
Intern. J. Computer Math.,

Vol. 80, No. 7, July 2003, pp. 825–834

A NEW STRING MATCHING ALGORITHM

MUSTAQ AHMEDa,*, M. KAYKOBADa,y and REZAUL ALAM CHOWDHURYb,z

aDepartment of Computer Science and Engineering, Bangladesh University of Engineering and
Technology, Dhaka-1000, Bangladesh; bDepartment of Computer Science, University of

Texas at Austin, Texas, USA

(Received 26 July 2002)

In this paper a new exact string-matching algorithm with sub-linear average case complexity has been presented.
Unlike other sub-linear string-matching algorithms it never performs more than n text character comparisons
while working on a text of length n. It requires only O(mþ s) extra pre-processing time and space, where m is
the length of the pattern and s is the size of the alphabet.

Keywords: String matching; Complexity; Boyer–Moore algorithm

C. R. Categories: F.2.2

1 INTRODUCTION

The string matching problem that appears in many applications like word processing, infor-

mation retrieval, bibliographic search, molecular biology, etc., consists in finding the first or

all the occurrences of a pattern in a text, where the pattern and the text are strings over the

same alphabet.

Many algorithms for solving this problem exist in literature [10, 20]. The naive

(brute force) algorithm [7] locates all occurrences in time O(nm), where m is the length of

the pattern and n is the length of the text. Hashing provides a simple method [15] that

runs in linear time in most practical situations. A minimal DFA recognizing the language

S*x, where x[0:m7 1] is the pattern over the alphabet S of size s, can be used to locate

all the occurrences of x in the text y[0:n7 1] by examining each text character exactly

once [7]. But the construction of the DFA requires O(sþm) time and O(sm) space.

Simon [14, 18, 19] showed that this DFA can be constructed in O(m) time and space by

introducing a delay bounded by O(s) per text character and his algorithm never performs

more than 2n7 1 text character comparisons.

However, the first linear time string-matching algorithm was discovered by Morris and

Pratt [17], and was later improved by Knuth et al. [16]. The search behaves like a recognition

* E-mail: mustaqahmed@yahoo.com
y Corresponding author. E-mail: kaykobad@cse.buet.ac.bd
z E-mail: shaikat@cs.utexas.edu

ISSN 0020-7160 print; ISSN 1029-0265 online # 2003 Taylor & Francis Ltd
DOI: 10.1080=0020716031000087113

process by automation but the pre-processing time and space is reduced to O(m). A text

character is compared to a character of the pattern no more than logF(mþ 1) times (F is

the golden ratio (1þ
p

5)=2), and there is no more than 2n7m text character comparisons

on the whole. The Colussi [4–6, 12], Galil–Giancarlo [4, 12] and Apostolico–Crochemore

[1, 13] algorithms are refinements of this algorithm and respectively require 1.5n, 1.33n

and 1.5n text character comparisons in the worst case.

The Knuth–Morris–Pratt algorithm scans the characters of the pattern from left to right. But

choosing the reverse direction and introducing two heuristic functions, Boyer and Moore [3]

have derived one of the most efficient string-matching algorithms in practice. The algorithm is

sub-linear on the average but requires a quadratic (O(nm)) running time in the worst case. It

also requires O(sþm) pre-processing time and space. However, the main drawback of this

algorithm is that after a shift it forgets all the matches encountered so far. To remedy the

situation the prefix memorization technique introduced by Galil [11] leads to an algorithm

requiring only constant extra space and 14n text character comparisons in the worst case.

Crochemore et al. [8] showed that last-match memorization yields an algorithm that never

makes more than 2n comparisons. Apostolico and Giancarlo [2] designed yet another variant

of the Boyer–Moore algorithm that remembers all the previous suffix matches of the pattern

with the text at the cost of O(m) extra pre-processing time and space. An upper bound of 1.5n

text character comparisons has been proved for their algorithm [9].

In this paper, we present a new variant of the Boyer–Moore algorithm that remembers all

the previous matches between the pattern and the text. The algorithm is sub-linear on the

average and requires no more than n text character comparisons in the worst case.

However, it requires O(sþm) extra pre-processing time and space.

2 THE NEWALGORITHM

The string matching problem consists in finding the first occurrence or all occurrences of a

pattern x[0:m7 1] in a text y[0:n7 1], or deciding that none exists. Both the pattern and

the text are defined over the same alphabet S of size s and are assumed to have length m

and n respectively. Like other Boyer–Moore type algorithms, the algorithm presented in

this paper solves this problem by sliding the pattern along the text from left to right. For

each positioning that arises, it attempts to match the pattern against the text from right to

left. If no mismatch occurs then an occurrence of the pattern is found. In case of a mismatch

or a complete match it uses some pre-computed functions to shift the pattern to the right by

such an amount that no potential match is missed. The algorithm always remembers the

segments of the text within the current window of the pattern that were ever matched with

segments of the pattern and, uses its pre-computed shift functions to obtain a shift that will

align all segments remaining within the window after the shift to new matching positions

within the pattern. During the right to left matching of the characters of the text and the pattern

these matched segments are jumped over by the algorithm.

An example may reveal the idea behind the algorithm. Consider the situation depicted in

Figure 1 where a mismatch occurs between the character x[i]¼ b of the pattern and the

character y[jþ i]¼ a of the text during an attempted match at position j of the text. Then

x[iþ 1, m7 1]¼ y[jþ iþ 1, jþm7 1]¼ u0 and x[i] 6¼ y[jþ i]. Note that it is possible to

have i¼m7 1 and thus u0 to be empty. u1, u2 and u3 are the segments of the text within

the current window of the pattern that were matched with the characters of the pattern in

previous attempts. Now the pre-computed shift functions find the rightmost occurrence

(if any) of the segment au0 in x so that aligning this segment with the segment

826 M. AHMED et al.

y[jþ i, m7 1] of the text will also align each of the segments u1, u2 and u3 of the text with

corresponding matching position within x provided the entire segment or a portion of it still

remains within the window of the pattern. If no such occurrence is found then the shift

consists in aligning the longest suffix of y[jþ iþ 1, jþm7 1] with a matching prefix of

x. In Figure 1 a shift is found which causes u1 to match completely and u2 to match partially

and leaves u3 out of the window.

The pseudo code of this new string-matching algorithm is given in Figure 2 and explained

in subsequent paragraphs.

The algorithm first performs some pre-processing. The PRE_BC function calculates the

original Boyer–Moore bad character shift function, and stores it in a table bc of size s.

The bc function has the following definition, and can be calculated in O(s) time [3]. For

each a 2 S,

bc[a] ¼
min{i j 1 � i < m and x[m� i� 1] ¼ a}, if a appears in x

m, otherwise

�

PRE_SUF calculates a table suf of size m. For 0� i<m, suf is defined as follows:

suf [i] ¼ max{juj ju is the longest suffix of x ending at i in x}

It can be calculated in O(m) time [2].

PRE_PRF computes a table prf of size mþ 1. prf is defined as follows:

prf [i] ¼

m� juj, where 0 � i < m and u is the longest suffix of x[i, m� 1]

which is also a prefix of x[0, m� 1]

m, where i ¼ m

8<
:

Figure 3 shows how to calculate prf from suf in O(m) time.

PRE_LSP sets the variable lsp to m7 |u|, where u is the longest proper prefix of x which is

also a suffix of x. It is straightforward to calculate lsp from suf in O(m) time.

PRE_BC_GS fills in two tables bc_ gs_ ptr and bc_ gs_val using the pre-calculated suf

table. bc_ gs_ ptr table contains s entries, and each entry contains two values, namely ptr

and nt. For each a 2 S, bc_ gs_ ptr[a] � ptr contains an index (�0) into the table bc_ gs_val

if there is any entry corresponding to a in that table, otherwise it contains �1. If

bc_gs_ ptr[a] � ptr 6¼�1, then the entries from index bc_gs_ ptr[a] � ptr to

bc_gs_ ptr[a] � ptrþ bc_ gs_ ptr[a] � nt�1 in table bc_gs_val correspond to a. Each entry

of the bc_gs_val table contains two entries: loc and shift. The entries (if any) corresponding

FIGURE 1 An example.

STRING MATCHING ALGORITHM 827

procedure MATCHER(x, m, y, n)

integer i, j, k, l, lsp, m, n, suf [m], prf [mþ 1]

integer clink[m], slink[m], skip[m], bc[s]

record (integer nt, ptr) bc_ gs_ ptr[s]

record (integer loc, shift) bc_ gs_val[m]

==Preprocessing==
call PRE_BC(x, m, bc)

call PRE_SUF(x, m, suf)

call PRE_PRF(m, suf, prf)

call PRE_LSP(m, suf, lsp)

call PRE_BC_GS(x, m, suf, bc_ gs_ ptr, bc_ gs_val)

call PRE_CLINK(x, m, clink)

call PRE_SLINK(x, m, suf, prf, slink)

==Searching==
j 0, l 0, skip[0] m

while j� n7m do

i m7 1, k skip[l]

while i� 0 do

if k¼ 0 then

l (lþm7 1) mod m, i i7 skip[l]

if i< 0 then break endif

l (lþm7 1) mod m, k min(skip[l], iþ 1)

endif

if x[i]¼ y[jþ i] then i i7 1 else break endif

repeat

if i< 0 then

call OUTPUT(j)

skip[l] m7 lsp, l (lþ 1) mod m, skip[l] lsp

else

skip[l] k, l (lþ 1) mod m

skip[l] m7 i, l (lþ 1) modm

if i¼m7 1 then

skip[l] bc[y [jþ i]]7mþ iþ 1

else

skip[l] GET_BC_GS(y [jþ i], iþ 1, bc_ gs_ ptr, bc_ gs_val)

if skip[l]¼�1 then skip[l] prf [iþ 1] endif

endif

call VALIDATE_SHIFT(m, clink, slink, l, skip)

endif

j jþ skip[l]

repeat

end MATCHER

FIGURE 2 Pseudo code of the new matcher.

828 M. AHMED et al.

to a in that table are sorted on the increasing value of loc. For each value of i from

bc_ gs_ ptr[a] � ptr to bc_ gs_ ptr[a] � ptrþ bc_ gs_ ptr[a] � nt�1, bc_ gs_val[i] � shift has the

following definition:

bc gs val[i] � shift ¼ m� j � 1

�����
j is the rightmost occurrence of ax[bc gs val[i]:

loc, m� 1] in x

where x[bc gs val[i] � loc� 1] 6¼ a

8<
:

9=
;

A size of m7 2 is sufficient for the table bc_ gs_val. This is because, for each of the m7 2

values of j(0< j<m7 1), there can be at most one l (l> 0 and j7 lþ 1� 0) such that

x[j7 lþ 1, j]¼ x[m7 l, m7 1] and x[j7 l] 6¼ x[m7 l7 1]. If not, suppose, there exist

two such values l1 and l2. Then,

(i) For l1, x[j7 l1þ 1, j]¼ x[m7 l1, m7 1] and x[j7 l1] 6¼ x[m7 l17 1]

(ii) For l2, x[j7 l2þ 1, j]¼ x[m7 l2, m7 1] and x[j7 l2] 6¼ x[m7 l27 1]

Now, if l1< l2, then from (i), x[j7 l1] 6¼ x[m7 l17 1], but from (ii), x[j7 l1]¼

x[m7 l17 1] which is a contradiction. Again, if l1> l2, then from (ii), x[j7 l2] 6¼

x[m7 l27 1], but from (i), x[j7 l2]¼ x[m7 l27 1] which is also a contradiction.

Hence, l1¼ l2.

Figure 4 shows how to construct the tables bc_ gs_ ptr and bc_ gs_val from the pre-

calculated table suf in O(mþ s) time and space. The entries that will fill bc_ gs_val are

already available in the suf table, but in a different form and sorted on j (see the preceding

paragraphs). Performing bucket sort twice – first on the values of m7 l and then on the

values of x[j7 l], will put them in intended order.

The next pre-processing function PRE_CLINK fills in a table clink of size m � clink[0]

contains �1 and for 0< i<m, clink[i] contains the index of the rightmost occurrence of

x[i] in x[0, i7 1] if one exists, otherwise it contains �1. It is straightforward to build the

clink table directly from x in O(mþ s) time.

PRE_SLINK is the last pre-processing function called. It uses the pre-calculated tables

suf and prf to build the table slink of size m. For 0< i<m7 1, slink[i] has the following

definition:

(i) slink[i]¼ j, if x[0, i] is a suffix of x and j (<i) is the largest index such that x[0, j] is also

a suffix of x.

procedure PRE_PRF(m, suf, prf)

integer i, j, k, m, suf [m], prf [mþ 1]

k �1, prf [0] 0

for i 0 to m7 1 by 1 do

if suf [i]> i then

for j k to i7 1 by 1 do

prf [m7 j7 1] m7 k7 1

repeat

k i

endif

repeat

end PRE_PRF

FIGURE 3 Pseudo code of PRE_PRF.

STRING MATCHING ALGORITHM 829

(ii) slink[i]¼ k, if x[0, i] is not a suffix of x and there exists an l (i� l> 0) such that

x[i7 lþ 1, i]¼ x[m7 l, m7 1] and x[i7 l] 6¼ x[m7 l7 1], and k (<i) is the largest

index such that x[max(0, k7 l), k]¼ x[i7 kþmax(0, k7 l), i].

(iii) slink[i]¼�1, otherwise.

Figure 5 shows how to implement PRE_SLINK in O(mþ s) time and space. The imple-

mentation is somewhat similar to that of PRE_BC_GS.

procedure PRE_BC_GS(x, m, suf, bc_ gs_ ptr, bc_ gs_val)

integer f, i, k, l, m, link[m], loc[m], shift[2m], next[2m]

char a, c[m]

record (integer nt, ptr) bc_ gs_ ptr[s]

record (integer loc, shift) bc_ gs_val[m]

f 0, link[0: m7 1] �1

for i 0 to m7 2 by 1 do

k suf [i]

if k> 0 and i� k then

c[f] x[i7 k], shift[f] m7 i7 1

next[f] link[m7 k], link[m7 k] f, f fþ 1

endif

repeat

for all a 2 S do bc_ gs_ ptr[a] (0, �1) repeat

f m

for i m7 1 down to 1 by �1 do

l link[i]

while l 6¼�1 do

a c[l], k bc_ gs_ ptr[a].ptr

if k¼�1 or loc[k7m]> i then

loc[f7m] i, shift[f] shift[l], next[f] k,

bc_ gs_ ptr[a] (f, bc_ gs_ ptr[a].ntþ 1), f fþ 1

endif

l next[l]

repeat

repeat

f 0

for all a 2 S do

l bc_ gs_ ptr[a].ptr

if l 6¼�1 then

bc_ gs_ ptr[a].ptr f

while l 6¼�1 do

bc_ gs_val[f] (loc[l7m], shift[l])

f fþ 1, l next[l]

repeat

endif

repeat

end PRE_BC_GS

FIGURE 4 Pseudo code of PRE_BC_GS.

830 M. AHMED et al.

After pre-processing, the MATCHER routine enters the searching phase. It uses a circular

table (skip table) of size m to remember the previously matched segments. Before entering

the outer while loop, j (indicating the index into the text y to which the leftmost character

of the pattern x is aligned) is initialized to 0, l (indicating the current index into the skip

table) to 0 and skip[l] to m. Before entering the inner while loop, i (the current index in the

pattern x) is initialized to m7 1, that is comparison starts from the rightmost character of

x. Let, l0¼ l and for 0< p<m, lp¼ (lp7 1þm7 1) mod m At this moment, skip[l0]

contains the length of the segment of unmatched characters of the text starting from index

procedure PRE_SLINK(x,, m, suf, prf, slink)

integer m, suf[m], prf[mþ 1], slink[m]

integer f, i, k, l, link[m], len[m], owner[m]

integer pre_loc[m], loc[2m], next[2m], cptr[s]

char a, c[m], x[m]

l �1

for i 0 to m7 1 by 1 do

if suf[i]> i then slink[i] l, l i

else slink[i] m7 prf[m7 suf[i]]7 1 endif

repeat

f 0, link[0:m7 1] �1

for i 0 to m7 2 by 1 do

k suf[i]

if k> 0 and i� k then

c[f] x[i7 k], loc[f] i, next[f] link[k]

link[k] f, f fþ 1

endif

repeat

for all a 2
P

do cptr[a] �1 repeat

f m

for i m7 1 down to 1 by �1 do

l link[i]

while l 6¼�1 do

a c[l], loc[f] loc[l], len[f7m] I

next[f] cptr[a]

cptr[a] f, f fþ 1, l next[l]

repeat

repeat

owner[0:m7 1] �1

for all a 2
P

do

l cptr[a]

while l 6¼ �1 do

k len[l7m]

if owner[k]¼ a then slink[loc[l]] pre_loc[k] endif

pre_loc[k] loc[l], owner[k] a, l next[l]

repeat

repeat

end PRE_SLINK

FIGURE 5 Pseudo code of PRE_SLINK.

STRING MATCHING ALGORITHM 831

jþ i (right to left), If skip[l0]<m, then skip[l1] contains the length of the segment of matched

characters (starting from index jþ i7 skip[l0] of the text) in the previous attempt. In general,

if skip[l0]þ skip[l1]þ � � � þ skip[lp7 1]<m, then skip[lp] contains the length of the next

segment of matched=unmatched (matched if p is odd, otherwise unmatched) characters of

the text starting from index jþ i7 (skip[l0]þ skip[l1]þ � � � þ skip[lp7 1]). Note that, it may

happen that skip[l0]þ skip[l1]þ � � � þ skip[lp7 1]<m< skip[l0]þ skip[l1]þ � � � þ skip[lp].

In that case, the last segment length is taken to be min(m7 skip[l0]7 skip[l1]7 � � � 7 skip

[lp7 1], skip[lp]). The inner while loop continues to match x[i] to y[jþ i] for decreasing i

until a mismatch occurs or the value of i falls below 0. In this process it jumps over the pre-

viously matched segments of the text and updates i and l accordingly.

If the inner while loop is exited with i< 0, then a complete match is found and the

algorithm updates (using lsp) the skip list and l in such a way that in the next attempt the

longest proper suffix of y[j, jþm7 1] will be aligned with a matching prefix of x. On

the other hand, if the algorithm exits the while loop with i� 0, then it first updates the

skip list and l with the length of the matched segment during the current attempt. In this con-

dition two cases may occur:

Case 1 (i¼M7 1) In this case, the bc table is used to find the rightmost occurrence of

y[jþ i] in x and accordingly the skip table is updated to realize the proper shift in the next

attempt.

Case 2 (i<M7 1) In this case, a function GET_BC_GS is called to find the appropriate

shift based on the rightmost occurrence of y[jþ i, jþm7 1] in x. GET_BC_GS uses the

bc_ gs_ ptr table with y[jþ i] to access the appropriate segment in the bc_ gs_val table on

which it performs a binary search in order to find the loc value iþ 1 and returns the value of

the corresponding shift field. If it fails to find such a loc value, it returns �1. skip[l] is

updated with the return value of GET_BC_GS. If GET_BC_GS fails, then skip[l] is updated

with prf [iþ 1] in order to align the longest suffix of y[jþ iþ 1, jþm7 1] with a matching

prefix of x.

After considering these two cases, VALIDATE_SHIFT (Fig. 6) is called which uses the

clink and slink tables to check whether the current shift value aligns all the previously

matched segments of the text that are still within the window of the pattern to new matching

positions. If not, it finds the rightmost occurrence (even as a prefix) of y[i, m7 1] in x that

leads to a valid shift and updates skip[l] accordingly.

Last of all, the algorithm updates j with jþ skip[l] for the next attempt.

3 COMPLEXITY

This algorithm remembers each text segment it has ever matched with a segment of the

pattern and always finds a shift value that never aligns them to mismatching positions. So,

it compares each text character with a pattern character at most once, that is, it never

makes more than n text-pattern comparisons.

The pre-processing stage has O(mþ s) space and time complexity. This linear pre-

processing leads to a delay of O(log2m) in the GET_BC_GS function. This delay can be

reduced to O(1) if direct access tables are used, in which case the pre-processing complexity

will increase.

832 M. AHMED et al.

In the worst case, a call to the VALIDATE_SHIFT function may introduce an O(m2) delay,

but in that case it will make an m character shift. Hence, for a text of length n, this function

may introduce a total of O(m2
� (n=m)) or O(mn) delay in the worst case.

4 CONCLUSION

In this paper, we have presented a new string-matching algorithm that makes the maximal use

of all the information available to it. Like other Boyer–Moore type algorithms it is sub-linear

on the average, but unlike those sub-linear algorithms it compares each text character to a

pattern character at most once. Its pre-processing time and space is linear with respect to

procedure VALIDATE_SHIFT(m, clink, slink, l, skip)

integer i, j, k, l, m, p, loc[m], len[m], next[m], clink[m], slink[m], skip[m]

if skip[l]�m then return endif

k 0, j l

for i 0 to 1 by 1 do

j (jþm7 1) mod m, k kþ skip[j]

if skip[l]þ k�m then return endif

repeat

p 0

while skip[l]þ k<m do

j (jþm7 1) mod m, loc[p] m7 k7 1

len[p] skip[j]

if skip[j]¼ 1 then next[p] clink[m7 k7 1]

else next[p] slink[m7 k7 1] endif

p pþ 1, k kþ skip[j]

if skip[l]þ k�m then break endif

j (jþm7 1) mod m, k kþ skip[j]

repeat

loc[p] �1

while skip[l]<m do

i 0

while loc[i]� skip[l] do

while next[i]> loc[i]7 skip[l] do

if len[i]¼ 1 then next[i] clink[next[i]]

else next[i] slink[next[i]] endif

repeat

if next[i]< loc[i]7 skip[l] then break endif

i iþ 1

repeat

if loc[i]< skip[l] then break endif

if skip[(lþm7 1) mod m]¼ 1 then

skip[l] m7 17 clink[m7 skip[l]7 1]

else skip[l] m7 17 slink[m7 skip[l]7 1] endif

repeat

end VALIDATE_SHIFT

FIGURE 6 Pseudo code of VALIDATE_SHIFT.

STRING MATCHING ALGORITHM 833

pattern length and alphabet size. To the best of our knowledge it is the first string-searching

algorithm with these properties.

References

[1] Apostolico, A. and Crochemore, M. (1991). Optimal canonization of all substrings of a string. Inform. Comput.,
95(1), 76–95.

[2] Apostolico, A. and Giancarlo, R. (1986).The Boyer–Moore–Galil stringsearching strategy revisited. SIAM J.
Comput., 15(1), 98–105.

[3] Boyer, R. S. and Moore, J. S. (1977). A fast string searching algorithm. Comm. ACM, 20, 762–772.
[4] Breslauer, D. (1992). Efficient string algorithmics. PhD thesis, Report CU-024-92, Computer Science

Department, Columbia University, New York, NY.
[5] Colussi, L. (1991). Correctness and efficiency of the pattern matching algorithms. Inform. Comput., 95(2),

225–251.
[6] Colussi, L., Galil, Z. and Giancarlo, R. (1990). On the exact complexity of string matching. Proceedings of

the 31st Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, St. Louis, MO,
pp. 135–144.

[7] Cormen, T. H., Leiserson, C. E. and Rivest, R. L.(1990). Introduction to Algorithms, MIT Press.
[8] Crochemore, M., Czumaj, A., Gasieniec, L., Jarominek, S., Leroq, T., Plandowski, W. and Rytter, W. (1994).

Speeding up two string-matching algorithms. Algorithmica, 12(4=5), 247–267.
[9] Crochemore, M. and Leroq, T. (1997). Tight bounds on the complexity of the Apostolico–Giancarlo algorithm.

Information Processing Letters, 63(4), 195–203.
[10] Crochemore, M. and Rytter, W. (1994). Text algorithms. Oxford University Press, New York, Oxford.
[11] Galil, Z. (1979). On improving the worst case running time of the Boyer–Moore string-searching algorithm.

Comm. ACM, 22(9), 505–508.
[12] Galil, Z. and Giancarlo, R. (1992). On the exact complexity of string matching: Upper bounds. SIAM J. Comput.,

21(3), 407–437.
[13] Hancart, C. (1993). Analyse exacte et en moyenne d’algorithmes de recherche d’un motifdans un texte, Thése

de doctrat de l’Université de Paris 7, France.
[14] Hancart, C. (1993). On Simon’s string matching algorithm. Information Processing Letters, 47(2), 95–99.
[15] Karp, R. M. and Rabin, M. O. (1987). Efficient randomized pattern-matching algorithms. IBM J. Res. Dev.,

31(2), 249–260.
[16] Knuth, D. E., Morris, J. H. Jr. and Pratt, V. R. (1977). Fast pattern matching in strings. SIAM J. Comput., 6(1),

323–350.
[17] Morris, J. H. Jr. and Pratt, V. R. (1970). A linear pattern-matching algorithm. Technical Report 40, University of

California, Berkeley.
[18] Simon, I. (1993). String matching algorithms and automata. In: Baeza-Yates and Ziviani (Eds.), First American

Workshop on String Processing, Universidade Federal de Minas Gerais, pp. 151–157.
[19] Simon, I. (1993). String matching algorithms and automata. In: Baeza-Yates and Ziviani (Eds.), First American

Workshop on String Processing, Universidade Federal de Minas Gerais, pp. 151–157.
[20] Stephen, G. A. (1994). String Searching Algorithms, World Scientific Press.

834 M. AHMED et al.

