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In this paper a triangulation is introduced for homotopy methods to compute fixed points on
the unit simplex or in R". This triangulation allows for factors of incrementation of more than
two. The factor may be of any size and even different at each level. Also the starting point on
a new level may be any gridpoint of the last found completely labelled subsimplex on the last
level. So, the decision which new factor of incrementation and which starting point is used,
can be made on the ground of previous approximations. Doing so, the convergence rate can be
accelerated without using restart methods.

Key words: Triangulation; Homotopy Function; Fixed Point; Grid Refinement.

1. Introduction

To compute a fixed point of an upper semi-continuous point-to-set mapping i,
Eaves [1] and Eaves and Saigal [2] introduced a homotopy algorithm using a
triangulation of S" X [1,®) respectively R" X [0, ) with a continuous refinement
of the grid size. In their algorithms the mapping ¢ 1s deformed from a linear
function " on level f, to a piecewise linear approximation ¢* on level f,. For k
goes to infinity ¢* converges to the mapping ¢. The proposed triangulation of
S" X [1,) or R" X [0, %) 1s built up from triangulations between two successive
levels. As discussed by Todd [14] only triangulations with factors of in-
crementation of at most two are known. However, in restart algorithms (see e.g.
Merrill [10], Kuhn and MacKinnon [4], Van der Laan and Talman [5, 6, 8], and
Reiser [11]) any factor of incrementation can be used. In this paper we introduce
a triangulation of S”" X[1,%) and R" X [0, =), such that between any two suc-
cessive levels the factor of incrementation can be of any size. The algorithm
generates from S" ={1} a path of adjacent simplices. Let us assume that o,, is
the first simplex of the triangulation on level f,, generated by the algorithm. Then
the factor of incrementation k, to obtain the new level f,., can be chosen
arbitrarily. Moreover, the gridpoint on level f, ., connected with o, X {f,,} can be
any gridpoint v(o,,) of o,, X {f,.+1}. The choice of k,, and v(o,,) can be of course on
ground of the information obtained from the subsimplex o,, X {f..}. As soon as k,,
and v(o,,) are chosen, the triangulation of S" X [f,,, fm+1] OF R" X [fm, fm+1] 18 fixed
throughout the rest of the algorithm.
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In Section 2 we describe the triangulation for the unit simplex S". In Section 3
we give a concise description of the algorithm, whereas the replacement steps
are described in Section 4. In Section 5 we discuss the triangulation for R".
Finally, in Section 6 some concluding remarks are made.

2. Triangulation of S" X [1, x)

[Let S" be the n-dimensional unit simplex, 1.e.
St ={rxe RISl x =1}

The vertices of S" are e(i), i=1,...,n+1, where e(i) i1s the ith (n+1)-
dimensional unit vector. To triangulate S" x[1,%) we choose an arbitrary
sequence of increasing integers f, fi, ... such that f,., 1s a multiple k,, of f,, and
fo= 1. We will describe only the triangulation of S" X [f,, fn+1]. Combining then the
triangulations of S" X [f;, fi.,] for all pairs (f;, fix;) we obtain directly the trian-
gulation of S™ X [1, ). Let for h =0, 1, ..., G, be the standard triangulation of S"
with grid size f, (see Kuhn [3]), i.e. G, is the collection of n-simplices 7(v', y) with
vertices v', ..., 0" of S" such that

(i) v = (y1, ..., Yas1) 1s a permutation of the elements of I, ={1, ..., n + 1};

(ii) the components of v' are a multiple of f}':

(i) v'"*"'=v'+q(¥)Ifn, j=1,...,n
where g(j) is the jth column of the (n + 1) X (n + 1)-matrix Q defined by

Fi e e 17

g e 0

. |
Q: )

- 1.6

B e BT

Observe that each component of v/, j=1,...,n+1, 1s a multiple of f5' and that
o' = 0"+ g(v,.,)/fs Since any vertex of a simplex can be chosen to be v', each
simplex has n + 1 representations. However, in the following, it will be more
appropriate to represent an n-simplex of S” in a unique way. This will be done
as follows.

For a given gridpoint y let

a;i(y) = (1 —; y,-) fi: U=,

Clearly, every a;(y) is an integer. Now, define x(y) by

Y(y)=1+ (2 a;(y)) mod(n + 1).
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Because of the structure of a simplex, we have that x(w') # x(w’) for every
simplex a(w', ..., w"") if i#j. So, each simplex has a unque vertex w'i with
y(wiy=j, j=1,...,n+1. Then the representation r(v', v¥) is chosen such that
o' = wi. It is easy to see that v/’ = w', j=1,...,n+ 1. Note that any gridpoint y
has the same index y(y) in all simplices of which it is a vertex. In the following
we will assume that every n-simplex which is a simplex of the triangulation of S”
with grid size f,, h =0, 1, ..., is represented 1n this way.

To construct a triangulation of S" X [fm, fm+1] for given m, m=0,1, ..., let
a.(u', B) be a particular simplex of G, called the starting simplex on level f,,
represented as described in the previous paragraph. Let u(o,,) be a particular
eridpoint of the triangulation G,., in o, 1.e. there are unique nonnegative
integers AT, ..., Ay with sum equal to k,, such that

n+l1

ila)=2), Alullk,
i=1
where u'*'=u'+ q(B)lfm, i =1,..., n.
In the sequel we will call the vertex

n+l

v(t) =D, A"k,
i=1

the centrepoint of the simplex 7(v', y). The triangulation of S" X [f,, fm+1] will be
such that the (n + 1)-simplex which is the convex hull of 7 X {f,} and v(7) X
{f..1}, is a simplex of this triangulation. In particular the (n + 1)-simplex ¢,
which is the convex hull of the starting simplex o, on level f, and its
centrepoint u(o,,) on level f,.;, will be a simplex of this triangulation since
v(7) = u(o,) if r(v',y)=on(u',B). If m =0, o, = S" and G,, consits of only one
simplex. To triangulate S™ X [fm, fm+1] We first triangulate 7(v', y) X [fm, fm+1] for
an arbitrary n-simplex 7(v', y) of G,,, represented in the way as described above.
Then we will prove that the union of the triangulations over all n-simplices
r(v',y) is a triangulation of S" X [fm, fms+1]. To triangulate the set 7(v',y)X
[, fm+1], define for any proper subset T of I,., the set of gridpoints A™(T) of the
triangulation G,,+; in 7(v', y) by

A"(T)={yE1|y=0v()+Zner un@(ys)/fm+: for positive
integers ux, h € T}

Note that the grid points of 7 are partitioned in this way. In particular A"(@) =
v(7). A triangulation of 7 X [fm, fm+1] 1s obtained if all gridpoints x in A"(7) on
level f,..; are connected with the vertices v’ on level f,, iZ T (cf. Van der Laan
and Talman [5] and Todd [14]). So, v(7) on level f,., is connected with all the

vertices of 7 on level f,.

Theorem 2.1. The union of the triangulations of t(v',y)X [fm, fm+1] over all
simplices T(v', v) of G, triangulates S" X [fm, fm+1]-
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Before proving this theorem, we will illustrate it in Fig. 1 for n =2; f, = 4;
fr=16; A°=(1,1,2); A'=(2,1,1). In Fig. 1a the triangulation G, of S" is given.
The centre point of oy=S* is u = u(oy) = (3,3,2). The gridpoints of G, in the
region A(T) are connected with e(i), iZ T. Let o,(u', B) where u'=(,1. 1) and
B = (1,3, 2) be the starting simplex of G,. Then

n+l

u(o)) = 21 /\}Hf = (1?6, E, %)-

¢(3)
A(1.2)
A(2)
0
/< 5 A1)
A(2.3) v
A1 3)
A(3) 01

e(1) ¢(2)

Fig. la. n=2,f,=4,A°=(1,1,2), u(oy) =¢, 1, 1.

e(1) @

Fig. 1b. n=2, =16, A'=@2, 1, 1), ai="ai(u', B) withu'=G.59 and. B =(1,3,2), u=u(c):

= p(1) where 7=7(v',y) with v'=(0,3,3) and y=(2,3,1), A"=A"(1,2) and A” = A?(l,2). The
vertices of (G, are drawn heavily. The gridpoints of G, within or on the boundary of a region
surrounded by heavy lines are connected with the point of G, in the middle.
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Let 7=17(v',y) be the simplex with v'=(0,3,3) and y=(2,3,1). So v(r)=
(. 2. %). In Fig. 1b the triangulation G, is pictured. The gridpoints of G, in the
regions A7(T) are connected with the vertices v', iZ T, of 7. Observe that in the
adjacent simplex p the region A” = A®(l,2) is adjoining to the region A™ =
A7(1,2) on a consistent way since the vertex v?= (3,3, 3) is a common vertex of 7

and p.

Proof of Theorem 2.1. It 1s sufficient to show that if two simplices of G,,, say T,
and 7,, are adjacent, the union of the subdivisions of 7, X[f,, fm+:1] and 7, X
[fms fm+1] triangulates (7, U 73) X [fm, fm+1]. Therefore we will prove that if in the
subdivision of 7, X [f., fm+1] @ gridpoint x of G,,+; In 7N 7> 1S connected with a
vertex y of G,, in 7N 75, then x 1s also connected with y in the subdivision of
72 X [fm, fm+1]. Note that since 7,(v', y¥) and m2(w', §) are adjacent there is a unique
j such that v' =w', i#j and y;=§;, i#j— 1, j where, as in the remaining of the
proof, j—1=n+1 1f j=1. Moreover 6,-.;,=1vy, and 6; = vy;,-;. So all common
vertices of 7, and 7> have the same index.

Therefore we only have to prove, that x € A™(T) implies x € A™(T) for a

gridpoint x of G,,;, in the common facet of 7, and 7,. For such a gridpoint there
are unique integers 6, i# jJ— 1, ] such that

x= ot 21 0.9 (Vi) fms1 (2.1)
1#)—1,)

with, as in the remaining of the proof, v'*'=0v'if j=n+1. If x€ A™(T) there

also exist unique positive integers w,, with w, =0 for h& T, such that

n+l

x=uv(r)+ h§=jl wng (Vi) fms: 2.2)

or

X = /\hmvh/km+/-Lj—IQ(Yj—l)/me+#jQ(7f)/fm+1 - 2 #hQ(’}’h)/me

= 2 A {v“‘ + ZI q(¥s) fm +h§_‘,i q(v.q)/fm}/km

h=1 s=]+1

n+l h—1
+ : AF {vf“ + Z q(‘yg)/fm}/km + wi-19(Yj-DIfm+1

h=j+ s=j+]

+ wi @Y fmir + 2, 1w (Y fmsi

h#j—1,)

_ it 4 (hﬁ] A )( S a(v)fmsr ) + h : AT QY frs:

s=j+1 =] s=

n+l

|—2 h—1
+A:—"q(y;-.)/fm+l+zA;"q(m/fmw S S irail

h=j+1 s=j+]

+“f—lQ(7f—l)/fm+l+#f (_E Q(Ys)) fm+l+ E f-"hq('}'h)/fm-i-l-

s#] h#j—1,j
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Taking together the coefficients of g(vy,), h# j— 1, j, we obtain

x ="+ z BLQ()’h)/fmﬂ"‘()\fn"‘ﬂj—l_I-L;')Q('}’f—l)/fmﬂ

h#]—1,)

for unique integers 0, h#j—1,].
From formula (2.1) we obtain 6,=6,, h#j—1,J, and

Aj = 1= =0, (2.3)

Moreover from (2.2) it follows that

X = Z ARV km + ATV + (i) fm ) km + -1 (Yj-1)fm+

h#)

+FLIQ(71')/fm+I+ E /‘th(yh)/fm*“.l'

h#j—1,)

Hence, since w' =v', i#j, §;_, = v; and §; = y;_,, we obtain

x =D, Arwilky + AT(W + q(8)) fm) km + AT Q(8i-) fm+

h#|

T A}HQ(SI—])/fm+] e l-Lj—IQ(aj)/me + FLjQ(Sj—I)/me

T3 2 “hQ(Sh )/fm+l-

h=j—1,)

From formula (2.3) it follows that u;— A" =g, and wi-;+A7 =pu;. Con-
sequently,

n+|l

x = w(r)+ Z whq(8,) fm+1 for the same w, as in (2.2).
h=1

This implies that x € A™(T) which proves the theorem.
From the proof of Theorem 2.1 we obtain the following corollary.

Corollary 2.2. If a gridpoint x of G,,., belongs to two adjacent simplices t,(v', y)
and m(w', 8) of G,, and

x=v(n)+ E ;.th(n)/fml,

heT

then for the same

X= W(TZ)_I— E #hq(ah)/fm+l*

heT

This important fact will be often used i1n the replacement steps of the
algorithm.
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3. The algorithm

[et us assume we want to compute a fixed point of a continuous function g
from S” into itself. Each point x € S" is labelled by an integer label /(x) with
l(x)=1i if 1= minyj | x; — gi(x) = x, — gu(x) for all h, and x; > 0}. Note that this
labelling rule is proper, i.e. [(x) # i if x; =0. A completely labelled n-simplex, 1.e.
a simplex whose vertices are differently labelled, yields a good approximation
of a fixed point. The accuracy of this approximation becomes better according as
the grid becomes finer. A vertex (x, f,) of S" X{f,} receives the label /(x). For
some given integer f, =2 the algorithm starts with the simplex ¢, being the
convex hull of the vertices of S" X {f,} and an arbitrary gridpoint v of S" X {f}},
e.g. v is the gridpoint nearest to the barycenter of S" X {f;}. S" X fo, fi| 1s now
triangulated as described in the previous section with o= S" and v being its
centrepoint u(o,). Note that S" x {f,} is a completely labelled facet of ¢,, i.e. all
its vertices are differently labelled. The algorithm proceeds now along a path of
adjacent simplices with completely labelled common facets starting from ¢,.
Clearly, since the labelling is proper, the algorithm must find within a finite
number of iterations a simplex with a completely labelled facet of S" X {f,}, say
o(u', B). Note that the intersection of the path of adjacent simplices with
S" x {f,} is the path of adjacent faces generated by Van der Laan and Talman’s
algorithm [4]. Now, we choose an integer k, (=2) and triangulate S" X [f,, f»] as
described in the previous section with o as the starting simplex and an arbitrary
eridpoint u = Alu'lk, of G, in o, as its centrepoint u(o,). The algorithm
continues the path of adjacent simplices with completely labelled common facets
by computing [(v(o;)). When again a completely labelled simplex of S" X {f} 1s
found, the algorithm proceeds the path in the triangulation of S" X [fo, fi], until
again a completely labelled simplex, say 7(v', y), in §" X{f,} is found. Then the
algorithm continues as above in S" X [f}, fo] by computing [(v(7)), where v(7) =
> Alo'lk, is the centrepoint of 7.

Within a finite number of steps a completely labelled simplex of S" X {f,} will
be found since the number of simplices in S" X [fo, fi] and S" X [f,, f>] 1s finite
and replacement steps are unique and feasible, the latter because of the proper
labelling. Now again a factor of incrementation can be chosen as well as a
centrepoint and the algorithm continues by computing its label etc. The al-
gorithm can be terminated if a fine enough grid is reached. Clearly, within a finite
number of iterations the algorithm finds a completely labelled simplex of this
orid.

Using vector labelling the algorithm starts from the same simplex ¢, with the
system of n + 1 linear equations Iy = e by computing [(v(oy), f1) where [(x, f,) =
x—g(x)+e, m=1 and [(x, fo)) = x, and where e=(1,1,...,1) (see [9]). To com-
pute a fixed point of an mapping ¢, we define for m=1, I(x,f,)=x—g"(x)+ e
where g™ is a linear approximation to ¢ with respect to G,. The algorithm
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proceeds with alternating pivot and replacement steps and converges using
analogous arguments.

4. The replacement steps

Let ¢ be a simplex of S, X [fn., fm+1] generated by the algorithm such that there
are a simplex 7(u', B) of S™ x{f,,} with

n+l

u(t)= D, AMu’
1=1
as its centrepoint, a subset T of t elements of I,,;, a permutation 7' =
(71, ..., m) of the elements of 7, and a nonnegative integer vector R =

(R,, ..., R,.,) with the following conditions:

(1) The intersection of ¢ and G,, is the convex hull of the n + 1 —t vertices u'
of 7(u', B) with B;& T. This set of vertices u' is called the set of active vertices
of 7, whereas the others are called 1nactive.

(2) The intersection of ¢ and G,.., is the face a(v°, 7") with vertices v’, ..., v
in 7 such that

[

n+l

UO — H(’T) s ; RjQ(j)/anI

and
Uf= Uiﬁl‘f'Q(’m‘)/mes ] = 11 , L.

(3) R, =0 for all j& T.

[t is easy to see that these conditions are fulfilled for the simplex ¢,, which 1s
the convex hull of o,, X{f.} and its centrepoint v(o,,) on f..;. In particular the
conditions are satisfied for the simplex with which the algorithm starts, viz. the
convex hull of S" x{f,} and its centrepoint v(o,) on f;. Now any replacement
step can be described by adapting the simplex r(u', B) of S" X{f.}, the subset T,
the permutation 7' and the vector R. As described in the previous section two
facets of ¢ are completely labelled. So only two vertices have the same label
and one of them is the last vertex generated by the algorithm. Then the other
must be replaced.

Now two cases can occur,

Case A: the vertex to be replaced is an active vertex of 7(u', B) say u";

Case B: the vertex to be replaced 1s a vertex of a(v’, ..., v"), say vh.

Case A: u" is the only active vertex of 7. Then a 1s a completely labelled
simplex of S" on level f,..,. The simplex 7(u', B) is set equal to the completely
labelled simplex a(v° ..., v"""), in the way as described in Section 2, R 1s set
equal to zero and T becomes the empty set. The algorithm continues by
computing the label of
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n+l

u(t)= ), A"’
=

the centrepoint of 7(u', B), where the A"*', i=1,...,n+1 can be chosen
arbitrarily if this level 1s reached for the first time.

u is not the only active vertex of . Two cases can occur, either A] =0 and
B.&T or not (if ipb=1, then iy,—1=n+1). In the latter case D —
v + q(Bi) fm+ 1s a gridpoint of G+, In 7, as follows from the proof of Theorem
2.1. Then T is set equal to T U{B;}, i.e. u® becomes an inactive vertex of , 7'
becomes (my, ..., m, Bi), whereas the simplex 7 and the vector R do not change.
Now conditions (1)—(3) are satisfied and [(v'*") is computed.

In the other case v'+ q(B;)/fm+1 1s a gridpoint of G, not in 7, and 7 1s
adapted according to Table 1 by replacing u*. Then the conditions (1)-(3) are
satisfied for the new ¢ with the same R, T and ='. It follows immediately from
Corollary 2.2 that the new simplex ¢ is indeed a simplex of the triangulation
adjacent to the previous one. Now the label of the new vertex of 7 1s computed.

Case B: If t >0 three cases can happen:

Case B[: j{] =0,
Case B>: 1=sj,=t—1,
Case B3: jg = [.

In Case B, either B8,.,& T and Rz +1=A], where r is the index such that
mi=B (r—-1=n+1if r=1), or not. In the latter case we adapt #' and R
according to Table 2 for s =0 and we continue the algorithm by computing the
label of the new vertex of «a.

In the other case v'+ g(m)/fm+1 1s not a grid-point of G, In 7. Now 7,
becomes B,-;, Rz and R; , are interchanged, T becomes T U {B,-1}/{B:}, and the
simplex r(u', B) is adapted according to Table 1 by replacing the inactive vertex
u". The algorithm continues by computing the label of the new vertex v’ of a.

In Case B, either m, =8, (r—1=n+11f r=1)and R — Rg_, = A7, where r
is the index such that =, = 3,, or not. In the latter case = and R are adapted
according to Table 2 for s = j, and the algorithm continues by computing the
label of the new vertex of «.

In the other case v* '+ q(m;+1)/fm+1 1S not a gridpoint of G+ in 7. Now
r(u', B) is adapted according to Table 1 by replacing u’, " according to Table 2
for s = jo, and Rs and R, | are interchanged. Then the label of the new vertex of
a 1S computed.

In Case B;if R, =1, 7' and R are adapted according to Table 2 and [(v°) is
computed. Otherwise, v must be replaced by an inactive vertex of r(u', B8), viz.

Table 1

i 1s the index of the vector which must be replaced
u' becomes B becomes

i= 1 un+I+Q(BI)/fm Bn+l= BE!*“*BH& ﬁl

2<i<n+1 u' B 51 Bi=25 Bis Bilisi BisisessiBr+1
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Table 2
s is the index of the vertex which has to be replaced
! becomes R becomes
A) :0 (Tr:! ---11Th Trl) R+E(ﬂl)
i=is:<it—1 CITAy oens s =1 Ts 15 Ts; TTs+:~----7Tr) R
(771, T ysi005 M=) R — e(m,)

s =1

 — —m— — —— e

the vertex u” where r is the index with B, = m. Then T becomes T/{m}, ="
becomes (7, ..., m_;) and the algorithm continues by computing /(«"). From the
proof of Theorem 2.1 and Corollary 2.2 it follows that all these replacement
steps indeed generate an (n + 1)-simplex of the triangulation adjacent to the

previous simplex.
The only thing to be treated is the case that t =0, i.e. T =@, and v° has to be

removed. Note that v’ must be the centrepoint of 7(u', 8) and that 7 is a
completely labelled subsimplex of S" X {f,}. Now the algorithm continues with
generating simplices of S" X [f,._1, fm]. Therefore we have to compute both the
simplex o(w', ¥) of S" X {f._} such that all vertices of r(u', B) are gridpoints of
G, in o(w', ¥), and the vertex of o(w', y), say w*, which is connected with all

vertices of 7. To do so, we choose arbitrarily an interior point of 7(u', B), say x,
and we calculate for h=m —1, a;(x), i =1, ..., n as described in Section 2.
et & be the entier of a;(x),i=1,...,n and let w' be the grid point of S" such

that

ﬁ"l = €(])+2 &,Q(l)/fm_]

Since x is an interior point of 7(u', B), a;(x)— &; is different for all i. Now let 7y
be the permutation of the elements of I, such that a,(x)—a, > a,(x) —a, >

= (X)—a,. and v..,=n+1. Then r(w', ¥) is the simplex on level fm |
Containing x. Hence, o(w', v) is the simplex 7(w', y) represented in the way
described in Section 2. It is left to find w. It can easily be seen that

u'=w(o)+ i 0.q()fm with 6; = 2‘ (wi(o) — ui),
j=1 =

where w(o) 1s the centrepoint of o(w', y). Define z = min;-, .+ 6 where 0,
is set equal to zero, and let 6, = 6, — z. Since X7 q(i) =0, we obtain

n+l

u'=w(o)+ Z:I 0,4 () fm-
From
i—1
u'=u'+ El qQ(B)fm
<

it follows that

n+l

u'=w(o)+ D, 0iq)lfm, i=1,...,n+1,
j=i
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where 6= 6, + 1 if there exists an index h €{1,...,i— 1} such that B, = j, and
where i =8, if not. Let H(u') be the set {j|6i=0}. Clearly |[H(u")=1,
H(u"")| <1 and |H(u')|—|[H@'™")|=0 or 1 for i=1,...,n. So there exists an
index j such that [H(u’)|=1. Let H(«') ={B;}. Then w" is the desired vertex of
a(w', vy), where iy is the index such that B; = y,. The conditions (1)-(3) are now
again  satisfied for - T=Lu\Bi), 7" =(Bisisee s Basts Bisose s Bi=t)s + Ri=
9io*' — min, 80*', for i=1,...,n+1, and 7(u', B) is set equal to o(w', ¥). The

algorithm then continues by computing [(u").

All these cases together give a formal description of the replacement steps.
Because of the proper labelling, all replacement steps are feasible.

5. The application on R" X [0, =)

To triangulate R" X[0,%) 1n an appropriate way, we choose a sequence
fo, f1, ..., such that f,., 1s a multiple k,, of f,, m=1, f,>0, and fo=0. On level
fm, R™ 1s triangulated with grid size f,,, m =1, 1.e. the simplices on level f,, are
r(v', v) with vertices v', ..., v""', where vy is a permutation of the elements of
.., such that v'=>",ap(i)/f., Wwhere «; is an integer, i=1,...,n, v’ =
v + p(¥)fm, i=1,...,n and such that v!' ="'+ p(v,41)/fm, With p(i) the ith
column of an n X(n + 1) triangulation matrix P. For instance, if p(i) = e(i),
i=1,....n, p(n+1)=—e, the K-triangulation 1s obtained, and if p(i, )=
n+Vn+1, piin+D)=—1+Vn+1), i=1,...,n+1 and p(i,j)=—1 other-
wise, we have the optimal triangulation of R" according to the SC measure
within the class of the so-called (a, B) triangulations (see Van der Laan and
Talman [7]). Note that the zero-point 1s a grid point. Again, as on S”", each
simplex on level f,, has n + 1 representations. The procedure of Section 2 then
represents each simplex in a unique way if for a given gridpoint y the n-vector
a(y) is defined by a(y)=f,P 'y where P is the n X n-matrix consisting of the
first n columns of P.

[t 1s sufficient to describe only the triangulation of R" X [f., fm+1] fOr some
m =1 and that of R" X [0, f,]. Combining then these triangulations for all pairs
[fi, fis1]l, i =0, we obtain immediately the triangulation of R" X [0, ). The trian-
gulation of R" X [fm, fm+1] for some m =1 i1s done in the same way as described
in Section 2 for S™ X [fm, fm+1]. So, let o,,(u', B) be the starting simplex on level
fn, and let wu(on) =" A"u'lk, be its centrepoint for arbitrarily chosen

m ...,A™, such that ¥ A" =k, To subdivide each simplex =(v',y)X
[f... f.+1] represented in the correct way, we define again the regions A"(T), with T a
proper subset of I,,;, and connect all grid points x on level f,.; in region A™(T)
with the vertices v' of 7 on level f,, for iZ T. Combining the triangulations of
7 X [fm, fms1] Over all simplices 7, we get a consistent triangulation of R"™ X

[frm fm+l]-
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Finally, we have to triangulate R" X [0, f,]. Let v be an arbitrarily chosen
gridpoint on level f,. Let oy(u', ..., u""") be the simplex with vertices u'=
v—p(), 1=1,...,n+ 1. Instead of triangulating R" X [0, f;], we will actually
triangulate (oo X{0}) U (R" X (0, f,]). We define the set of grid points A% T) on
level f, forany TC I,,,, by

AT)={x ER" | x = v+ Xher unq(h)lf,
for positive integers w,, h € T},

Observe that these regions partition all gridpoints on level f,, whereas the above
defined regions A"(T) partition only the gridpoints in 7. By connecting all
gridpoints in A% T) on level f, with the vertices u‘ of o, on level zero for i&Z T,
(oo X {0}) U(R" X (0, f,]) is triangulated. Let us assume we want to compute a
fixed point of a function f from R" to R". The n + 1 vertices of o are artificially
labelled by [(u') = e(i) in case of vector labelling, and by [(4') =i in case of
integer labelling, 1.e. oy 1s a completely labelled facet. A point x on level f,, is
labelled by the n+1 vector [(x) where [[(x)=f(x)—x.+1, i=1,...,n, and
[,.1(x) =1, 1n case of vector labelling. In case of integer labelling /(x) =i with
i = min{j ] gi(x)—x; = g(x)—x, for all h} if g(x)—x=0, and I(x)=n+1
otherwise. If we have a mapping ¢, g 1s a linear approximation to . In that case
integer labelling 1s not appropriate. Conditions to guarantee the existence of a
fixed point are given in [9, 10, 14]. The algorithm now starts with the simplex
being the convex hull of o, on level f, and the point v on level f, by computing
[(v), and proceeds along a path of adjacent simplices with completely labelled
common facets. The intersection of the path of simplices of (o, X% {0}) U
(R" X (0, fi]) with R" x{f,} 1s exactly the path of simplices generated by the
algorithm described by Van der Laan and Talman [6]. The above used inter-
pretation of their algorithm with n + 1 artificially labelled points can be found in
Todd [15]). To implement the algorithm on the computer the artificially labelled
points can be deleted as described in [6]. As soon as a completely labelled
simplex on level f, 1s found, this simplex will be the starting simplex o, on level
fi. The k, and A!'s are fixed and the algorithm continues with simplices in
R" X [f,). All replacement steps in R" X[f;,©) are the same as those for
S" X [1, ).

It 1s left to consider the case that again a completely labelled simplex, say
T(v', y), on level f, is found, i.e. that the algorithm must proceed with simplices
In (oo X {0}) U (R" X (0, f,]). Formally, we have to determine the unique vertex of
oo which is connected with all vertices of 7. If u% is that vertex, determined
analogously as in Section 4, T becomes I, ~{i}, = becomes
(Yig+1s -+ » Yn+1s Y1s --- » Yio-1) Where vy, = ip, and R becomes as described at the end
of Section 4. Of course the simplex on level f, becomes o,. Equivalently the
algorithm 1s continued as described in [6], until again a completely labelled
simplex on level f, 1s found.
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6. Conclusions

In the algorithm of Eaves [1] and Eaves and Saigal [2] the factor of in-
crementation must always be equal to two. So, their algorithm can not be used to
obtain quadratic convergence. Therefore, Saigal [12] and Saigal and Todd [13]
developed an acceleration technique, using a restart method in a homotopy
algorithm, to achieve quadratic convergence when the underlying function i1s
continuously differentiable and 1ts derivative satisfies a Lipschitz condition. In
the homotopy method using the triangulation introduced in this paper any factor
of incrementation between two successive levels can be chosen, which allows to
obtain quadratic convergence without the necessity of making restarts.

Moreover, 1n our method a starting point on a new level can be chosen on the
ground of information obtained earlier. For integer labelling one could choose
the gridpoint nearest (lexicographically) to the barycenter of the completely
labelled simplex on the current level and in case of vector labelling a gridpoint
close to the approximation of the fixed point. Concerning the grid size and the
centrepoint on levels visited earlier it 1s sufficient to keep in storage only the
numbers A", i=1,...,n+ 1. The numbers determine the grid size f,,., as well as
the starting point u(o,) on level f,., completely. Computational experience
must show the usefulness of the technique developed in this paper. Two issues
for study are to decide how information can be best used and secondly the
dependence on the underlying triangulation of S" or R". In T", the affine hull of
S", the triangulation introduced by Van der Laan and Talman [7] seems to be a
good one, which can also be implemented on S” by projecting points outside S”
on the boundary.
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