown that outliers and normal samples in two distributions

have a significant difference. So, according to real circumstance,

we can select a suitable tuning value such as 2–2.5 times of av-

5Outlier Detection for QSAR/QSPR
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erage value of the main body of the data set to differentiate out-

liers and normal samples. Thus, the schema was divided into

four regions, each of which corresponds to one sort of outlier.

Figure 5 shows the schematic diagram which differentiates out-

liers and normal samples. Among the four regions, the lower left

region, which occupies most of all the data, is the normal sam-

ples which have small mean value and standard deviation. The

upper left area is the sample outliers which have small mean

value but large standard deviation. Conversely, the lower right

region is the y outliers or model outliers which have large mean

value but small standard deviation. Moreover, the upper right

region is some extreme outliers in both sample and y direction,

or the abnormal samples obtained due to recording errors, etc.

This schema should provide an excellent and direct diagnostic to

determine whether samples were checked to be the outliers.

To illustrate the performance of the proposed approach when

dealing with different types of outliers, several examples often

used for comparison in statistical and chemical literature to-

gether with an additional data sets from one of our research

projects are used to test this MC method. Some of these data

sets such as Stack Loss Plant Data, Hawkins-Bradu-Kass data

not only have both X and y outliers but also exhibit extreme

masking effects caused by multiple outliers.58–61

Simulated Data

For illustrative purposes, simulated data analogous to QSAR/

QSPR model was designed to test this method (X (100 3 10)

and y (100 3 1) with normally distributed noise). In these exam-

ples discussed, matrix X contained independent columns (X),
which represented some molecular descriptors, and a dependent

column (y) being related to by y 5 f(X). Thus, the response vari-

able y represented output values for each molecule, which, in a

real QSAR/QSPR data set, would be the activity or property

value of each of chemical molecules. Different outliers are intro-

duced into this data set.

1. y outliers: 10 additional y outliers with three-fold noise (about

20% variation of the normal y values) are added to this data

set. In these y outliers, their corresponding independent varia-

bles derived from the main body of 100 normal samples.

2. X outliers: 10 additional X outliers with large Mahalanobis

distance (two times larger than the average value of the le-

verage values from normal samples) are added to this data

set. For these X outliers, they have the same functional rela-

tionship as the 100 normal samples.

3. Model outliers: 10 additional model outliers with different

functional relationships are added to this data set. For these

model outliers, their corresponding independent variables

derived from the bulk of 100 normal samples. Moreover, one

out of 10 model outliers, which also has a good functional

relationship in two models due to the intersection of two

models, should not be considered as model outliers.

4. Mixed outliers: the above 30 outliers mentioned are added to

this data set.

Stack Loss Plant Data

Stack loss plant data set is an operational data of a plant for the

oxidation of ammonia to nitric acid. This data includes 21 obser-

vations on three independent variables measuring flow of cool-

ing air, cooling water inlet temperature, concentration of acid,

and one dependent variable, stack loss.58–60

Hawkins-Bradu-Kass Data

Described and analyzed fully in the Supporting Information.30,61

QSAR/QSPR Data

Finally, two real QSAR/QSPR data sets were used to detect the

method. The first data is boiling point data for the alkenes with

Figure 4. The distributions of the mean value and standard deviation

for 1060 simulated samples. (a) mean value; (b) standard deviation.

Figure 5. The schematic diagram which differentiates outliers and

normal samples.
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different branches. Sixty-two molecular descriptors which consist

of connectivity indices and walk and path counts are used to char-

acterize these alkenes. The range of experimental boiling points is

between 242.10 and 525.04. The second data consists of 88 drug-

like molecules on 33 molecular descriptors measuring different

molecular information. Together, they form data set X. The

dependent variable y is the aqueous solubility of 88 drug-like mol-

ecules measured with accurate method as described in Ref. 62.

Results and Discussions

Simulated Data

Results for the MC method applied to simulated data are shown

in Figure 6. In this simulated dataset, three types of outliers and

mixed outliers are used to test this method. From Figure 6, we

can see that the MC method can excellently identify all different

types of outliers. Figure 6A shows the results for the data set

including only outliers in y direction. These outliers have large

mean value than normal samples. Similar to Figure 6A, Figure

6B shows the results for the data set including only model out-

liers. It should be mentioned here one sample (106) was not

identified as model outliers since it has also a good functional

relationship with the model investigated. Figure 6C shows the

results for detecting X outliers. From this plot one could see that

the entire datum is clearly divided into two parts. For three types

of outliers above, the MC method all provides satisfactory

results. More importantly, this method can also identify mixed

outliers in which other diagnostic methods are not competent.

From Figure 6D, The top left area is outliers in X direction

which have a large standard deviation, and the lower right one

gives outliers in y direction and model outliers, which have a

large mean value. In addition, to demonstrate the influence that

the outliers gave the model established, a data set without out-

liers was used to compare with the one with three types of out-

liers, which is shown in Figure 7A. From this plot, the results

show that the samples are very close to each other with smaller

mean values approaching zero and smaller deviations. However,

when the data set contains mixed outliers the distribution even

for normal samples (see lower left part of Fig. 7B) are much

more diverse. That is to say, when the outliers contaminated the

data set, they will have a large influence on the normal samples

and hence lead to establish an inaccurate model.

For comparison of different methods, MCD, RHM, MVT,

RPPSV, RPLS, and M-estimator were used to seek the outliers

in the mixed data set. MVT used 23% trimming with iterations

terminated after the covariance matrix stabilized. MCD sampled

the data 1000 times and determined approximate squared Maha-

lanobis distances for all samples based on the subset of data

having the smallest determinant. RHM used 650 samples and

determined the relative frequencies of the samples having vector

lengths in the upper 10% of vector lengths. RPPSV and M-esti-

mator used the critical value equaled 2 and 2.24 to determine

whether a sample is an outlier, respectively. The outlier detec-

tion ability of different methods is described using three indexes

defined.50

MP ¼ number of undetected true outliers

number of true outliers ðleverage
pointsþ high residual pointsÞ

LMP ¼ number of undetected true leverage points

number of true outliers

WP ¼ number of normal points wrongly identified as outliers

number of true outliers

Figure 6. The result of variance of residuals versus mean of resid-

uals on simulated data. (A) Data contaminated by y outliers; (B)

Data contaminated by model outliers; (C) Data contaminated by X

outliers; (D) Data contaminated by three type of outliers.

Figure 7. The result of variance of residuals versus mean of resid-

uals on simulated data. A significant difference between A and B

illustrates the influence of the outliers (A) data set without outliers;

(B) data set with three types of outliers.
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Results for these methods applied to simulated data are shown

in Table 1. The MC method identified all types of outliers

exhaustively and obtained the best results among all methods.

MCD, MVT, and RHM have similar ability to detect outliers, in

addition, they have the ability to seek the X outliers but they are

not competent for the y outliers. The reason why we obtained

the results is that these three methods only made use of the in-

formation of samples but without considering the influence from

y direction. M-estimator, which placed extra emphasis on finding

the y outliers obtain the better detection results than the above

three methods. It can identify all the y and model outliers and

parts of X outliers. Moreover, similar to the MC method, sample

116 was not detected by the M-estimator method. RPPSV and

RPLS can also diagnose the X outliers and y outliers and obtain

a satisfactory result for the simulated data (except for sample

116). From this simulation study, it is concluded that the MC

method is effective for different types of outliers and detects

these outliers simultaneously.

Stack Loss Plant Data

Stack loss plant data set is an operational data of a plant which

is used to illustrate robust regression techniques. It is known

that this data contains several outliers which yield the masking

effect. The classical Mahalanobis distance does not reveal them.

Table 2 lists the detection results of different methods. From

Table 2, we can see that the MC method and RPLS method

obtained the best results among all the methods again and identi-

fied all the outliers simultaneously. MCD, MVT, and RHM diag-

nose all the X outliers such as samples 1, 2, 3. M-estimator finds

all the y outliers such as samples 3, 4, 21. RPPSV obtains the

poor result for the stackloss data and diagnoses samples 4 and

21, which are the y outliers. Figure 8 shows the detection result

of MC method. It is shown that different type of outliers com-

pactly clustered together, respectively. From Figure 8, Sample 3

is the y outlier who has a large mean value as well as the X out-

lier which has a large standard deviation. The MC method

exhibited a good performance when multiple outliers coexisted.

That is to say, the MC method can overcome the influence

which the masking effect brings about.

Table 1. Outlier’s Detection Using Different Methods for Simulated Data.

Method Outliers detected in regression MP LMP WP

MC 101 102 103 104 105 106 107 108 109 110 111 0/29 0/29 0/29

112 113 114 115 117 118 119 120 121 122

123 124 125 126127 128 129 130

MCD 103 105 106 121 122 123 124 125 126 127 128 129 130 16/29 0/29 16/29

MVT 105 106 121 122 123 124 125 126 127 128 129 130 17/29 0/29 17/29

RHM 110 106 105 121 122 123 124 125 126 127 128 129 130 16/29 0/29 16/29

M-estimator 101 102 103 104 105 106 107 108 109 110 111 112 113 4/29 4/29 4/29

114 115 117 118 119 120 121 122 123 124 125 126

RPPSV 101 102 103 104 105 106 107 108 109 110 111 3/29 3/29 3/29

112 113 114 115 117 118 119 120 121 122

123 124 126 129 130

RPLS 101 102 103 104 105 106 107 108 109 110 111 0/29 0/29 0/29

112 113 114 115 117 118 119 120 121 122

123 124 125 126127 128 129 130

The true outliers in regression are from sample 101 to sample 130 except for 116.

Table 2. Outlier’s Detection Using Different Methods for

Stack Loss Data.

Method Outliers detected in regression MP LMP WP

MC 1 2 3 4 21 0/5 0/5 0/5

MCD 1 2 3 21 1/5 0/5 1/5

MVT 1 2 3 21 1/5 0/5 1/5

RHM 1 2 3 2/5 1/5 2/5

M-estimator 3 4 21 2/5 2/5 2/5

RPPSV 4 21 3/5 3/5 3/5

RPLS 1 2 3 4 21 0/5 0/5 0/5

The true outliers in regression are samples 1, 2, 3, 4, 21.

Figure 8. The result of variance of residuals versus mean of resid-

uals on stack loss data.
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Hawkins-Bradu-Kass Data

For Hawkins-Bradu-Kass data, the results similar to those of the

Stack Loss Plant Data were obtained. MCD, MVT, RHM,

RPLS, and M-estimator can obtain all the 14 outliers. Apart

from this, RPPSV detected the first 10 outliers but the next four

ones were nevertheless maintained in the model established. The

MC method not only diagnosed all the outliers but also differen-

tiated two types of outliers which have extreme masking effect.

QSAR/QSPR Data

Boiling Point Data

The normal boiling point is one of the major physicochemical

properties used to characterize and identify an organic compound.

Besides being an indicator for the physical state (liquid and gas)

of an organic compound, the boiling point also provides an indica-

tion of its volatility. Moreover, boiling points can be used to pre-

dict or estimate other physical properties, such as flash points,63

critical Temperatures,64 etc. The boiling point is often the first

property measured for a new compound, so the prediction of boil-

ing points for new chemicals is very important according to the

QSPR model. A large number of methods for estimating normal

boiling points were previously reported in the literature. However,

the boiling points of a few compounds in every model have been

exceeded the chemical errors. That is to say, the prediction of boil-

ing points for these compounds become inaccurate through the

model established. The major reason may be the existence of the

outliers caused by the diversity of the compounds.

Table 3 lists the predictive results of different methods for

detecting the outliers. To compare all the methods impartially,

the same number of outliers (52 molecules in our experiment)

was deleted and the remaining ones were used to establish the

predictive model. From Table 3, the MC method, RPLS, and

RPPSV give quite similar results and the MC method somewhat

outperform the two other methods. For M-estimator method, we

can see that there is a large difference between RMSEF and

RMSECV. A main reason is that latent outliers may coexist in

the model established, because this method places extra empha-

sis only on the y outliers. To compare the performance of every

method well, Figure 9 shows the RMSECV values of 500

Monte-Carlo cross-validations (20% samples were removed and

used to predict) in PLS model. A good PLS model should have

a small RMSECV value and small principal number. A big prin-

cipal number may be caused due to the diversity of the mole-

cules. That is to say, the training set was still contaminated by

the outliers. From Figure 9, it is shown that MC and RPLS have

similar principal numbers (about 11) and RMSECV values and

the MC method gives the best results among all the methods.

RHM, M-estimator and NONE (none of methods were used to

detect the outliers) have relative small principal numbers but big

RMSECV values. In addition, RPPSV have a very big principal

number when it reaches a relative good RMSECV value. The

possible reason may be that the training set was still contami-

nated by some latent outliers. According to Table 3 and Figure

9, we can clearly see that the MC method obtains the best per-

formance among the above methods for the boiling point data.

Solubility Data

Solubility is a difficult property to predict, and one reason for this

is the diversity of the drug-like molecules. That is to say, there are

some special points which coexist in the data set and break away

from the bulk of the data set, or single model is not adequate to

relate the molecular descriptors to the aqueous solubility of drug-

like molecules. These points will influence the quality of the

model established. So, the discarding of these outliers will

improve the predictive degree of accuracy for the model estab-

lished. To obtain a high quality model, several outlier detection

methods were employed to identify the outliers in the QSAR/

QSPR model. Results for the MC method are shown in Figure 10.

We can clearly see from Figure 10 that seven outliers were

detected by the MC method. When these outliers were removed,

the degree of accuracy for the model has a significant improve-

ment (for the model including all samples, R2 5 0.9630, Q2 5
0.8987, RMSEF 5 0.2222, RMSECV 5 0.3680, while for the

model after MC deleting outliers: R2 5 0.9745, Q2 5 0.9302,

RMSEF 5 0.1785, RMSECV 5 0.2956). It is interesting to men-

tion that sample 83 seems to be a very special point. From Figure

10, it is clearly an outlier in both X and y directions. However, the
value of RMSECV decreased from 0.2956 to 0.2867 when it is

included in the model. Moreover, MCD, MVT, and RHM also

diagnosed the sample 83 as an X outlier. So, we should speculate

Table 3. Outlier’s Detection Using Different Methods for Alkanes.

Method RMSEF R2 RMSECV Q2

MC 1.4237 0.9997 1.8974 0.9995

RHM 4.5758 0.9958 5.1677 0.9946

M-estimator 1.7298 0.9996 6.2533 0.9952

RPPSV 0.9739 0.9999 2.4280 0.9993

RPLS 1.5028 0.9997 1.9906 0.9994

NONE 5.6193 0.9967 8.4078 0.9926

Figure 9. The RMSECV values of 500 Monte-Carlo cross-valida-

tions versus the number of principal components in PLS model.
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that sample 83 is possibly a good leverage point but far away from

the main body of the data. The reason for this may be that a negli-

gible variation in MC procedure, in which different samples are

selected in the calibration set, may cause a large fluctuation for the

predictive error of sample 83. The good leverage points and bad

leverage points are somewhat inadequate to differentiate for the

MC method. Similar to the boiling point data above, Figure 11

shows the RMSECV values of leave-one-out cross-validations in

PLS model for seven detection methods. From Figure 11, we can

see that big principal numbers are used to construct the PLS model

due to the diversity of the drug-like molecules. For MCD, MVT,

and RHM, the values of RMSEF and RMSECV are higher than

the results for all samples (MCD: R2 5 0.9623, Q2 5 0.8977,

RMSEF 5 0.2199, RMSECV 5 0.3623. MVT: R2 5 0.9616, Q2

5 0.8737, RMSEF 5 0.2231, RMSECV 5 0.4006. RHM: R2 5
0.9616, Q2 5 0.8737, RMSEF 5 0.2231, RMSECV 5 0.4006).

This is because they only take account of the sample information

from X direction and it is inadequate to generate a good model.

M-estimator gives a similar result to the MC method and samples

29, 32, 47, 49 are diagnosed as y outliers again (M-estimator: R2

5 0.9745, Q2 5 0.9313, RMSEF 5 0.1774, RMSECV 5 0.2915).

Different samples were diagnosed as outliers in RPPSV method

and the results of the model give a little improvement (RPPSV: R2

5 0.9635, Q2 5 0.9065, RMSEF 5 0.2171, RMSECV 5 0.3475).

Besides, RPLS method gives a similar result to the RPPSV

method and six samples were detected as outliers (RPLS: R2 5
0.9631, Q2 5 0.9012, RMSEF 5 0.2191, RMSECV 5 0.3651).

For this real QSAR/QSPR data set, the MC method obtains the

best results among these methods mentioned.

It is worth noting that some robust methods, such as RPLS,

M-estimator, etc., are data-structure dependent. From the results

shown in Figures 9 and 11, one may see such a situation. For

boiling point data, RPLS gives satisfactory results as MC

method does (see Fig. 9), but this is not the case for solubility

data of drug-like molecules (see Fig. 11). The same situation

can be seen for M-estimator. For solubility data of drug-like

molecules, M-estimator gives satisfactory results as MC method

does (see Fig. 11), but not for boiling point data (see Fig. 9).

However, according to our investigation in this study, the MC

method can be considered as a robust and reliable detection

method to a certain extent.

Conclusions

Building a robust and reliable QSAR/QSPR model depends on a

good outlier’s detection method. In this article, we have put for-

ward a new strategy of outlier detection for QSAR/QSPR. In a

data set contaminated by outliers, the MC method can diagnose

all types of outliers exhaustively and simultaneously. For a data

set which exhibits extreme masking effects caused by multiple

outliers, the MC method inherently provides a feasible way to

detect different kinds of outliers by the use of establishment of

many models. So, it should help to reduce the risk which the

masking effect brings about and disclosing the reason why the

masking effect yields to a certain extent. Moreover, it can cope

with situations where there are more variables than objects with

the help of PLS and PCR, etc.

Compared with the selected robust diagnostic methods, the

MC method has high outlier detection ability, but it is somewhat

inadequate to differentiate the good and bad leverage points.

However, the deletion of those good leverage points does not

influence the prediction ability of the calibration model. It can

be concluded that the MC method performs well for outlier

detection in regression models and that the calibration model af-

ter discarding of the outliers has a better prediction performance.
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