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A NEW STRUCTURE OF A SWITCHING FLUX SYNCHRONOUS POLYPHASED MACHINE 

WITH HYBRID EXCITATION 
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Abstract: The aim of this paper is to present the structure of a new flux switching synchronous ma-
chine with hybrid excitation. This machine uses the flux switching principle where all the active parts 
are located on the stator. The rotor is only a salient passive rotor and can be robust and made with a 
low cost technology. This new machine can be supplied with electricity by means of a traditional three 
phase voltage converter or can be associated with a diode rectifier. The hybrid excitation is an associa-
tion of permanent magnets and a wound exciter. 

Keywords: Synchronous machine, permanent magnet, flux switching, flux weakening, hybrid excita-
tion, magnetic losses. 

1 Machine presentation 

As shown in Fig. 1, an elementary magnetic cell serves to explain (see part 2) the operating principle 
of this new structure of the flux switching synchronous machine with a hybrid excitation [1]. This 
particular structure uses the principle of both flux switching and flux concentration [2-4]. From the 
elementary cell, we developed a prototype (see Fig. 2). 

 
Fig. 1.Elementary cell of the machine 

 
Fig. 2. Cross section of a three phases prototype 

This machine is composed of a stator that includes armature coils, permanent magnets and a wound 
inductor. The salient rotor is simply made of stacked soft iron sheets. The prototype is a three phase 
machine containing twelve magnets, with each phase composed of four magnets and four concentric 
coils. The rotor contains Nr teeth (with Nr = 10), and the relation between the mechanical rotation 

frequency F and the electrical frequency f can be expressed as: f = Nr F. 

mobile part 

armature winding 

wound excitation 



2 Principle of functioning 

According to the position of the mobile part, the magnetic flux linkage in the armature winding can be 
counted as either positive or negative, and is then alternative. In this new structure, with the excitation 
current it is possible to modulate the excitation of the permanent magnets. 

 
Fig. 3a. Electrical position = 0°. More excitation. 

  
Fig. 3b. Electrical position = 180°. More excitation. 

 
Fig. 3c. Electrical position = 0°. Less excitation. 

  
Fig. 3d. Electrical position = 180°. Less excitation. 

3 Structure 

We define the following parameters :  
q : number of phases 
Nc : number of cells per phase    
θs : angular width of the cell to the stator 
θr : angular width of the cell to the rotor 
Ns : number of teeth to the stator 
Nr : number of teeth to the rotor  
ws : angular width of a stator tooth 
wr : angular width of a rotor tooth  

The relations making it possible to define a polyphase structure are as follows : 
 π=θ 2N rr  and π=θ 2N ss  
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We also have, for reasons of symmetries : 
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The angular width of the rotor teeth is defined by : rrrw θβ=  with ] [1;0r∈β  

In order to balance the radial efforts and to minimize the harmonic components of flows, the numbers 
of teeth to the stator (Ns) and the rotor (Nr) must even beings. 



For a three-phase machine (q = 3) and with Nc = 4, we obtain: Ns = 12 and Nr = 10. 
For a diphasic machine (q = 2) and with Nc = 4, we obtain: Ns = 8 and Nr = 6. 
We built a three-phase machine. On figures 4 and 5 we can see the stator. On figure 4, there is only the 
carcass out of aluminium with ferromagnetic sheets. On figure 5, we can see windings of the three 
phases and excitation circuit. 

 
Fig. 4. Stator iron core 

 
Fig. 5. Stator iron core and winding 

Also, all the active parts are arranged on the static part (stator) which is beneficial to evacuating the 
copper and iron losses. 

4 EMF (no-load voltage) 

4.1 Modulation of the amplitude 

In Fig. 6, we show that the no-load voltage is almost sinusoidal and that it is possible to modulate their 
amplitude (dexc is the current density of the wound excitation in A/mm2). 
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Fig. 6. Measured no-load voltage at 3000 rpm 

This amplitude modulation is useful under driving operation and also under generating operation asso-
ciated a bridge of diode. 

4.2 Harmonics elimination 

In order to eliminate the harmonics components, the iron sheets of the rotor are mounted with a shift 
angular angle. The shift electrical angle is 7.2° to eliminate the 5n harmonics components. 



 
Fig. 7. Initial rotor 

 
Fig. 8. Modified rotor 

In the following figure, the no-load voltage with the modified rotor is clearly most sinusoidal. 
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Fig. 9. No load voltage with two configurations of the rotor sheets 

5 Characteristics and performances 

5.1 Experimental bench 

By virtue of its passive rotor, this machine displays highly robust qualities. Moreover, it is capable of 
attaining a good level of performance (continuous thermal specific torque). In association with a three 
phase voltage bridge converter, this machine can work with a constant maximum power over a theo-
retically infinite range of speeds in the flux weakening mode [5-7]. 
In fig. 10, we present the classical associated converter and we specify the experimental measurement. 
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Fig. 10. Diagram of current regulated - machine drive 

The hybrid excitation allows the modulation of the permanent magnets flux when energy needs are not 
maximal such as at “at no-load work”. In this structure, the iron losses can be reduced with the flux 
weakening and with the wound excitation. It’s necessary to use a DC-DC converter to create the current 

Initial rotor 

Modified rotor 



for the wound excitation. The power of this converter is about 200 W when the converter power with 
the machine associated with three phase voltage bridge converter is about 3 kW. 

In fig. 11, we present the assembly experimental test. An induction machine, MAS (3000 rpm – 5 
kW), supply with an inverter can be used in motor mode or in generator mode. The DC bus (300 V) is 
the same for the two converter. The total power (UDC × I0T) is equal to the sum of the losses. With the 
contactors KMS and KMAS and with the coupling A, we can have different solutions to test the proto-
type, MS. 
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Fig. 11. Experimental bench 

5.2 Torque 

To measure the torque, we feed the machine with sinusoidal currents, and we use a mechanical assem-
bly balances. The current density can vary up to 63 A/mm2 (electronic limit). The thermal torque 
(permanent working) is obtained with a rated value of 10 A/mm2 and with a current density of the 
wound excitation of 13 A/mm2. 
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Fig. 12. Experimental torque versus armature current density 

We can see on fig. 12, which the permanent massive torque is about 2.2 Nm/kg and for transient work-
ing is can reach about 6 Nm/kg. 

5.3 Iron losses 

We have measured the iron losses in alternator mode at no-load (KMAS closed, A closed , KMS open). In 
Fig. 13, we can see that the modulated excitation can reduce iron losses. 
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Fig. 13. Iron losses in alternator at no-load Fig. 14. Iron losses in motor mode at no-load 

When the machine is associated with a three phase voltage bridge converter, we have measured iron 
losses in a motor mode at no-load (KMAS open, A open, KMS closed). In Fig. 14, we can see that the flux 
weakening and the modulated excitation can reduce iron losses. 

5.4 Power capability 

In this section, our main focus lies in the energy-conversion possibilities of the machine when associ-
ated with a regulated current power converter. In particular, we have examined the machine's power 
capabilities with respect the limited voltage of the DC source or the breakdown voltage of the transis-
tors, as well as the machine's constraints (global machine heat, i.e. efficient current limitation at lower 
speeds) and we fixed the excitation current at its rated value. In order to convert the maximum of 
power, we adjust the current in the direct axis (flux weakening mode). 

On fig. 15 :  
 Pabs : Total absorbed power (UDC × I0MS) by the prototype associated with the converter. 
 Pu : Useful output power measured with the balanced torque and the revolution speed. 
 PJ_ind : Copper losses in the armatures phases. 
 P_ond : Estimated losses in the converter. 
 Pfer : Iron losses estimated with the separated losses method. 
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Fig. 15. Experimental assessment of the power for Iexc = 10 A 

Although normalised inductance in the direct axe is higher than the unit, which means that we can 
convert a constant power on a theoretically infinite speed range, we note that the maximum power is 
not constant. 

We can justify this fact with the electromagnetic model including the iron losses of the figure 16 [9]. 

In this model, r represents the resistance of the phase, L the cyclic inductance, Rf the iron losses 
equivalent resistor and E the electromagnetic force. 



k is a coefficient which makes it possible to dissociate the sinusoidal magnetic flux crossing the air-
gap and the flux, or rather the density of flux in the magnetic circuit. 

 
Fig. 16. Electromagnetic model with iron losses 

We calculated the convertible maximum power with a coefficient k equal to 0.5. This value can be 
given in an experimental way by determining the losses iron in generating mode in open circuit or 
short-circuit. 

0

1000

2000

3000

4000

5000

0 5000 10000 15000 20000

N (tr/min)

P (W)

Puissance utile

Pertes fer

Iexc = 10 A

Iexc = 5 A

Iexc = 0 A

 
Fig. 17. Influence of the excitation current on converted power and on iron losses 

On figure 17, we calculated the convertible maximum power (‘’puissance utile’’) for three fixed val-
ues of the excitation current (10 A, 5 A and 0 A). In order to convert the maximum of power, we use 
the machine in flux weakening mode (we adjust the current in the direct axis). We can note that the 
part of the adjustable excitation makes it possible to decrease the iron losses (‘’pertes fer’’) when one 
wish to convert a power lower than the maximum power. 

6 Applications 

We think that this new structure can be employed to make a high speed motor, or motor for difficult 
thermal environment, or more a high torque / low speed machine with higher pole number to make, for 
example, a low speed gearless wind generator [8]. This machine seems very interesting for applica-
tions requiring a strong transient mass couple and not very important losses to high revolution speed, 
for example for hybrid car. 

7 Conclusion 

This paper presents a new structure for a hybrid excitation; a synchronous polyphased machine based 
on the switching flux principle with a concentrated flux, and with permanent magnets excitation and 
wound excitation. The armature and inductor are both located inside the stator. The intrinsic perform-
ance obtained is most encouraging. 



We began by presenting the elementary cell and the switching flux principle. Then we introduce a 
hybrid synchronous three phase machine, along with its intrinsic characteristics. 
We presented an advantage of this structure that is the possibility to modulate the excitation flux and 
its consequence on iron losses. 

8 Appendix 

Mechanical characteristics Electrical characteristics 

External diameter : 130 mm Flux linkage (rated excitation) : 42 mWb 
Inner diameter : 80 mm Rated current : 8.5 A 
Airgap length : 0.2 mm Rated excitation current : 10 A 
Active length : 30 mm Inductance : 5 mH 
Stator iron mass : 1.05 kg Phase resistance : 0.5 Ω 
Rotor iron mass : 0.86 kg Excitation resistance : 1.3 Ω 
Permanent magnet : NeFeB – Br = 1.2 T  
Permanent magnet volume : 18 cm3 – 0.135 kg  
Phases copper mass : 0.29 kg  
Excitation copper mass : 0.33 kg  
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