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Abstract: In mechanism design with symmetrical or asymmetrical motions, obtaining high precision
of the input path given by working requirements of mechanisms can be a challenge for dimensional
optimization. This study proposed a novel hybrid-combined differential evolution (DE) and Jaya
algorithm for the dimensional synthesis of four-bar mechanisms with symmetrical motions, called
HCDJ. The suggested algorithm uses modified initialization, a hybrid-combined mutation between
the classical DE and Jaya algorithm, and the elitist selection. The modified initialization allows gener-
ating initial individuals, which are satisfied with Grashof’s condition and consequential constraints.
In the hybrid-combined mutation, three differential groups of mutations are combined. DE/best/1
and DE/best/2, DE/current to best/1 and Jaya operator, and DE/rand/1, and DE/rand/2 belong
to the first, second, and third groups, respectively. In the second group, DE/current to best/1 is
hybrid with the Jaya operator. Additionally, the elitist selection is also applied in HCDJ to find the
best solutions for the next generation. To validate the feasibility of HCDJ, the numerical examples
of the symmetrical motion of four-bar mechanisms are investigated. From the results, the proposed
algorithm can provide accurate optimal solutions that are better than the original DE and Jaya
methods, and its solutions are even better than those of many other algorithms that are available in
the literature.

Keywords: differential evolution (DE); Jaya algorithm; hybrid-combined mutation; hybrid-combined
differential evolution and Jaya algorithm (HCDJ); dimensional synthesis of four-bar mechanisms.

1. Introduction

Symmetrical motion mechanisms in which the forward and return strokes are the same
movement have been applied in many mechanical systems. Four-bar mechanisms with
symmetrical and asymmetrical motions are commonly used in mechanical devices such as
sewing machines, round balers, and suspension systems of automobiles [1,2]. Achieving
higher precision design of four-bar mechanisms, whose symmetrical motions satisfy the
input path of a point in the coupling link, is still a challenge for the kinematic dimensional
calculation. It results from the highly nonlinear objective function with many constraints.

Regarding methods for designing four-bar mechanisms, Zhang [3] proposed the
graphical method, and Freudenstein [1] has been used in analysis to compute the kine-
matic dimensions of linkages. However, this method resulted in low precision and waste
time [4]. In recent decades, random search algorithms such as differential evolution [2,5–8],
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genetic algorithm [4,9], simulated annealing algorithm [10], and particle swarm optimiza-
tion [2,11,12] have been used to solve kinematic dimensions of the mechanisms to increase
accuracy in mechanism design.

The synthesis of four-bar mechanisms has been mentioned in recent years due to
their wide applications in mechanical systems. Fernandez et al. [13] proposed the determi-
nation of kinematic dimension in order to minimize the objective function based on the
dimensional constraint equation of mechanisms. The design of a four-bar mechanism used
for the shadow robot is presented in [14]. Ramon et al. [15] applied the combination of
difference evolution and local search algorithms for synthesis planer mechanisms, in which
the four-bar mechanism is one of the examples in this work. These works, however, have
limited the application cases of four-bar mechanisms. The teaching-learning based op-
timization algorithm has been used to determine the kinematic dimension of four-bar
mechanisms [16,17]. In these researches, the signed timing has not been considered. Varedi-
Koulaei [18] synthesized four-bar mechanisms using graphical and analytical methods.

With random search algorithms, the Jaya algorithm is also a newly proposed ap-
proach [19]. This method has been applied for solving numerous optimization prob-
lems [20,21]. In order to obtain an optimal solution by using the Jaya algorithm, a high
computational cost is essentially required. Thus, to improve its performance, the Jaya
algorithm has been combined with other algorithms [5,22,23]. Up until now, the application
of the Jaya algorithm in designing four-bar mechanisms is still limited [24].

One of the most well-known random search algorithms is DE algorithm which can
be found in [25]. DE algorithm has been used to find the optimal solution for a lot of
problems [26–28]. It is similar to the other random search, as an optimal solution is found
by using the DE algorithm, which also requires a considerable computation cost. For this
reason, several modifications of DE were proposed [29–35]. The combination of DE and
other algorithms such as GA [36,37], PSO [38,39], and fireworks algorithm (FA) [40,41]
was proposed. Furthermore, some additional modifications of DE were also proposed for
path synthesis of four-bar mechanisms such as Cabrera [6], Ortiz [7], Lin [8]. Concretely,
Cabrera [6] proposed a modified crossover to change the values of genes in the mutant and
target vectors to achieve better values of objective functions for the next generation. Based
on the work of Cabrera, Ortiz [7] suggested a tuning technique for the control parameters
of F, CP, MP, and range to avoid the multiple executions of the algorithm until their proper
values are found. Furthermore, Lin [7] proposed a new combined mutant operator of DE.
In the combined mutation, DE/best/1, DE/current to best/1, and DE/rand/1 are used in
the first k% ranking parents, middle-ranking parents (ranked between (k%, m%]), and other
inferior parents, respectively.

From the discussions mentioned above, the investigation of a hybrid algorithm be-
tween DE and Jaya for improving the optimal dimensional synthesis of the four-bar mech-
anism has not yet been reported. Thus, this study proposes a novel hybrid-combined
differential evolution and Jaya algorithm (called HCDJ) to fill the above research gap.
The current hybrid algorithm combines DE and Jaya to improve the accuracy of optimal
solutions. By combining the mutation operator DE with a Jaya operator, the global ex-
ploration ability of HCDJ is significantly enhanced, and thus the solution accuracy is also
improved. Concretely, in the modified mutation stage, three groups of mutations are
used in the first k%, middle, and remaining populations, respectively. DE/best/1 and
DE/best/2, DE/current to best/1 and Jaya operator, and DE/rand/1, and DE/rand/2
belong to the first, second, and third groups, respectively. Additionally, the refined initial-
ization stage is applied to choose individuals that are satisfied with Grashof’s condition
and consequential constraints. Finally, the elitist selection technique is used in the selection
phase to determine the best solutions for the next generation. To prove the effectiveness
and robustness of the HCDJ algorithm in terms of accuracy, five numerical examples for the
dimensional synthesis of four-bar mechanisms with symmetrical motions are performed,
and outcomes obtained by the proposed methodology are compared with those of some
available algorithms in the literature. The rest of this article is arranged as follows. Section 2
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presents the optimization problem of four-bar mechanisms. In Section 3, a brief review
of the classical DE and Jaya is presented firstly, and then a perspective scheme of the
proposed HCDJ is discussed. In Section 4, five commonly examined numerical examples
for the dimensional synthesis of the four-bar mechanisms are performed to validate the
effectiveness and robustness of HCDJ. Then, results obtained in five cases are discussed in
Section 5. Finally, some conclusions are provided in Section 6.

2. Dimensional Synthesis of the Four-Bar Mechanisms

In this study, we focus on the dimensional synthesis of the four-bar mechanisms and
the optimization problem, which is used to determine the kinematic dimensions of linkages
and positions of pin-joints denoted by O2 and O4 (see Figure 1) by giving the input path
of the coupler point C in link 3. Ci and Ci

d are set as target points indicated by the input
point and the designed point, respectively, i.e., Ci =

[
Ci

X , Ci
Y
]

and Ci
d =

[
Ci

Xd, Ci
Yd
]
.

Therefore, the objective function can be written as follows [4] :

Error(X) = ∑N
i=1 (C

i
Xd − Ci

X)
2 + (Ci

Yd − Ci
Y)

2, (1)

where N is the number of points in the path of the coupler, and X is preventative for
the design variables’ vector characterized by kinematic dimensions and positions of the
linkages and can be expressed as

X =
[
r1 r2 r3 r4 a b x02 y02 θ1 θ1

2 θ2
2 ... θn

2
]
, (2)

where r1, r2, r3, and r4 denote the kinematic dimensions of links 1, 2, 3, and 4, respectively;
a, b, x02, y02, and θ1 are shown in Figure 1; θ1

2 , θ2
2 , ..., θn

2 are preventative for the angle
positions of link 2 at input positions of coupler C, respectively.

 

Figure 1. Kinematic diagram of four-bar mechanisms.

In Equation (1), the position of the coupler C in the reference frame O2xy can be
computed based on the closure loop as found in [5]. It can be calculated as{

Cx = r2 cos θ2 + a cos θ3 − b sin θ3,
Cy = r2 sin θ2 + a sin θ3 + b cos θ3.

(3)
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The angle positions of links 3, i.e., θ3 can be computed as

θ3 = 2 tan−1(
−H ±

√
H2 − 4GJ

2G
), (4)

where G, H and J are calculated as the following equations
G = cos θ2 − K1 + K2 cos θ2 + K3,
H = −2 sin θ2,
J = K1 + (K2 − 1) cos θ2 + K3,

(5)

in which,

K1 =
r1

r2
; K2 =

r1

r3
; K3 =

r2
4 − r2

3 − r2
2 − r2

1
2r2r3

. (6)

The position of the point C in the global coordinate OXY, as shown in Figure 1, can be
simply computed as [

CX
CY

]
=

[
cos θ1 − sin θ1
sin θ1 cos θ1

][
Cx
Cy

]
+

[
x02
y02

]
. (7)

It should be noted that the ith design variable (Xi) is in the range of
[
Xmin

i , Xmax
i
]

with its upper bound of Xmin
i and lower bound of Xmax

i .
In addition to the constraint on the design variable, there are also two more constraints,

namely the Grashof’s condition and the sequence of input angles. These constraints can be
displayed as follows.

The Grashof’s condition allows the mechanism to have an entire ration link that is
connected with the frame (link 1); this condition is denoted by h1(X). If Grashof’s condition
is true, h1(X) = 0, in contrast h1(X) = 1. Mathematically, this constraint could be given as

s + l ≤ p + q (8)

in which, [s, l, p, q] ∈ [r1, r2, r3, r4]; s and l denote the shortest and longest lengths, respec-
tively; p and q are other lengths.

The constraint for the sequence of input angles is that the angle-position values of link
2 are in sequence; this condition is denoted by h2(X). If this condition of input angles is
true, h2(X) = 0, in contrast h2(X) = 1. Mathematically, this constraint is expressed as

θm
2 > θ

mod(m+1,Z)
2 > ... > θ

mod(m+Z,Z)
2 (9)

in which, θm
2 is equal to min{θn

2}; θn
2 is the value of θ2 in its nth position; Z is the number

of input angles and mod(n, m) is the remainder of the quotient of n/m.
These conditions need to be put into the objective function; thus, the objective function

in Equation (1) can be rewritten as

f (X) = Error(X) + ε1
[
h1(X) + h2(X)

]
, (10)

where ε1 is the penalty constant.

3. Optimization Algorithm
3.1. Differential Evolution Algorithm

In each generation of the DE algorithm, there are four main stages, which are initial-
ization, mutation, crossover, and selection [25].

• Initialization

For each optimization problem, NP is presentative of the number of individuals in
the population and its initial values are randomly selected in a predefined continuous
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search space. In which, each ith individual (i = 1, 2, . . . , NP) is a vector of design variables
denoted by D and is given by

Xg=0
i,j = Lj + randi,j[0, 1]

(
Hj − Lj

)
, j = 1, 2, . . . , D, (11)

where Lj and H present the lower and upper boundary vectors; NP denotes the number of
individuals in the population; D characterizes the number of design variables; rand[0, 1]
creates a random value within 0 and 1. The superscripts, i.e., (g = 0) and g show the initial
and current iterations, respectively. The ith individual vector with (g = 0, 1, . . . , gmax) can
be written as

Xg
i =

{
Xg

i,1, Xg
i,2, . . . , Xg

i,j, . . . , Xg
i,D

}
. (12)

• Mutation

After the first stage, to increase the variety of the entire population, a mutant vector
Vg

i is generated from the target vectors by using a mutation. The four most frequently used
mutation schemes are “DE/rand/1”, “DE/rand/2”, “DE/best/1”and “DE/best/2”. Two
former DE operators have a good ability in terms of the global search but their convergence
speed is slow. In contrast, two latter DE operators have a good local searching ability, yet
obtained solutions may be trapped into local optima [42]. These four DE/operators are
shown as

rand/1 : Vg
i = Xg

R1
+ F

(
Xg

R2
− Xg

R3

)
, (13a)

best/1 : Vg
i = Xg

best + F
(

Xg
R1
− Xg

R2

)
, (13b)

rand/2 : Vg
i = Xg

R1
+ F

(
Xg

R2
− Xg

R3

)
+ F

(
Xg

R4
− Xg

R5

)
, (13c)

best/2 : Vg
i = Xg

best + F
(

Xg
R1
− Xg

R2

)
+ F

(
Xg

R3
− Xg

R4

)
, (13d)

in which R1, R2, R3, R4 and R5 are differential numbers selected in [1, 2, 3, .., NP]; F is a
random number between 0 and 1, and Xg

best is the best individual vector in the current iter-
ation.

Owing to using such mutation schemes, the vector Vg
i might be violated at its lower

and higher bounds. Thus, for satisfying the boundary constraints, this vector is returned to
its search space by using the following formulas

Vg
i,j =


2Lj −Vg

i,j, if Vg
i,j < Lj,

2Hj −Vg
i,j, if Vg

i,j > Hj,

Vt
i,j, otherwise.

(14)

• Crossover

To obtain good optimal solutions, the crossover stage is performed. The ith trial vector
Ug

i =
{

Ug
i,1, Ug

i,2, . . . , Ug
i,j, . . . , Ug

i,d

}
is generated by mixing the target vector Xg

i and the

mutant vector Vg
i as follows

Ug
i,j =

{
Vg

i,j, if j = Rand or randi,j[0, 1] ≤ Cr,

Xg
i,j, otherwise,

(15)

in which Rand is a random number chosen in [1, NP], and the crossover value Cr is
randomly selected in [0.7, 1].

• Selection



Symmetry 2022, 14, 381 6 of 21

This stage compares the trial individual, Ug
i , with the target individual, Xg

i , and then
chooses the better ones for the next iteration based on their objective function values. This
strategy can be expressed as

Ug+1
i =

{
Ug

i , if f
(

Ug
i

)
≤ f

(
Xg

i

)
,

Xg
i , otherwise.

(16)

3.2. Jaya Algorithm

The Jaya algorithm can be found in [19]. There are three steps to solve the optimization
problem, which are: initial solutions, generating new solutions, and selection. The first
and last steps of the Jaya algorithm are similar to the DE algorithm. In the generating new
solutions, the best and worst solutions at g, denoted by Xg

best and Xg
worst, are created based

on the tendency of one moving closer to success or reaching the best solution and trying to
avoid failure or moving away from the worst solution [19]. Mathematically, this tendency
can be expressed as follows:

Vg
i = Xg

R1
+ rand[0, 1](Xg

best − |X
g
R3
|)− rand[0, 1](Xg

worst − |X
g
R3
|), (17)

where R1, R2, and R3 are differential numbers selected in [1, 2, 3, . . . , NP]; rand[0, 1] is a
random number between 0 and 1.

3.3. Hybrid Differential Evolution and Jaya Algorithm

This section presents a novel hybrid-combined differential evolution (DE) and Jaya
algorithm (HCDJ) for the kinematic dimension synthesis of four-bar mechanisms . Like
the classical DE and Jaya algorithms, the proposed-hybrid algorithm has four main stages,
which include: initialization, the hybrid-combined mutation, crossover, and selection.
The crossover in DE and HCDJ is the same, and the other stages in HCDJ have some
modifications, which are given in great detail as follows.

3.3.1. Modified Initialization

In the dimensional synthesis of four-bar mechanisms, the highly constrained objective
function depends on the constraints related to Grashof’s condition and the sequences of
input crank angles. Consequently, a random initialization stage might generate a small
number of individuals that satisfy these above mentioned-constraints. Hence, the poor
quality of the initial population might be generated. To tackle this problem, the refinement
of the initialization is proposed in [2,8]. In this refinement, the first four variables related to
the link lengths of the mechanism and crank angles of the input link are randomly chosen
in the given range. Regarding the lengths, if they are not satisfied with Grashof’s condition,
they are randomly generated until Grashof’s condition is true. For crank angles of the input
link, if the consequential condition is false, these angles are rearranged counter-clockwise
or clockwise. For example, in one problem, six input crank angles are needed and the vector
of these values is generated as follows: [θ1

2 , θ2
2 , θ3

2 , θ4
2 , θ5

2 , θ6
2 ] = [2π, π, π/4, π/2, π/5, π/6].

It shows that these crank angles violate the consequential condition. Thus this vector could
be rearranged as follows: [π/5, π/4, π/2, π, 2π, π/6] or [2π, π, π/2, π/4, π/5, π/6]. As
a result, the initial population can provide much more feasible solutions for finding the
optimal solutions. Concretely, this modified initialization is illustrated in Figure 2.
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Generating Xi

False

Grashof’s 
constraint

Regenerating Xi

True Consequence’s 
constraint

False

True

Rearranging q2 (CCW or CW)

Xi

Figure 2. The modified initialization in HCDJ.

3.3.2. Hybrid-Combined Mutation

This section presents the mutation of HCDJ to increase the solution accuracy in which a
hybrid-combined mutation strategy is proposed. In the proposed mutation, DE/best/1 and
DE/best/2, DE/current to best/1 and Jaya operator, DE/rand/1 and DE/rand/2 belong
to the first, second, and third groups of individuals, respectively. The first, second, and
third groups contain the first, middle, and remaining individuals, respectively. The ratios
of these groups in mutation are x%, y% and z% (with z% = 100%− x%− y%), respectively,
in which the total sum of them is 100%. In each group of mutation operators, to switch
between two operators, a constant value of sigma, called σ, is used. Concretely, if a random
value in the range of [0, 1], called rand(), is bigger than σ, a new location is updated by
using DE/best/1 or DE/current to best/1 or DE/rand/1; otherwise, it is updated by using
DE/rand/1 or Jaya operator or DE/rand/2, respectively. Thus, a perspective view of the
hybrid-combined mutation of HCDJ is provided in Figure 3, in which, a is a round number
of x%.NP, b is a round number of y%.NP; c is the total sum of a and b.

i [0;a] 

i,R1,R2,R3,R4

No

Yes

Rand > s  No Yes

Vi by DE/best/2 Vi by DE/best/1

i(a;a+b] Rand > s  

Vi by DE/current-to-best/1

Vi by Jaya operatorRand > s  
No Yes

Vi by DE/rand/2 Vi by DE/rand/1

i(c;NP] 

Yes

Yes

NoNo

Figure 3. The hybrid-combined mutation in HCDJ.

3.3.3. Elitist Selection

In the classical DE and Jaya algorithms, finding the next population is based on the
comparison of the cost function values of the old and new individuals. Even though the
worse individual is better than the others in the current population, some good individuals
may be neglected, and thus the convergence rate and the accuracy of the solutions are not
optimized yet so far. To improve this, an elitist selection [43] is used to choose the best
individuals for the next iteration. Hence, the process of the HCDJ algorithm is shown in
Figure 4.
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Start

Read input data

Modified initilization Xi

HCDJ Mutation

Crossover

 Elitist selection

Stopping 

criterion

Write output data

End

Yes

No

Figure 4. The HCDJ flowchart.

4. Numerical Examples

This section presents several examples in design kinematic dimensions of four-bar
mechanisms with symmetrical motions, which have been investigated in [2,4,7,8,44] by
using GA, DE, and PSO, respectively. Thus, results obtained by HCDJ are compared with
those of GA, DE, and PSO in such algorithms. The four-bar mechanisms with symmetrical
motions must satisfy the Grashof’s condition, as shown in Section 2 in order to make the
symmetrical motion of the mechanisms. In Cases 1 and 5, the problem is the path generation
without prescribed timing. In contrast, in Cases 2, 3, and 4, the problems are known by
the input of the coupler point. In this work, Jaya, DE, and HCDJ algorithms are applied
for finding the optimum solutions, as shown in Figure 1, and the optimal results of these
algorithms are compared with the other algorithms that have been used in the previous
studies. The population sizes (NP) in Cases 1 and 5 are equal to 100, and the population
sizes are equal to 50 in both Cases 2, 3, and 4. The maximum iterations in Cases 1, 4, and 5
are equal to 1000 and are equal to 100 in Cases 2 and 3. By investigations, the values of
ε1 in Equation (10) are chosen as 106 in Cases 1 and 5, 103 in Cases 2 and 3 and 104 in
Case 4. Since Jaya, DE, and HCDJ are random-optimization algorithms, each different run
provides different optimal solutions. To tackle this problem, DE, Jaya, and HCDJ used 50
independent times. Subsequently, the minimal errors of Jaya, DE, and HCDJ are provided
and compared with other algorithms in the literature. In addition, the standard deviation
and mean values of the minimal errors in 50 runs of Jaya, DE, and HCDJ are also reported.
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For validations of the obtained solutions, the synthesized mechanisms are illustrated in
GeoGebra classic 5.

4.1. Case 1

In this case, the input data of the coupler point are presented in [2,4,7]. The design vari-
ables’ vector, input path and boundaries for design parameters are respectively provided
in Equation (18) to Equation (20).

The design parameters are presented by a vector as follows:

X =
[
r1 r2 r3 r4 a b x02 y02 θ1 θ1

2 θ2
2 ... θ6

2
]
. (18)

The input data of the coupler pointer is given as follows:

Ci =

[
(20, 20); (20, 25); (20, 30);
(20, 35); (20, 40); (20, 45)

]
. (19)

The boundary conditions of the design parameters can be expressed as follows:

r1, r2, r3, r4 ∈
[
0, 60

]
; a, b, x02, y02 ∈

[
−60, 60

]
; θ1, θ1

2 , θ2
2 , θ3

2 , θ4
2 , θ5

2 , θ6
2 ∈

[
0, 2π

]
. (20)

4.1.1. Effects of the Parameters of F and σ in HCDJ on the Optimal Solutions

This section investigates the effects of the parameters of F and σ in HCDJ on the
optimal solutions. Firstly, the mutant factor (F) used in HCDJ is investigated by considering
the following five cases: 0.4, 0.5, 0.6, 0.7, and the range [0.7, 1]. In this examination,
the values of σ, x% and y% are equal to 0.3, 30% and 30%, respectively. Obtained results
are shown in Table 1. It can be seen that when F is equal to 0.7, the HCDJ algorithm yields
the best optimal solutions compared to other cases of F. Next, the seven different cases of
σ are investigated in which the values of F, x% and y% are equal to [0.7, 1], 30% and 30%,
respectively. Obtained results are shown in Table 2. It can be seen that when σ is equal
to 0.2, the HCDJ algorithm yields the best optimal solutions compared to other cases of σ.
From the obtained results in Tables 1 and 2, the suitable values of F and σ are set to 0.7 and
0.2, respectively, and are recommended for the HCDJ.

Table 1. Effects of the parameters of mutant factor F on the optimal solutions.

Mutant Factor (F) 0.4 0.5 0.6 0.7 0.7–1

Best 0.07695433 0.10400792 0.000154146 1.20 × 10−19 6.76 × 10−9

r1 45.87582 54.84049 51.12059 12.2555920 18.21862
r2 12.11600 14.10419 12.28880 2.0128211 8.97325
r3 37.42606 46.71333 32.62586 39.4665020 13.48372
r4 39.09108 36.70026 30.78353 29.2238260 21.96705
a 31.98852 41.49218 8.86192 −20.7556260 21.58954
b 4.75479 16.66319 52.47351 −37.5648490 7.80185
x02 29.597174 38.581491 59.116081 −20.904232 2.3876745
y02 2.0836604 −4.3644949 1.3369118 29.795821 46.424455
θ1 0.8441283 0.96808922 0.50624868 1.7806168 3.9588942
θ1

2 4.5375149 4.2886192 6.0495074 6.2564052 1.5083156
θ2

2 5.3345119 5.2128531 6.2491013 0.69846887 2.3068354
θ3

2 5.735772 5.5620331 0.15263921 1.3722591 2.8305475
θ4

2 6.0675517 5.8415786 0.34030181 2.0808477 3.3349026
θ5

2 0.12997377 6.103831 0.54174091 2.8112326 3.8315377
θ6

2 0.7069234 0.10575595 0.776431 3.6756295 0.23569772
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Table 2. Effects of the parameters of σ on the optimal solutions.

Sigma (σ) 0.2 0.3 0.4 0.5 0.6 0.7 0.7–1.0

Best 6.44 × 10−11 5.16 × 10−7 6.10 × 10−5 1.61 × 10−3 8.04 × 10−4 1.36 × 10−3 9.61 × 10−2

r1 6.454124 8.902184 51.03007 55.98162 56.07093 18.34878 41.153418
r2 4.247626 2.860693 6.886417 9.433685 9.696423 5.683074 15.047996
r3 35.66853 11.74068 18.9 35.82626 14.01636 39.66747 31.093173
r4 37.86445 6.550978 39.01872 55.88284 52.08595 44.77886 29.025764
a 9.921297 44.48886 −26.9677 36.44039 −6.46232 55.32052 21.266427
b −15.3695 0.222302 −38.3009 37.45101 18.08502 −28.5643 14.791038
x02 5.956732 −21.6466 59.95463 59.72303 29.49918 −36.5538 27.663117
y02 35.39474 42.21716 29.51548 1.256564 18.1272 46.72558 10.912645
θ1 5.107614 5.5287 4.744479 0.469354 5.815868 4.869602 0.72840409
θ1

2 1.1885 0.577693 1.15204 5.911371 0.530409 2.44282 5.262023
θ2

2 2.185696 1.699321 1.35547 6.232504 0.761861 2.874473 5.6355356
θ3

2 3.164171 2.399636 1.555896 0.216276 0.994329 3.272605 5.8961624
θ4

2 4.331262 3.02243 1.758188 0.47504 1.250005 3.660652 6.1145361
θ5

2 5.306879 3.603063 1.966733 0.758422 1.564631 4.057665 0.058349954
θ6

2 0.015795 4.251288 2.185992 1.135433 2.144167 4.489581 0.32377987

4.1.2. Effects of the Parameters of x% and y% in HCDJ on the Optimal Solutions

Next, the effects of the parameters of x% and y% in HCDJ on the optimal solutions
are studied. In this examination, the values of F and σ are set to 0.7, and 0.2, respectively.
The values of x% and y% used in HCDJ are investigated by considering 16 different cases.
The obtained results are shown in Tables 3 and 4. It can be seen that when x% and y% are
equal to 20% and 30%, the HCDJ algorithm yields best optimal solutions compared to other
cases of x% and y%. From the obtained results in Tables 3 and 4, the suitable values of x%
and y% are chosen as 20% and 30%, respectively, in HCDJ operators and are recommended
for the HCDJ.

Table 3. Effects of the parameters of x% and y% on the optimal solutions.

x% 10% 20% 10% 30% 20% 10% 40% 30%
y% 10% 10% 20% 10% 20% 30% 10% 20%

Best 3.91 × 10−28 1.26 × 10−28 1.09 × 10−5 5.15 × 10−16 1.60 × 10−6 6.87 × 10−16 5.18 × 10−24 4.67× 10−28

r1 24.836075 53.819222 59.990134 29.986241 39.678744 26.798566 31.90364 27.117518
r2 7.0254235 10.151379 9.0469478 8.8527129 11.043626 13.058193 14.177637 8.0864721
r3 23.830941 33.044744 42.071536 24.254956 33.750908 30.955844 38.498459 30.595952
r4 24.291336 30.925862 30.560764 37.460255 51.656635 20.100519 20.778983 15.464134
a 39.873429 21.955928 27.901291 35.107097 48.928319 43.908515 57.423517 55.288227
b 16.731031 33.985179 51.47438 4.1357288 3.6625348 21.205064 30.808235 39.50158
x02 −14.892824 42.579861 59.999655 −5.6369319 −16.597876 −14.293538 −28.922891 −38.544782
y02 55.070581 −0.24873838 −9.3328501 52.080728 59.858184 54.950423 59.999888 58.388173
θ1 4.2906588 0.64922531 0.77133588 3.9968142 4.0236654 4.4203068 4.5557802 4.6659105
θ1

2 1.65102 4.8303017 5.040377 2.1731417 2.4345948 5.929895 5.7252922 6.062974
θ2

2 2.3678046 5.7665232 5.7358987 2.7056893 2.825861 2.8287252 2.930339 2.6785003
θ3

2 2.897899 6.1322647 6.108357 3.1902928 3.1982302 3.18E+00 3.228627 3.0439695
θ4

2 3.4029953 0.18029565 0.16680844 3.6891147 3.5761384 3.5640285 3.5457339 3.4098621
θ5

2 3.9362564 0.55118656 0.55128744 4.2402232 3.9764453 3.995454 3.8992005 3.7980462
θ6

2 4.6676931 1.3028902 1.2772089 4.9851799 4.4261382 4.7556041 4.3901059 4.3010471

4.1.3. Comparison Performances of HCDJ with Other Available Methods in the Literature

Table 5 provides the optimal results obtained by HCDJ, and other approaches. It can
be seen that HCDJ gives the best optimal solutions in all algorithms, 8.84× 10−29 for HCDJ.
Additionally, Figure 5 shows the best path traced by the coupler in Case 1 by using HCDJ
and there is a very good traced path of the point C. Additionally, the convergence rates of
the HCDJ, DE, and Jaya are shown in Figure 6. The HCDJ reaches the optimal solutions
faster than the DE and the Jaya.



Symmetry 2022, 14, 381 11 of 21

Table 4. Effects of the parameters of x% and y% on the optimal solutions.

x% 25% 20% 10% 50% 40% 30% 20% 10%
y% 25% 30% 40% 10% 20% 30% 40% 50%

Best 7.41 × 10−24 8.84 × 10−29 3.10 × 10−5 4.08 × 10−20 2.33 × 10−6 1.77 × 10−28 8.08 × 10−8 3.31 × 10−24

r1 36.663429 14.201369 59.87156 22.952088 49.267118 27.0259 17.946774 17.180275
r2 9.2303679 8.0143127 11.268517 6.5882229 10.617582 10.054969 4.312293 8.2263098
r3 22.319996 16.309922 38.873302 26.439382 30.268652 30.260301 20.637774 20.881485
r4 42.520857 12.253871 32.295882 21.809868 59.842261 18.214837 12.222502 12.088439
a 29.339283 27.797721 24.443916 57.394819 39.252095 47.314415 55.484891 37.799731
b 5.4051762 11.305412 44.809713 18.957001 4.261466 28.561374 28.761501 17.900803
x02 0.40154499 −2.309531 51.854439 −33.086389 −6.7350053 −23.684977 −37.800797 −13.404186
y02 51.718045 45.695083 −8.2217234 57.009133 57.214806 56.814205 52.911313 48.657837
θ1 3.7793071 4.5172417 0.69260257 4.6608822 3.7675405 4.5147889 4.871693 4.6989581
θ1

2 2.0406231 6.2532447 5.6671392 1.8399122 2.4021966 6.0540795 1.253857 5.9481891
θ2

2 2.6369825 2.4038981 6.000184 2.3617136 2.86E+00 2.7399178 2.0984192 2.5477842
θ3

2 3.1435106 2.9362397 6.2831236 2.8021379 3.280675 3.1103903 2.6447287 2.9986464
θ4

2 3.6699251 3.4905751 0.2831384 3.2183377 3.7213306 3.4942181 3.128454 3.4596663
θ5

2 4.2730939 4.0650776 0.61402296 3.6367153 4.2144194 3.9154415 3.6002535 3.9454767
θ6

2 5.5053325 5.2095019 1.2131414 4.0977968 4.859791 4.5440765 4.1378877 4.6594827

Table 5. Optimal results of Case 1.

Design Cabrera [4] Cabrera [6] Ortiz [7] WY Lin [8] This Study

Variables GA MUMSA IOA s-at 30%–30%–40% DE Jaya HCDJ

r1 39.46629 31.78826 54.71582 45.95403 53.9345 27.33122 14.20136900
r2 8.56291 8.20465 18.73099 10.14134 11.72806 8.675739 8.01431270
r3 19.09486 24.93213 31.22310 36.11986 24.30051 58.2691 16.30992200
r4 47.83886 31.38593 42.22374 49.79056 59.70239 59.94451 12.25387100
a 13.38556 34.19372 −27.29874 51.49352 29.16371 −4.0256 27.79772100
b 12.21961 14.41567 31.65051 16.49573 5.564619 47.38173 11.30541200
x02 29.72250 −6.36652 43.07086 59.92519 3.088134 58.85711 −2.30953100
y02 23.45450 56.83676 27.41706 −0.26726 57.3939 32.75311 45.69508300
θ1 6.20163 4.01596 5.97746 0.86238 3.603526 6.280857 4.51724170
θ1

2 6.11937 1.36655 6.42411 4.49683 1.74656 5.829859 6.25324470
θ2

2 0.19304 2.33077 6.53496 3.94685 2.399606 6.038721 2.40389810
θ3

2 0.44083 2.87104 0.36230 3.51209 2.83412 6.213979 2.93623970
θ4

2 0.68467 3.39459 0.46906 3.11078 3.260462 0.093753 3.49057510
θ5

2 0.95835 3.97096 0.57765 2.71011 3.727497 0.255427 4.06507760
θ6

2 1.35533 4.96349 0.69047 2.26550 4.28393 0.425728 5.20950190
Best 0.036298225 0.0002057 0.00023712 4.07 × 10−12 0.00088 0.008574 8.84 × 10−29

Max - - - - 13.5226 437.5001 62.5000
Mean - - - - 0.7120 30.6096 2.8596
STD - - - - 2.6144 68.7252 9.5524

 

Figure 5. The best path traced by the coupler in Case 1 by using HCDJ.
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Figure 6. The convergence of objective values in Case 1 by using the DE, Jaya and HCDJ with a
logarithm scale for the Y-axis.

4.2. Case 2

In this case, path generation with a prescribed timing of four-bar mechanism is per-
formed, which is also investigated in [2], the inputs for the optimization problem are six
coupler points and these points belong to a semi-circular arc. Thus, the design variables’
vector is defined as follows:

X =
[
r1 r2 r3 r4 a b

]
. (21)

The six input coupler points are chosen as follows:
Ci =

[
(3, 3); (2.759, 3.363); (2.372, 3.663);

(1.890, 3.862); (1.355, 3.943)

]
,

θ1
2 , θ2

2 , θ3
2 , θ4

2 , θ5
2 =

[
π/6; π/4; π/3; 5π/12; π/2

]
.

(22)

The boundary conditions of the design parameters can be expressed as follows:

r1, r2, r3, r4 ∈
[
0, 50

]
; a, b ∈

[
−50, 50

]
. (23)

Table 6 shows the optimal solutions obtained by HCDJ and other algorithms. It can
see that HCDJ gives the best optimal solutions in all algorithms, 1.92392270× 10−6 for
HCDJ. Additionally, Figure 7 shows the best path traced by the coupler in Case 2 with using
HCDJ and there is a very good traced path of the coupler (point C in link 3). Furthermore,
the convergence speed of the HCDJ, DE, and Jaya are also illustrated in Figure 8. The HCDJ
algorithm reaches the optimal solutions much faster than the DE and the Jaya.



Symmetry 2022, 14, 381 13 of 21

Table 6. Optimal results of Case 2.

Design KK [44] Cabrera [4] Ortiz [7] This Study

Variables GA GA IOA s-at DE Jaya HCDJ

r1 3.509643 3.0630424 2.803607 14.49987 12.83291 4.29308120
r2 1.857606 1.9959624 1.99226 1.972381 2.031706 1.99783240
r3 4.725835 3.305823 3.030461 34.78773 39.75247 4.73740990
r4 3.518721 2.524706 2.474117 28.74995 36.2862 2.94173010
a 1.959538 1.645158 1.64413 2.362063 2.3363 1.70740510
b 1.558898 1.708959 1.714536 0.373688 −0.05985 1.64416960
Best 9.5264 × 10−4 4.08 × 10−6 4.27 × 10−6 9.57 × 10−4 9.68 × 10−4 1.92392270 × 10−6

Max - - - 0.5190 3.9253 0.4668
Mean - - - 0.1005 0.3506 0.0961
STD - - - 0.1486 0.6218 0.0910

 

Figure 7. The best path traced by the coupler in Case 2 by using HCDJ.

 

Figure 8. The convergence of objective values in Case 2 by using the DE, Jaya and HCDJ.

4.3. Case 3

For the third case, the coupler point traces a close loop path generation in which 18
coupler points are included and prescribed timing is required. This problem was first
presented in [44]. Thus, the vector of design variable is defined as follows:

X =
[
r1 r2 r3 r4 a b x02 y02 θ1 θ1

2
]
. (24)
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The 18 desired coupler points are chosen as follows:
Ci

d =

 (0.5, 1, 1); (0.4, 1.1); (0.3, 1.1); (0.2, 1.0); (0.1, 0.9); (0.05, 0.75);
(0.02, 0, 6); (0.0, 0.5); (0.0, 0.4); (0.03, 0.3); (0.1, 0.25); (0.15, 0.2);

(0.2, 0.3); (0.3, 0.4); (0.4, 0.5); (0.5, 0.7); (0.6, 0.9); (0.6, 1.0)

,

θ2
2 , θ3

2 , θ4
2 , θ5

2 , θ6
2 =

[
π/6; π/4; π/3; 5π/12; π/2

]
.

(25)

The boundary conditions of the design parameters can be expressed as follows:

r1, r2, r3, r4 ∈
[
0, 50

]
; a, b, x02, y02 ∈

[
−50, 50

]
; θ1 ∈

[
0, 2π

]
. (26)

Table 7 shows the optimal solutions obtained by HCDJ and other algorithms. It
can be seen that HCDJ gives the best optimal solutions in all algorithms, 0.016077817 for
HCDJ. Additionally, Figure 9 shows the best path traced by the coupler in Case 3 using
HCDJ, and there is a very good traced path of the coupler (point C in link 3). Furthermore,
the convergence speed of the HCDJ, DE, and Jaya are also illustrated in Figure 10. The HCDJ
reaches the optimal solutions much faster than the DE and the Jaya.

Table 7. Optimal results of Case 3.

Design KK [44] Cabrera [4] Ortiz [7] This Study

Variables GA GA IOA s-at DE Jaya HCDJ

r1 1.8796600 3.0578780 4.0404350 43.9060510 40.7943060 49.80088600
r2 0.2748530 0.2378030 0.2452160 0.3914995 0.2588295 0.28817159
r3 1.1802530 4.8289540 6.3829400 34.1729750 42.1511430 48.47613800
r4 2.1382090 2.0564560 2.6205320 38.8796410 5.3834310 1.63364200
a −0.8335920 0.7670380 1.1391060 13.5079350 11.6043990 −23.41281000
b −0.3787700 1.8508280 1.8661090 11.1797190 6.9199644 7.66448860
x02 1.1320620 1.7768080 1.8918050 −6.3236304 −11.4890630 −14.83615300
y02 0.6634330 −0.6419910 −0.7613390 16.9547380 7.3215994 20.14022300
θ1 4.3542240 1.0021680 1.1877510 3.3892883 5.1119994 2.52860910
θ1

2 2.5586250 0.2261860 0.0000000 4.1084598 2.8399163 5.06442240
Best 0.0430000 0.0337480 0.0349885 0.1059867 1.3193569 0.016077817
Max - - - 9.4391 83.1584 2.5112
Mean - - - 1.4682 17.293 0.3031
STD - - - 1.6327 16.0914 0.5407 

Figure 9. The best path traced by the coupler in Case 3 by using HCDJ.
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Figure 10. The convergence of objective values in Case 3 by using the DE, Jaya and HCDJ.

4.4. Case 4

In the Case 4, a path generation problem with prescribed timing is performed. Six
coupler points in a vertical straight line are used as inputs. Then, the vector of design
variables is given as follows

X =
[
r1 r2 r3 r4 a b x02 y02 θ1

]
. (27)

The 18 desired coupler points are selected as follows:
Ci =

[
(0, 0); (1.9098, 5.8779); (6.9098, 9.5106);
(13.09, 9.5106); (18.09, 5.8779); (20, 0)

]
,

θ1
2 , θ2

2 , θ3
2 , θ4

2 , θ5
2 , θ6

2 =
[
π/6; π/3; π/2; 2π/3; 5π/6, π

]
.

(28)

Lower and upper boundary for design variables is taken in an interval as the following
equation which is given as follows:

r1, r2, r3, r4 ∈
[
0, 50

]
; a, b, x02, y02 ∈

[
−50, 50

]
; θ1 ∈

[
0, 2π

]
. (29)

Table 8 shows the optimal solutions obtained by HCDJ and other algorithms. It can
be seen that HCDJ gives the best optimal solutions in all algorithms, 1.21621220 for HCDJ.
Additionally, Figure 11 shows the best path traced by the coupler in Case 4 using HCDJ
and there is a very good traced path of the coupler (point C in link 3). Furthermore,
the convergence speed of HCDJ, DE, and Jaya is also illustrated in Figure 12. The HCDJ
algorithm reaches the optimal solutions much faster than the DE and Jaya algorithms.
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Table 8. Optimal results of Case 4.

Design Cabrera [2] Ortiz [7] This Study

Variables PSO DE IOA DE Jaya HCDJ

r1 49.994859 50 49.968967 46.619505 47.5628 49.99998000
r2 5 5 4.785659 1.5729995 10.1759 1.34843150
r3 5.915643 5.905345 6.491026 1.5900729 26.5621 1.34845070
r4 49.994867 50 48.393942 46.603155 33.6611 50.00000000
a 18.925715 18.819312 16.444782 11.910771 49.8608 11.38443400
b 0 0 11.988091 4.0847137 34.6944 4.44243570
x02 14.472475 14.373772 12.046587 10.349552 49.1293 10.19475200
y02 −12.494409 −12.444295 −14.774897 −4.2274931 −46.173 −3.69413400
θ1 0.467287 0.463633 0.038678 6.28E+00 1.03722 6.21587990
Best 5.547239141 5.520687978 2.490688998 1.2900783 5.60164 1.21621220
Max - - - 14.0282 144.9284 442.1287
Mean - - - 7.4516 24.1544 26.0644
STD - - - 4.3290 24.7319 68.4167

 

Figure 11. The best path traced by the coupler in Case 4 by using HCDJ.

 

Figure 12. The convergence of objective values in Case 4 by using the DE, Jaya and HCDJ.
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4.5. Case 5

In the fifth case, an elliptical path generation problem without prescribed timing is
investigated. The path consists of 10 target points. The elliptical path with a major axis of
20 units and a minor one of 16 units is considered. The center’s coordinate is at (10, 10) and
the major axis is kept horizontal.

The vector of design variables is given as follows:

X =
[
r1 r2 r3 r4 a b x02 y02 θ1 θ1

2 θ2
2 ... θ10

2
]
. (30)

The desired coupler points are chosen as follows:

Ci =

 (20, 10); (17.66, 15.142); (11.736, 17.878);
(5, 16.928); (0.60307, 12.736); (0.60307, 7.2638),

(5, 3.0718), (11.736, 2.1215), (17.66, 4.8577), (20, 10)

. (31)

The boundary conditions of the design parameters can be expressed as follows:

r1, r2, r3, r4 ∈
[
5, 80

]
; a, b, x02, y02 ∈

[
−80, 80

]
; θ1, θ1

2 , θ2
2 , ..., θ10

2 ∈
[
0, 2π

]
. (32)

Table 9 shows the optimal solutions obtained by HCDJ and other algorithms. It
can be seen that HCDJ and DE in [8] give the best optimal solutions in all algorithms,
4.201438× 10−4 for HCDJ and 4.01992× 10−4 for DE [8]. Additionally, Figure 13 shows
the best path traced of the coupler in Case 5 using HCDJ, and there is a very good traced
path of the coupler (point C in link 3). Furthermore, the convergence speed of the HCDJ,
DE, and Jaya are also illustrated in Figure 14. The HCDJ algorithm reaches the optimal
solutions much faster than the DE and the Jaya algorithms.

Table 9. Optimal results of Case 5.

Design Cabrera [6] Ortiz [7] WY Lin [8] This Study

Variables MUMSA IOA s-at 10%–20%–70% DE Jaya HCDJ

r1 79.5160680 65.4287710 80.0000000 73.4494770 41.3002340 79.999856000
r2 9.7239730 8.0163870 8.0456620 8.3019102 9.2637486 8.123200800
r3 45.8425240 47.2216550 50.8190200 52.4311980 72.7938790 50.870344000
r4 51.4328480 44.1365600 42.2080100 35.0021110 42.8027070 42.360533000
a 8.2139220 −11.5708580 −10.6369700 −10.5394310 6.9607656 −10.853763000
b −2.9539575 −1.9049140 −2.2910900 4.5542557 1.2414044 0.091433127
x02 2.0211090 10.6354140 8.4948130 5.9241807 15.3054700 7.537903100
y02 13.2165878 −1.6754770 −0.7579678 −0.6075295 14.6833360 −0.522541410
θ1 5.5969445 3.8673300 3.8892100 4.3045025 3.1834274 4.012119500
θ1

2 0.6376873 2.4199310 2.4494370 2.0623267 3.1556054 2.342859900
θ2

2 1.3255329 3.1092670 3.1539690 2.7790775 3.8621079 3.053512700
θ3

2 2.0080339 3.8129500 3.8371140 3.4847400 4.6327586 3.741746400
θ4

2 2.6955659 4.5064400 4.5201710 4.1731807 5.3273744 4.425545700
θ5

2 3.3845794 5.1811390 5.2047990 4.8544466 6.0138412 5.108671600
θ6

2 4.0829376 5.8834200 5.8985360 5.5419381 0.4538612 5.798382900
θ7

2 4.7984548 0.2962630 0.3162040 6.2310760 1.0808289 0.212868930
θ8

2 5.5117057 0.9911530 1.0235550 0.6409663 1.7972805 0.916585540
θ9

2 6.2127919 1.7077870 1.7389920 1.3516693 2.4996946 1.630413500
θ10

2 0.6371866 2.4188650 2.4494370 2.0622545 3.1550369 2.342815200
Best 0.004766469 0.01909700 4.01992 × 10−4 0.002336965 0.48257144 4.201438 × 10−4

Max - - - 12.5292 828.1948 99.2594
Mean - - - 0.7305 138.4789 2.3325
STD - - - 2.0771 190.6784 14.0713
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Figure 13. The best path traced by the coupler in Case 5 by using HCDJ.

 

Figure 14. The convergence of objective values in Case 5 by using the DE, Jaya and HCDJ.

5. Discussion

The obtained results in five cases show that the optimal results of HCDJ are better
than those of other algorithms. Except in Case 5, the best error in [8] is slightly lighter
than those of HCDJ. In addition, the statistical results in terms of the maximum, mean,
and standard deviation of best errors in 50 runs are also reported. HCDJ and DE are more
stable than Jaya in all five cases. However, the statistical values of classical DE are smaller
than those of HCDJ in Cases 1, 4, and 5. In contrast, the performances of HCDJ, in terms
of statistical results, are better than those of DE in Cases 2 and 3. It should be noted that
the synthesis of the mechanism is an engineering problem, and the key objective is to find
the best and most optimal results. In addition, as stated by “No free lunch theorems for
optimization” in [45], no optimization algorithm is the best for all problems. Thus, HCDJ
outperforms other methods in the dimensional synthesis of the four-bar mechanism in
terms of optimal solutions.
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6. Conclusions

This study proposed a newly hybrid-combined algorithm, called HCDJ, as a combi-
nation of the classical DE and Jaya algorithms for the optimally dimensional design of
four-bar mechanisms with symmetrical motions. The combined algorithm has a good
global search to improve the optimal solution quality by using modified initialization,
a hybrid-combined mutation between the classical DE and Jaya algorithm, and the elitist
selection. The modified initialization generates initial individuals that are satisfied with
Grashof’s condition and consequential constraints. In the hybrid-combined mutation, three
different groups of mutations are combined. DE/best/1 and DE/best/2, DE/current to
best/1 and Jaya operator, and DE/rand/1, and DE/rand/2 belong to the first, second, and
third groups, respectively. In the second group, DE/current to best/1 is hybrid with the
Jaya operator. Additionally, in the selection stage, the best candidates are produced for the
next generation by using the elitist selection technique. Five numerical examples, including
two path generations with prescribed timing and three without prescribed timing, are
performed to find the optimal designs of the four-bar mechanisms. The obtained solutions
of HCDJ are compared with those of the original DE, Jaya, and other algorithms existing
in the literature. The optimal results using the HCDJ algorithm have indicated that it can
achieve better performances in terms of the solution accuracy than the original DE and Jaya,
even in many other algorithms. Accordingly, the proposed HCDJ algorithm is expected
to apply not only to symmetrical motion mechanisms, but also asymmetrical motions of
mechanisms and various engineering problems.
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