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A new substitution matrix for protein sequence searches based on 
contact frequencies in protein structures 

Sanzo Miyazawa and Robert L.Jernigan1 

Gunma University, Faculty of Technology , Kiryu, Gunma 376, Japan and 
1National Cancer Institute , National Institutes of Health, Bethesda, MD 

20892, USA 

The instabilities of the native structures of mutant proteins 
with an amino acid exchange are estimated by using the 
contact energy and the number of contacts for each type of 

amino acid pair, which were estimated from 18 192 
residue - residue contacts observed in 42 crystals of globular 
proteins. They were then used to evaluate a transition 
probability matrix of codon substitutions and a log relatedness 
odds matrix, which is used as a scoring matrix to measure 
the similarity between protein sequences. To consider amino 
acid substitutions in homologous proteins, base mutation rates 
and the effects of the genetic code are also taken into 

account. The average fitness of an amino acid exchange is 
approximated to be proportional to the structural stability 
of the mutant protein, which is then approximated by the 
average energy change of the protein native structure expected 
for the amino acid exchange with neglect of the energy change 
of the denatured state. In global and local homology searches, 
this scoring matrix tends to yield significantly higher align­
ment scores than either the unitary matrix or the genetic code 

matrix, and also may yield higher alignment scores for 
distantly related protein pairs than MDM78. One of 
advantages of this scoring matrix is that the equilibrium 
frequencies of codons and also base mutation rates can be 
adjusted. 
Key words: contact energies/contact frequencies/homology 
search/sequence comparison/substitution matrix 

Introduction 

The relationship between protein sequence and structure has been 

difficult to comprehend. In a protein, the high density of inter­

actions makes it difficult to evaluate, on a local sequence 
fragment, the atomic interactions that prevail in the total structure. 
However, we have shown that pairwise interactions between 
mean points in residues can serve usefully to evaluate the overall 
quality of protein folds. Here we focus on a smaller problem, 
but use the same approach to investigate the utility of such pair­
wise interactions to assess the substitutions of amino acids . 

It is well known that the tertiary structures of proteins are well 

conserved in the evolutionary process of the proteins. This is 
because the function of a protein must be conserved during protein 
evolution. The function of a protein is closely related to a region 
of the 3-D structure of the protein. A particular tertiary structure 

is essential for a protein to play its function. Therefore, amino 
acid mutations that make native structures unstable are generally 
deleterious for a host organism, are therefore eliminated from 

and are not established within a population. This is a selection 
that works at the level of protein structure. As a result, the family 

of sequences of related functions should be informative about 
the ranges of viable substitutions. 

The stability of protein tertiary structures is significantly 

affected by amino acid substitutions in the primary sequences. 
The effects of amino acid replacements depend on the type of 
the replacements. On average, the stability of tertiary structures 

is less affected by substitutions among amino acids with similar 

physico-chemical properties than by others. Dayhoff et al. , (1%8, 
1972, 1978) compiled accumulated amino acid substitution 
matrices from amino acid substitutions observed in closely related 
protein sequences and then evaluated mutation probability 
matrices that correspond to a transition probability matrix for 

amino acid substitutions in protein evolution. Based on those data, 
Dayhoff et al. (1968, 1972, 1978) pointed out that amino acid 

substitutions in the evolutionary process of homologous proteins 
often occur among similar amino acids. This observation must 
be interpreted by considering the effects of the genetic code, 

which may favor mutations between similar amino acids, the 
effect of unequal base mutation rates for transversion and 
transition, and selections at the DNA level. However, it is clear 
that the results analyzed by Dayhoff et al. (1968, 1972, 1978) 

reflect a selection at the level of protein. 

In this paper we estimate the average degree of destabilization 

of a protein structure caused by an amino acid exchange, which 
approximately represents the average fitness of the amino acid 

exchange. The degree of instability of protein native structures 
caused by amino acid substitutions can be measured by evaluating 
the change of interaction energies in protein structures. In a 

statistical sense, each type of amino acid is found at a particular 
location in the three dimensional structure of proteins; non-polar 

residues are more often found in the non-polar environment of 

the protein core and polar residues on the protein surface. 
Residues surrounding an amino acid in protein structures are 
specific to the type of amino acid. We consider a typical or 
average protein which satisfies statistical features observed in a 

large set of protein structures, and evaluate the average energy 
increment caused by an amino acid exchange in such an average 
protein. On average, the degree of instability of protein structures 

caused by an amino acid exchange is equal to the Boltzmann fac­

tor of the average energy increment. 
In our previous study (Miyazawa and Jernigan, 1985) we 

estimated effective inter-residue contact energies for proteins in 
solution from the numbers of residue -residue contacts observed 
in crystal structures of globular proteins by means of a quasi­
chemical approximation with an approximate treatment of the 
effects of chain connectivity. This empirical energy function 

includes solvent effects, and can provide a crude estimate of the 
long-range component of conformational energies. By using the 

amino acid contact energy and the number of contacts for each 
type of amino acid pair, we evaluate the average energy increment 
of the native structure and then the degree of the instability of 

the native structure caused by an amino acid exchange. An energy 
increase results from unfavorable interactions between a sub­
stituent and surrounding residues whose distribution corresponds 

to that of the original residues. Those estimates of instabilities 
caused by exchanging each of the 20 kinds of amino acids for 

any other can be regarded as a selection for each type of amino 
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acid exchange. Thus , a transition probability matrix for codon 

substitutions is derived from those estimates of instabilities caused 

by amino acid exchanges with a simple assumption about the rule 

of base mutation. This transition matrix reflects the base muta­

tion rates, and includes the effects of the genetic code and conser­

vation against amino acid exchanges. 

Because the transition probability matrix for amino acid 

substitutions describes the likelihood of amino acid substitutions, 

it can be used to measure similarities between amino acid 

sequences. Schwartz and Dayhoff (1978) showed by using their 

mutation probability matrix that the log relatedness odds matrix 

of 250 PAM, which is calculated from the transition matrix of 

250 PAM (accepted mutations per 100 residues) and represents 

the preference of amino acid matches and mismatches relative 

to random matches and mismatches, is useful in detecting distant 

relationships between amino acid sequences. There are several 

scoring matrices that have been devised for sequence comparison. 

The simplest one is the unitary matrix that scores only identical 

amino acids. Another one, which is called the genetic code 

matrix, uses the minimum number of base changes needed for 

an amino acid substitution as the basis of weighting. Feng et al. 

(1985) devised a simple matrix called a structure-genetic matrix, 

taking account of the structural similarities of amino acids and 

the genetic code. A method that we present in this paper is similar 

to the method of Feng et al. ( 1985) in the sense that the physico­

chemical similarities of amino acids and the genetic code are taken 

into account, but the method used for constructing a scoring 

matrix is similar to the method of Dayhoff et al. (1978). 

However, the similarities among amino acids are more 

systematically evaluated in the present model than in Feng et al. 

(1985). The scoring matrix calculated by the present method is 

compared with these other scoring matrices described above in 

the detection of distantly related protein sequences. 

Materials and methods 

Mutation process 

We assume that the substitution process of codons in protein 

coding regions of DNA can be approximated as a temporally 

homogeneous Markov chain. In other words, the transition 

probability matrix of codon substitutions, S, at time tis assumed 

to be represented by 

dS!dt = RS (I) 

with a solution 

S(t) = exp (Rt) (2) 

where 

'ERafJ = 0 (3) 

(3 

R is a substitution rate matrix of codons; RafJ is the substitution 

rate of an a type of codon by (3. Substitutions between termina­

tion codons and amino acid codons are not considered in the 

present analysis. It may be reasonable to assume that the detailed 

balance theorem is satisfied at equilibrium in such a substitution 

process. That is, we assume that 

faRa{J=f{JR{Ja (4) 

where fc, is the equilibrium frequency of the a type of codons. 

Thus, S(t) can be represented by 

S(t) = E ( v'aµ, exp (r,,, t ) v,,,fJ ) <ftJ I fa ) 'h (5) 

µ 

where r,,, is an eigenvalue and v,,, is a left eigenvector for a real 
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symmetric matrix, RafJ (fa I ftJ ) Y', that is, 

L, Vµ,a ( Ra{J (fa I f{J )'h J = r,,,v,,,{J 

a 
(6) 

r,,, has zero or a negative value and v,,,a is a real unitary matrix. 

The substitution rate matrix R may be separated into two factors, 

one of which represents selection at the level of protein structure 

and another term for other mechanisms: 

RafJ = Pa{J MafJ for a -:F (3 (7a) 

Raa = - L, Ra{J (7b) 

(3-

-:F a 

where PafJ is the fitness for a substitution of codon a by codon 

(3. MafJ includes all other effects of selection and mutation at the 

DNA level for both transcription and translation. Here it should 

be noted that substitutions of the first, second and third bases 

in triplet codons may depend on each other, because selections 

at transcription and translation levels are included in MafJ· 

Transforming MafJ into 

MafJ = marf°fJ 

equation (4) is equivalent to 

PafJ mafJ = PfJamfJa 

As a result, equation (7a) becomes 

RafJ = Pa{J matfffJ for a* (3 

(8) 

(9) 

(IO) 

Evaluation of substitution rate based on protein selection; PafJ 

The fitness of a specific mutant of protein over its wild type could 

depend on how intact the function of the protein is. The functions 

of proteins are closely related to their native structures, that is, 

their 3-D structures. Thus, one may say that the fitness of a 

mutant protein is determined by the stability of that structure. 

Of course, there are specific amino acid substitutions that do not 

much affect the overall protein structure but can significantly 

decrease its function. Substitutions at active sites and on the 

surfaces that interact with other proteins are such substitutions. 

However, those substitutions must destabilize the protein - protein 

or substrate-enzyme interactions, so that the mutant proteins 

cannot retain their full functions. 

The stabilities of tertiary structures of proteins and 

protein -protein interactions are significantly affected by amino 

acid substitutions in their primary structures. Probably the vast 

majority of amino acid substitutions destabilize protein native 

structures, and therefore are deleterious and consequently 

eliminated from the population. The effects of amino acid sub­

stitutions on protein structures depend on the type of amino acid 

substitutions. Those substitutions between amino acids whose 

physico-chemical properties are most similar to each other are 

likely to have the smallest effects on protein structures. The 

degree of instability of protein native structures caused by amino 

acid substitutions can be measured by evaluating the change of 

interaction energies in protein structures. However, because the 

stability of protein structures depends on both the native state 

and denatured state, we must evaluate the effects of the amino 

acid substitutions not only on the native structure but also on the 

denatured state. 

Here, however, we would consider amino acid substitutions 

in protein evolution rather than amino acid replacements in protein 

engineering. In protein evolution which necessarily corresponds 

to a large time scale, it is considered that most mutations are 

deleterious and amino acid substitutions observed in protein 

evolution are almost neutral (Kimura, 1968) in natural selection. 



Therefore , in the mutation data matrices compiled by Dayhoff 

et al. (I968, 1972, 1978) amino acid substitutions found in 

homologous proteins are to be regarded as both directions of 

replacement to be permitted. This condition corresponds to 

detailed balance at equilibrium. In other words, the amino acid 

substitution process in protein evolution is assumed to be 

completely at equilibrium. To treat such amino acid substitutions 

in protein evolution, we consider a case in which amino acids 

in a protein are exchanged. In this case, the amino acid 

composition is unchanged and the change in the denatured state 

can be neglected in the present approximation, and so we can 

discuss the stability of protein structures by considering the effects 

of substitutions only on the native structure. 

Let us assume that 2/l.f:ij ( = ll.f:ij + ll.f:j;) represents the 

average energy increment of the native structure, which is 

measured relative to the denatured state, caused by exchanging 

the i and} types of residues in a protein. The extent of destabiliza­

tion of the native state caused by the amino acid exchange is 

proportional to the Boltzmann factor of this energy increment. 

We approximate the average fitness of an amino acid exchange 

as the degree of the instability of the native state of the mutant 

protein. In other words, the fitness, Pcxf3 • for an exchange of 

codon ex and codon (3 is represented as follows. 

Pcx{3 = exp ( - ll.f:;(cx)j({3) I kl) (I I) 

= Pf3cx 

where i(ex) means the i type of amino acid whose codon is ex, 
k is the Boltzmann's constant, and Tis absolute temperature. 

Evaluation of the instability of protein native structures by an 
amino acid exchange 

In our previous study (Miyazawa and Jernigan, 1985) we 

derived pair-wise hydrophobicities from the numbers of 

residue - residue contacts observed in crystal structures of 

globular proteins by means of the quasi-chemical approximation 

with an approximate treatment of the effects of chain connect­

ivity. A basic assumption is that the average characteristics of 

residue - residue contacts formed in a large number of protein 

crystal structures reflect actual differences of interactions among 

residues , as if there were no significant contribution from the 

specific amino acid sequence in each protein, as well as ignoring 

intraresidue and short-range interactions. In employing a lattice 

model, each residue of a protein is assumed to occupy a site in 

a lattice and vacant sites are regarded as being occupied by an 

effective solvent molecule whose size is equal to the average size 

of a residue . Account is then taken of the effects of the chain 

connectivity only insofar as it imposes a limit to the size of the 

system, that is , the number of lattice sites; the system was 

regarded to be the mixture of unconnected residues and effect­

ive solvent molecules. For example, in the denatured state, the 

connectivity restricts the possible number of equivalent solvent 

molecules that have contact with the protein. The quasi-chemical 

approximation, in which contact pair formation is regarded as 

a chemical reaction, is applied to this system to obtain equilibrium 

constants based on average numbers of contacts; and contact 

energies are directly obtained from these equilibrium constants. 

Representing each residue by the center of its side chain atom 

position, contacts among residues were defined to be those within 

6.5 A. Continuing the use of the symbols in that previous study, 

eij represents the contact energy between i and j types of 

residues , N; is the number of the i type of residues, and N;; and 

2N u ( = Nu + ~;) are the number of contacts between two 

residues of the i type and that between the i and the j types of 

residue, respectively. N; and Nu were compiled from 42 crystal 
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structures of globular proteins including 30 monomeric proteins. 

The total number of residue-residue contacts, N,, (= E Nij), 

was I8 I92 and the total number of residues , N,, was 9040. 

These contact energies were proven to discriminate successfully 

between native-like conformations and incorrectly folded confor­

mations. In a study of five small proteins (Covell and Jernigan, 

I990), lattice points were fitted to Ccx positions and these points 

used for generations of large numbers of diverse conformations, 

as reflected by the occurrences of almost all non-native contact 

pairs. Contact energies from Miyazawa and Jernigan (I985) were 

used to calculate average contact energies between all residue 

pairs. Native contact pairs then proved to be highly favored . Also, 

the native conformation was always found among the best 2 % 
of the thousands of conformations when they were ranked by 

their total contact energies . Ranking by hydrophobicity alone 

proved to be substantially less successful, with the rank of the 

native form determined to be only better than the I2 % level. 

These residue-residue contact energies can clearly play a useful 

role in screening conformations prior to more detailed atomic 

conformational calculations. 

We proposed a simple, empirical method, based on effective 

inter-residue contact energies for proteins in water and taking 

account of contact energy changes in both native and denatured 

states , to estimate the change of unfolding Gibbs free energy 

caused by single amino acid replacements (S.Miyazawa and 

R.L.Jernigan, manuscript in preparation). In this method only 

a factor caused by the change of amino acid composition is taken 

into account to estimate the contact energy change by an amino 

acid replacement in the denatured state. The stability changes 

caused by single amino acid substitutions in the tryptophan 

synthase ex subunit and bacteriophage T4 lysozyme, which were 

analyzed by Yutani et al. (I987) and Matsumura et al. (1988) 

respectively , are estimated by this simple, empirical method. The 

estimates of the unfolding Gibbs free energy changes correlate 

well with their observed values not only for hydrophobic amino 

acids but also when the aromatic and charged residues are 

included in the correlation analysis . In the case of tryptophan 

synthase ex subunit, the changes of hydrophobic energy estimated 

by Yutani et al. (I987) were not large enough to explain the 

changes of unfolding Gibbs free energy. By contrast, our method 

yields the same magnitude of energy as the observed values in 

both the cases. 

The average energy increment, 21l.f:u, of the native structure, 

which is measured relative to the denatured state, caused by 

exchanging i and} type residues in a protein, can be approximated 

in terms of the contact energies as follows. 

ll.f:ij = ll.f:jj 

N;kl N; represents the distribution of k type of residues surround­

ing an i type of residue; that is, it represents the mean field of 

residues surrounding a specific type of amino acid in the native 

structure of a protein. So, the left hand side of equation (I2) 

represents the average energy increment for an amino acid 

exchange between the i and} types of amino acids . In equation 

(I2) the change in the free energy of the denatured state is simply 

neglected. This assumption would be reasonable if the local 

sequence effects in the denatured state are not large, especially 

because the amino acid composition itself does not change. For 

more details of this formulation, please refer to Miyazawa and 

Jernigan (I985), especially their equation (4a). Note that all the 
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Table I. Average energy increments (~Eij) for an amino acid exchange. These values of energy are represented in kT units. This table is calculated from 

equation (12), with the numbers of residue-residue contacts and amino acid contact energies that were compiled and evaluated from 42 crystal structures of 

globular proteins by Miyazawa and Jernigan (1985); the total number of residue-residue contacts is 18 192.25, and the total number of residues is 9040 

Cys Met Phe Ile Leu Val Trp Tyr Ala Gly Thr Ser Gln Asn Glu Asp His Arg Lys Pro 

0.82 0.50 0 .74 0.61 0.59 0.51 0 .78 1.22 1.65 1. 79 2.10 2.51 2. 63 3.26 2.96 1.26 2.39 4.50 2.39 Cy• 
Cys 1.02 0.17 0.19 0.18 0.29 0.27 0.99 1. 64 2.52 2.51 3.02 3.44 3.62 3. 98 4.11 1. 99 3.29 5. 63 3.43 Met 

Met -0.29 0.97 0.09 0.07 0.19 0.22 0.99 1. 64 2.57 2.53 3.01 3.58 3.69 4.13 4.24 1. 91 3.30 5.66 3.49 Ph• 
Phe 0.39 0.35 0 .61 0.05 0.14 0.25 1.04 1.48 2.40 2.40 2.88 3.44 3. 64 4.02 4.12 2.00 3.25 5.47 3.36 Ile 
Ile -0.13 0.67 0.45 0.75 0.08 0.21 0.84 1.24 2.11 2.10 2.54 3.05 3.22 3.53 3.66 1. 71 2.93 4 .99 2. 94 Leu 
Leu -0.02 0.50 0.48 0.48 o. 61 0.14 0.54 o. 77 1.49 1. 48 1.85 2.26 2.46 2.76 2.86 1.19 2.17 3.96 2.15 Val 
Val -0.19 0.41 0.36 0.41 0.41 0.54 0.40 1.01 1. 60 1.54 2.00 2.37 2.49 2.85 2.91 1.19 2.19 4.26 2.30 Trp 
Trp 0.82 0.04 0.25 -0.23 0.13 -0.17 1.42 o. 36 0.56 0.48 0.73 0.91 0.96 1.17 1.20 0.27 0.85 2.23 0.88 Tyr 
Tyr 0.40 -0 .56 0.14 -0.35 -0.27 -0.39 o.oo 0.84 0.19 0.20 0.28 0. 49 0.61 0.81 0.80 0.32 0.58 1. 36 0. 43 Ala 
Ala -0.51 -0.47 -0.47 -0.45 -0.45 -0.06 -0.51-0.34 0.34 0.04 0.08 0.19 0.25 0.49 0.35 0.31 0.29 o. 91 0.19 Gly 
Gly -0.18 -0.61 -0.52 -0.58 -0.56 -0.15 -0.15-0. 35 0.19 0.43 0.06 0.15 0.19 0.34 0.28 0.24 0.25 0.82 0.14 Thr 
Thr -0.62 -0.61 -0.75 -0.59 -0.77 -0.44 -o. 70-0. 27 0.18 -0.09 0.45 0.08 0.10 0.25 0.20 0.32 0.20 0.50 0.07 Ser 
Sar -0.20 -0.75 -0.53 -0.68 -0.70 -0.44 -o. 29 -o. 04 0.16 o.oo 0.28 0.48 0.06 0.13 0.10 0.41 0.23 0.47 0.09 Gln 
Gln -0.74 -0.97 -0.85 -0.95 -0.74 -0.68 -o. 83 -0.02 -0.16 -0.14 -0.07 -0.20 0.48 0.15 0.10 0.41 0.19 0.37 0.08 Aon 
Asn -0.46 -0.97 -o. 71 -0.83 -0.90 -0.69 -0.79 0.12 -0.16 -0.11 0.11 -0.02 0.20 0.38 0.08 0.67 0.52 0.55 0.25 Glu 
Glu -0.64 -0.87 -0.81 -0 .86 -0.80 -0.42 -o. 66 -0.11 0.03 0.13 -0.09 -0.19 0.25 0.19 0.36 0. 64 0.43 0.53 0.18 Asp 
Asp -0.41 -0.90 -0.62 -0 .78 -0.75 -0.39 -0.64 0.09 0.04 0.15 -0.10 -0.14 0.16 0.20 0.32 0.36 0.29 1.24 0. 43 His 
His -0.29 -0.86 -0.43 -0.69 -0.50 -0.59 -0.70 0.35 -0.21 -0.19 -0.13 -0.15 0.37 0.21 0.13 0.18 0.54 0.50 0.20 Arg 
Arg -0.35 -0.83 -0.79 -0.82 -0.74 -0.54 -0.26-0 .31 -0.08 0.20 0.00 0.05 0.15 0.01 -0.02 -0.06 0.11 0. 65 0. 46 Lya 
Lye -0. 81 -1. 03 -1.03 -1.01 -1.06 -0.79 -0.92-0 .12 -0.20 -0.16 0.09 -0.14 0.30 0.38 0.25 0.16 0.14 0.04 0.49 Pro 
Pro -0.65 -0.82 -0.76 -0.78 -0.67 -0.47 -o. 71-0.20 0.17 -0.14 0.25 0.24 0.15 -0.12 -0.13 -0.15 0.14 0.14 -0.14 0.56 

Cys Met Phe Ile Leu Val Trp Tyr Ala Gly Thr Ser Gln Asn Glu Asp His Arg Lys Pro 

Table II. A log relatedness odds matrix (lower triangle) corresponding to 250 PAM for the present model with selection (BSPSM); 250 PAM corresponds to 

384.5 base substitutions, 91.5% base difference and 79.8% amino acid difference in this model 

Af.ij have positive values, because the contact energies e;j were 
evaluated from the numbers of contacts Nij by assuming that the 
residue contacts observed in proteins are at their optimum. 

Evaluation of the rate of base substitutions; maf3 

From equation (9) and (11), Paf3 is symmetric, so maf3 must be 

symmetric; 

maf3 = m13a 

In the following, we consider the simplest case: 

maf3 m 

= 0 

for single base substitutions 

for others 

(13) 

(14) 

Equilibrium frequencies of amino acids and codons are 

characteristic to a protein. However, equilibrium frequencies of 

amino acids are taken here to be equal to the amino acid 
frequencies compiled and used by Dayhoff et al. (1978) to 

evaluate a mutation probability matrix, so that we can compare 
our result directly with their mutation data matrix. Codon 

frequencies are not known in their analysis because only protein 

sequences were utilized to collect amino acid substitutions. We 
assume here that each of the degenerate codons is equally used, 

even though it is often not true. We are interested only in 
statistical properties of amino acid substitutions, so that this 

assumption may not pose a problem. 

The equilibrium frequencies of amino acids and the transition 
probability matrix of amino acid substitutions are calculated from 
those for codons as follows: 

f; (15) 

(16) 

where oa; is the Kronecker delta function and is l if the codon 
a corresponds to the amino acid i, and otherwise 0. 
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Fig. I. The percentage difference between two sequences is plotted against 
the number of accepted amino acid substitutions (PAM). The solid line 

shows the amino acid substitution process correspo;iding to the mutation 

probability matrix compiled by Dayhoff et al. (1978) and the dotted line is 

for the present model with selection and the broken line for the present 

model without selection. 

Results 

Average energy increments of protein native structures by amino 

acid exchanges 

Table I shows the average energy increments, Af.ij, of the native 
structure caused by an amino acid exchange in a protein. This 
table displays the expected characteristics of similarities of amino 

acids. The most remarkable observation is the large separation 

between hydrophobic and hydrophilic residues. We may divide 
residues into three groups: a group consisting mainly of 

hydrophobic residues: Cys, Met, Phe, Ile, Leu, Val and Trp; 

a group whose member may replace both hydrophobic and 
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Fig. 2. Comparison of diagonal elements (S;;) of the transition probability matrix corresponding to I PAM. The ordinate is for the mutation probability matrix 

compiled by Dayhoff et al. (1978), and the abscissa is for the present model with selection in (a) and without selection in (b). 

hydrophilic residues: Tyr, Ala and His; and a group consisting 

mainly of hydrophilic residues: Gly, Thr, Ser, Gin, Asn, Glu, 

Asp, Arg, Lys and Pro. Tyr has hydrophilic characteristics as 
well as hydrophobic ones, probably because of the presence of 

a polar atom in its side chain. His can relatively easily replace 
Trp and Tyr, indicating the aromatic characteristics of His. 

Negatively charged residues, Glu and Asp, seem to be largely 

interchangeable. On the other hand, the characteristics of 

positively charged residues, Arg and Lys, are not so clear in Table 
I. Lys is a residue that is very unlikely to be replaced by 

hydrophobic residues. Replacement of Cys tends to lead to 

relatively large energy increments, probably because of essential 
Cys-Cys contacts. However, the table clearly shows the 

hydrophobic or buried characteristics of Cys. Also, values 
generally reflect the greater specificity of hydrophilic residues 

compared to hydrophobic ones, as we remarked earlier. 

A transition probability matrix of amino acid substitutions 

The transition probability matrix of codon substitutions is 

calculated at several time points, and the percentage difference 

of two amino acid sequences is calculated for each transition 
matrix. Figure 1 shows the substitution process of each of the 
mutation probability matrices (MDM78) evaluated from 1572 

amino acid substitutions tabulated from closely related sequences 

by Dayhoff et al. (1978), the present model with the fitness of 
equation (11) for amino acid substitutions, and the present model 

with equal fitness for any amino acid substitution, that is, Paf3 

= 1. The PAM unit is used as a time scale in Figure 1; one 
PAM is defined as one accepted amino acid mutation per 100 

residues of protein according to the original definition. In the 

model with equal fitness for any amino acid substitution, base 

substitutions occur randomly and amino acids are substituted 
according to the genetic code. Clearly, MDM78 is more similar 

to the present model with selection than without selection, but 

the substitution process of MDM78 approaches equilibrium 

slightly more rapidly than the present model with selection. This 
indicates that the selection against amino acid substitutions is 

slightly more conservative in the present model than in MDM78. 

The same result is found from a comparison of the log relatedness 
odds matrix described in the next section. 

In order to compare two models with each other in detail, the 

diagonal elements, S;;, of the transition probability matrix of 

amino acid substitutions are plotted against the equivalent values 
of the MDM78 in Figure 2. Figure 2(a) shows the present model 
with selection and Figure 2(b) the case of no selection. The 
correlation coefficient between the first two quantities is 0.69, 
and this correlation is better than that in the case of no selection, 

where the correla<ion coefficient is 0.59. This relatively low 
correlation originates substantially from the amino acids Ser and 

Phe. If these two amino acids are removed from the figure, the 
correlation coefficient becomes 0.84 in the case of selection and 

0. 73 in the case of no selection; if only Ser is excluded, those 
correlations become 0.78 and 0.71 , respectively. The mutability 
of Ser is significantly larger in MDM78 than in the present model, 
and Phe in MDM78 is less than that in the present model; the 
mutability of an amino acid is defined as the probability of 
replacing an amino acid by any other amino acid, that is, 

(1 - S;;). Figure 2(b) indicates that the small mutability of Ser 

in the present model appears to be an effect of the genetic code. 

Log relatedness odds matrix 

The elements, S(t)a13 , of the transition probability matrix of 

codon substitutions give the probability that codon a is changed 
to {3 at time t. On the other hand, the codon {3 will occur with 

the probability j 13 in the second sequence by chance. Therefore, 

the log relatedness odds matrix, which was first defined and used 
by Dayhoff et al. (1978), 

O(t)af3 = log (S(t)c.13 I f13) (17) 

= O(t) 13" 

represents the significance of the substitution between codons a 

and {3. Codon pairs with scores above zero replace each other 
more often as alternatives in related sequences than in random 
sequences of the same amino acid composition, whereas those 

with scores below zero replace each other less often. This matrix 

may be used to evaluate the likelihood of amino acid substitutions 
between very distantly related sequences, and to detect 
evolutionary relationships between sequences. Schwartz and 

Dayhoff (1978) found that the log relatedness odds matrix 
corresponding to 250 PAM is especially appropriate for such a 
purpose. 

Each element of the log relatedness odds matrix (BSPSM) at 
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Fig. 3. Comparison of the log relatedness odds matrix corresponding to 250 PAM . The ordinate shows the values of the log relatedness odds matrix 

(MDM78) compiled by Dayhoff et al. (1978) and the abscissa shows those of the present model with selection (BSPSM). In (a) only diagonal elements are 

plotted. Off-diagonal elements are plotted in (b) and (c). In (b) the 70 amino acid pairs including Trp, Met , Cys and Tyr are excluded, and these others are 

plotted in (c) . The solid lines in these figures are the regression lines of the ordinate on the abscissa; the regression lines are y = -0.18 + l.25x in 

(a) , y = 0.002 + 0.39x in (b) and y = -0.23 + 0.15x in (c) . The correlation coefficients are 0.89, 0.82 and 0.24 respectively . 

250 PAM in the present model with selection is given in Table 
II, and is plotted against that of MDM78 in Figure 3. In the 
figure, (a) shows those diagonal elements, (b) off-diagonal 

elements excluding Trp, Cys, Tyr and Met, and (c) the other 
70 off-diagonal elements of those amino acids. The correlation 
between MDM78 and the present model is good for both the 
diagonal elements and the off-diagonal elements excluding Trp, 
Met, Cys and Tyr, but it is extremely poor for all the other off­

diagonal elements; the correlation coefficients are 0.89, 0.82 and 
0.24 in this order for Figure 3(a,b and c). In Figure 4 we plot 

the values off; (1 - S(lPAM);;), which represent the proportion 
of each type of amino acid substitution out of the total sub­
stitutions. It is clear that the substitutions of Trp, Met, Cys and 

Tyr are rare, because of low frequencies and low mutabilities 
of those amino acids. Thus, the accumulated mutation matrix 
compiled from closely related sequences of Dayhoff et al. (1978) 
probably includes larger errors for these amino acids than for 
others. Statistically, low frequencies of those amino acids also 

introduce relatively large errors into the estimates of contact 

energies and average energy increments of amino acid exchange. 
These may be reasons for the poor correlation shown in Figure 
3(c) . 

In comparison with the log relatedness odds matrices of 
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MDM78, the matrix of the present model with selection is similar 

to that of MDM78 but indicates that amino acid substitutions in 
this model are more conservative than in the MDM78. 

Use of the log relatedness odds matrix as a scoring matrix for 
homology search 

There are several weighting schemes which have been devised 
for detecting similarities in comparisons between sequences. 
These methods all compare an amino acid in one sequence with 
a corresponding amino acid in another sequence, and assign a 

score for their similarity or difference. Consecutive segments of 

amino acid pairs with significantly high similarity scores are then 

designated as homologous alignments. The simplest scoring 
matrix is the unit matrix (UM), where only identical amino acids 
are scored. Another method uses the minimum number of bases 

changed as a basis for weighting. It assigns 3 for identical amino 
acid pairs, 2 for amino acid pairs that need at least a single base 
substitution to be converted to each other, 1 for amino acid pairs 

that need at least two base substitutions and 0 for amino acid 

pairs that need three base substitutions; we refer to this as the 
genetic code matrix (GCM). One of the most popular scoring 

matrices is the mutation data matrix (MDM) that was devised 

from accepted point mutations observed in closely related 

, 
i 
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Fig. 4. Comparison off; (1 - S(l PAM);;), which is proportional to the 

number of substitutions of the i type of amino acids. The ordinate shows the 

values for the mutation probability matrix compiled by Dayhoff et al. (1978) 

and the abscissa values for the present model with selection. 

Table III. Comparison of scoring matrices 

(a) Lower triangle for correlations between off-diagonal elements of the 

scoring matrices and upper triangle for diagonal elements 
MDM78 AAAM SGM GCM BSM BSPSM 

MDM78 0.84 0.90 0.89 

AAAM 0.78 0.68 0.68 

SGM 0.72 0.70 

GCM 0.52 0.41 0.72 

BSM 0.54 0.48 0.68 0.85 0.95 

BSPSM 0.55 0.65 0.74 0.51 0.65 

(b) Correlations between off-diagonal elements of scoring matrices that do 

not include Trp, Met, Cys and Tyr 

MDM78 

AAAM 0.84 

SGM 0.82 0.77 

GCM 0.54 0.48 0.72 

BSM 0.66 0.57 0.73 0.85 

BSPSM 0.82 0.79 0.77 0.48 0.67 

MDM78 AAAM SGM GCM BSM BSPSM 

sequences by Dayhoff et al. in 1967 and revised in 1969 and 
1978. From a similar but different point of view, McLachlan 

( 1971, 1972) devised a matrix based on alternative amino acids 

(AAAM) at each position in alignments of groups of related 
sequences. In a different way, Feng et al. ( 1985) devised a simple 

matrix called a structure - genetic matrix (SGM) that was based 
on the structural similarities of amino acids, as well as their 

likelihoods for interchanges. Since the log relatedness odds matrix 
of the present model is equivalent to MDM78 derived by Dayhoff 
et al. (1978), it can be used in the same way to score amino acid 
matches and mismatches in a sequence alignment for detecting 

distantly related sequences in evolution. Here, we use it as a 

scoring matrix for data sets of homologous sequences that are 

believed to have a common ancestor. 
First, let us compare the log odds matrix of the present model 

with the other scoring matrices mentioned above. Table ill shows 
correlation coefficients between MDM78, AAAM, SGM, GCM 

and the present models without selection (BSM) and with selection 
(BSPSM); BSM and BSPSM stand for the base-substitution 

A new substitution matrix 

matrix and base-substitution -protein-stability matrix, 

respectively. In Table III(a) the correlation coefficients are 
calculated by taking account of all amino acids pairs, but amino 
acid pairs including Trp, Met, Cys and Tyr are excluded in (b). 

The correlation of off-diagonal elements between BSM and GCM 

is high and the same in both cases of including or excluding 
infrequent amino acids. It is reasonable, because GCM may be 
regarded as a simple approximation of BSM and the correlation 

between BSM and GCM should not depend on amino acid pairs; 
the most probable paths of substitutions from an amino acid to 
another are those that require the minimum number of base 

substitutions, and the probability of amino acid substitutions is 
roughly proportional to the n power of the base mutation rate, 
where n is the minimum number of base substitutions needed 

for those substitutions, so that the log relatedness odds are 
proportional to the minimum number of base substitutions. The 

correlation between MDM78 and AAAM is reasonably good. 

It is expected because the probabilities of amino acid substitutions 
in the evolutionary process and the alternative amino acids at 
each position along homologous sequences are closely related 

to each other. Also, it is reasonable that SGM correlates well 
with MDM78, AAAM and BSPSM. Amino acid substitutions 
frequently occur between similar amino acids, and structural 

similarities between amino acids are taken into account in SGM. 

A surprising thing is that the correlations between BSPSM and 
both MDM78 and AAAM are as low as that between BSM and 

MDM78. However, the correlations between them improve 
markedly if amino acid pairs for infrequent amino acids with 
small mutabilities, Trp, Met, Cys and Tyr, are excluded in the 
calculation. In this case, the correlations of MDM78 with 
AAAM, SGM and BSPSM are similarly good. However, 

BSPSM correlates best with MDM78. As pointed out in the 

previous section, those poor correlations may result from 
statistical errors because of the small numbers of accumulated 

amino acid substitutions between those amino acid pairs in 
MDM78. Of course, there is also the possibility that this results 
from the poor estimates of amino acid interactions in protein 
structures because of the infrequent occurrences of those amino 
acids in the protein sample. However, the correlation between 
SGM and BSPSM does not significantly change by excluding 

those infrequent amino acids. This indicates that the elements 

of BSPSM cannot be separated into two such amino acid groups. 
It should be noted here that the SGM was not evaluated from 
actual substitution data but from the consideration of the genetic 
code and the similarities of amino acids . These facts indicate that 
the low correlation between MDM78 and BSPSM results from 
the statistical errors included in some elements of mutation data 

matrix of MDM78, or the difference in the data sets of proteins 

used in both the analyses . 

Comparison of scoring matrices for calculating alignment scores 

In this section we compare the scoring matrices, especially 
MDM78 and BSPSM, for global homology searches and also 

in local homology searches to detect distant relationships between 
proteins. The 'ALIGN' program, which uses a version of the 
Needleman and Wunsch algorithm (Needleman and Wunsch, 

1970) and was written by Orcutt et al. (1984) , is used to calculate 

alignment scores for global sequence alignments. The alignment 

score is defined to be (s-m)la, wheres is the score for the real 
sequences, and m and a are the average and the standard deviation 
of scores from the randomized sequences, respectively. For local 
homology searches, the 'LFASTA' program developed by 
Lipman and Pearson (1985) and Pearson and Lipman (1988) is 
employed to find locally homologous regions between two protein 

273 



S.Miyazawa and R.L.Jernigan 

Table IV. Alignment scores calculated with different scoring matrices using 

a data set originally used by Schwartz and Dayhoff (1978) 

BSPSM MDM78 AAAM SGM GCM UM 

Bias 

Score for break 

# randomized seq. 

BXSMAC/ZNSMCC 

FECLCP/FESG 

HAHU/MYHU 

HAHU/GGlCE3 

CCHO/CCSG6 

CCHO/CCDV5M 

MGHUB2/MHHU 

MHHU/EHHU 

20 100 20 60 

-120 -100 -80 -60 

300 300 300 300 

2.38 0.49 3.33 I .35 

3.83 3.78 3.82 3.66 

7.94 7.83 10.77 10.76 

5.06 5.62 5.01 4.41 

4 .1 I 4.07 6.36 6.01 

1.74 2.30 4 .93 4.24 

4 . 14 4.00 3.56 3.40 

7.74 7.37 12.63 10.59 

-2 0 

-6 -5.5 

300 36 

2.6 

1.8 

9.9 

3.2 

7.3 

0.4 

4.7 

9.2 

2.5 

4.0 

15 .7 

3.0 

4 .7 

0.2 

4.0 

8.6 

0.3 

-I -0.3 

100 100 

3.2 

1.6 

6.6 

2.4 

4.3 

0.4 

3.3 

9.0 

3.1 

0.1 

5.8 

2.0 

4.5 

0.2 

3 .6 

4.7 

The results for AAAM, GCM and UM are taken from Schwartz and 

Dayhoff (1978) and those of SGM are taken from Feng et al. (1985). The 

'ALIGN' program was used to calculate alignment scores for BSPSM and 

MDM78. The scoring matrices of BSPSM and MDM78 are equal to the log 

relatedness odds matrix multiplied by 100; see Table II for BSPSM. The 

results for SGM may include larger statistical errors than others, because 

only 36 random sequences were used to estimate those alignment scores. 

The codes for sequences are: 

BXSMAC: antibacterial substance A; Streptomyces sp. (1-87) 

ZNSMCC: neocarzinostatin; Streptomyces sp. (I - I 13) 

FECLCP: ferredoxin ; Clostridium pasteurianum (1-55) 

FESG: ferredoxin; Spirulina maxima (1-98) 

HAHU: hemoglobin alpha chain; human and chimpanzees (I- 141) 

MYHU: myoglobin; human (1-153) 

GGICE3: globin CTI-III; midge larva (1-136) 

CCHO: cytochrome c; horse (1- 104) 

CCSG6: cytochrome c6; Spirulina maxima (1-89) 

CCDV5M: cytochrome c553; Desulfovibrio vulgaris (1-79) 

MGHUB2: /3rmicroglobulin precursor; human (21- I 19) 

MHHU : lgµ chain C region; human (323-451) 

EHHU : lg t chain C region; human (320-428). 

sequences, and the 'RDF2' program, which was also developed 

by them, is used to calculate alignment scores for the homologous 
regions. All protein sequences used in this work are taken from 
the PIR protein database. 

Schwartz and Dayhoff (1978) tried to compare the scoring 
matrix of MDM78 with AAAM, GCM and UM in detecting 
distant relationships between proteins. Their tests were performed 
for global sequence alignments on a small data set of homologous 

proteins. Table IV lists alignment scores for those homologous 
proteins by using BSPSM, MDM78, AAAM , SGM, GCM and 

UM; the results of AAAM, GCM and UM are taken from 

Schwartz et al. (1978), and those of SGM from Feng et al. 

(1985). The 'ALIGN' program needs two additional parameters, 

the score for a segment of gaps and a matrix bias that is added 

to the scoring matrix. Two parameter sets are used for MDM78 

and BSPSM: a parameter set with a large value of the matrix 

bias and another with a small value of the matrix bias. Small 

values of the matrix bias tend to yield a relatively large number 

of deletions and additions, so that it is appropriate for distantly 

related sequence pairs where there have been many changes in 
length. 

In Table IV BSPSM fails to yield scores > 3 SD for two protein 
pairs, but MDM78 fails only for one protein pair in one of the 

parameter sets and for no protein pair in the alternative parameter 

set. This result for BSPSM is comparable with that of SGM and 

better than those of AAAM, GCM and UM. An interesting result 
is that the alignment score of BSPSM is not so high as that of 

other scoring matrices for some proteins for which MDM78 and 
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Table V. Alignment scores calculated with different scoring matrices; the 

global homology search of the hemoglobin superfamily originally tested by 

Feng et al. (1985) 

BSPSM MDM78 SGM GCM UM 

Bias 

Score for break 

#randomized seq. 

HBHU/HGHUA 

HAHU 

MYHU 

GGHF3G 

GGGACR 

GGWNS 

GGEWA3 

GPFBA 

HGHUA/HAHU 

MYHU 

GGHF3G 

GGGACR 

GGWNS 

GGEWA3 

GPFBA 

HAHU/MYHU 

GGHF3G 

GGGACR 

GGWNS 

GGEWA3 

GPFBA 

MYHU/GGHF3G 

GGGACR 

GGWNS 

GGEWA3 

GPFBA 

GGHF3G/GGGACR 

GGWNS 

GGEWA3 

GPFBA 

GGGACR/GGWNS 

GGEWA3 

GPFBA 

GGWNS/GGEW A3 

GPFBA 

GGEW A3/GPFBA 

20 100 20 

-80 

100 

60 0 

-120 -100 -60 -5.5 

JOO 100 100 100 

29.36 

18.36 

6.36 

7.38 

5.90 

2.43 

5.66 

6.39 

20.17 

8.81 

7.97 

7.68 

2.24 

6.57 

4.64 

7.63 

8.86 

6.31 

3.99 

4.01 

6.52 

5.45 

6.45 

2.59 

5.84 

3.84 

5.54 

4.37 

26.32 36.55 32.88 38 .2 

15 .87 20.08 18.59 19.7 

7.69 8.98 9.36 9.5 

6.00 9 . 15 

6 .84 6.85 

1.95 3.70 

4.21 3.78 

6.25 6.22 

18.48 22 .76 

8.75 9.19 

7.44 5.4 

7.34 6.9 

3.62 2.8 

3.99 4.0 

6.83 7.3 

20.76 19.0 

9.60 12.1 

6.00 11.03 7 .81 5.8 

7.34 9.29 9.73 7.8 

2.43 4.16 4.30 2.9 

5 .00 4.19 4 .35 4.4 

5.83 5.57 6.95 6.7 

8.22 11.88 11.60 11.5 

5.44 10.13 7.36 6.6 

6.20 9.10 9.24 7.5 

3.39 7.05 6.02 6.2 

4.53 6.76 7.41 5.7 

7.95 7.02 8.04 6.4 

4 . 15 5.29 3.99 2 .9 

6.62 6.88 6.86 7.5 

2.82 2.56 2.19 3.6 

4.40 4 .06 4.31 3.9 

4.94 4 . 15 5.37 4 .8 

4.68 7.66 5.94 3.9 

3.26 4.21 3.79 4.6 

4.10 3.50 4 .64 4.25 2.9 

3.91 3.62 3.35 3.36 2.9 

3.65 3.54 5.76 5.58 3.6 

3.32 3.16 4.43 4.64 5.0 

3.30 4.89 4.42 5.18 5.7 

13.63 10.71 15 .60 15.49 13.8 

I.SI 3.07 2.89 4.14 2.9 

6.32 4.86 6.19 6.48 6.6 

0 0 
-4 -2.5 

100 100 

45.4 

21.8 

7.6 

5.1 

6.0 

2.7 

3.8 

4.2 

19.4 

8 .3 

5.6 

4.9 

3.1 

3.4 

4.3 

11.0 

5.8 

4.9 

6.2 

3.4 

1.5 

1.9 

8.0 

1.8 

2.3 

2.3 

2.6 

1.8 

57.5 

22.0 

8.8 

5.3 

4.3 

4.4 

2.8 

1.3 

22.5 

8.1 

5.8 

2.6 

5.3 

3.1 

3.0 

12.9 

6.8 

3.2 

5.4 

0.2 

0.4 

3.3 

3.9 

1.2 

-0.5 

1.2 

2.4 

-0.3 

2.8 3.0 

1.5 1.7 

3.9 3.1 

3.2 2.6 

3.5 -0.3 

13.9 15.8 

2.2 0.2 

2.9 2.2 

The 'ALIGN' program was used to calculate alignment scores for BSPSM 

and MDM78. The scoring matrices of BSPSM and MDM78 are equal to 

the log relatedness odds matrix multiplied by 100; see Table II for BSPSM. 

The results for SGM, GCM and UM are taken from Feng et al. (1985). 

They assigned the score 2.0 for matched cysteines in the UM and 4.0 in the 

GCM for amino acid substitutions that need at least three base mutations; 

see the reference for details . The codes of sequences are: 

HBHU: hemoglobin beta chain; human, chimpanzees and gorilla 

HGHUA: hemoglobin gamma chains; human and chimpanzee 

HAHU: hemoglobin alpha chain; human and chimpanzees 

MYHU: myoglobin; human 

GGHF3G: globin Ill ; Atlantic hagfish 

GGGACR: globin; water snail 

GGWNS: globin, extracellular, small chain; Tylorrhynchus 

heterochaetus 

GGEW A3T: globin Alli ; common earthworm 

GPFBA: leghemoglib a; kidney bean. 

others yield large values of the alignment score. The same feature 

is shown in other data sets and it will be discussed later. 

Feng et al. ( 1985) also tried to test score matrices by using 

data sets including more protein pairs than Table IV. One of them 

is the hemoglobin superfamily for which alignment scores are 
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Fig. 5. Comparison of alignment scores in global homology search of the hemoglobin superfamily. Alignment scores for several scori.'g matrices, which are 

listed in Table V, are plotted against those for other scoring matrices. The dotted lines in these figures show the isoscore line. The solid lines are the 

regression lines of the ordinate on the abscissa. (a) UM versus BSPSM with 100 for bias and -100 for break score. The regression line is 

y = 4.12 + 0.28.x, and the correlation coefficient is 0.45. (b) GCM versus BSPSM with 100 for bias and -100 for break score. The regression line is y = 

2.85 + 0.53x, and the correlation coefficient is 0 .67. (c) SGM versus BSPSM with 100 for bias and -100 for break score. The regression line is y = 

l.39 + 0.65x, and the correlation coefficient is 0.87 . (d) SGM versus BSPSM with 20 for bias and -120 for break score. The regression line is y = 

2.18 + 0.55x , and the correlation coefficient is 0.68. (e) MDM78 with 60 for bias and -60 for break score versus BSPSM with 100 for bias and -100 for 

break score. The regression line is y = 0.72 + 0.70x, and the correlation coefficient is 0.88. (t) MDM78 with 20 for bias and -80 for break score versus 

BSPSM with 20 for bias and - 120 for break score . The regression line is y = 1.41 + 0.62x, and the correlation coefficient is 0.80. 
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Table VI. Comparison of scoring matrices in local homology search of the 

kinase-related transforming protein family 

MDM78 BSPSM 

Identity Aligned Alignment Identity Aligned Alignment 

(%) length score (SD) (%) length score (SD) 

OKB02C 

TVBE66 21.3 244 21.37 24.3 202 19.385 

TVBY8 26.7 221 21.4 23 270 17.5 

TVCHMS 24.3 111 13.635 23.3 146 13.795 

TVHUPI 26.5 294 22.64 24.9 277 21.195 

TVHURS 23.0 283 13.41 21.9 233 16.06 

TVMVF6 24.9 201 11.185 23.9 138 7.34 

TVBE66 

TVBY8 28.2 262 16.23 26.6 184 14.5 

TVCHMS 24.1 112 14.655 29.7 IOI 13.575 

TVHUPI 30.2 149 19.58 35.2 88 13.22 

TVHURS 23.7 173 6.375 16.8 208 5.7 

TVMVF6 27.8 162 17.635 28.2 156 13.5 

TVBY8 

TVCHMS 32.4 102 9.685 34.4 90 12.88 

TVHUPI 24.5 274 20.455 24 267 20.215 

TVHURS 25.2 222 13.195 24.7 231 13.5 

TVMVF6 23.0 226 13.755 24.3 185 IO.I 

TVCHMS 

TVHUPI 22.8 224 5.8 22.2 230 9 

TVHURS 19.3 296 12.58 20.6 272 11.28 

TVMVF6 24.7 215 21.15 28.2 163 19.255 

TVHUPI 

TVHURS 23.7 139 4.585 21.2 165 7.22 

TVMVF6 21.1 275 8.66 23.7 228 9.92 

TVHURS 

TVMVF6 28.8 267 20.385 26.3 270 15.825 

The log relatedness odds matrix multipled by 10 is used as a scoring matrix 
for BSPSM and MDM78; see Table II for BSPSM. The aligned regions 

listed in this table are ones with the highest score found by 'LFASTA'. 

Alignment scores of those aligned regions were estimated by using RDF2; 

each protein pair was shuffled 100 times and alignment scores of both cases 

were averaged and listed here. The 'ktup' and the cut-off parameters were 
both set to I in the 'LFASTA' and 'RDF2'. Default values are used for 

other parameters in both cases for MDM78 and BSPSM; the deletion 

penalty is equal to -12-4(n-1), where n is the number of gaps. Refer to 

Pearson and Lipman (1988) for the details of these parameters. The codes 

of sequences are: 
OKB02C: protein kinase, cAMP-dependent, catalytic chain; bovine 

(350 a.a.) 

TVBE66: kinase-related transforming protein; varicella zoster virus 

(393 a.a.) 

TVBY8: cell division control protein 28; yeast (Saccharomyces 

cerevisiae) (298 a.a.) 

TVCHMS: kinase-related transforming protein (mos); chicken 

(349 a.a.) 

TVHUPI: kinase-related transforming protein (pim-1); human 

(313 a.a.) 

TVHURS: kinase-related transforming protein (ros-1); human 

(471 a.a.) 

TVMVF6: kinase-related transforming protein (raf); murine sarcoma 

virus 3611 (323 a.a.) 

TVFFRF: kinase-related transforming protein (Draf-1); fruit fly 

(fragment) (291 a.a.) 

shown in Table V. Excluding the closely related protein pairs 
that have trivially large alignment scores, those scores are plotted 
in Figure 5. Parts (a) and (b) show that BSPSM tends to yield 

larger alignment scores than UM and GCM, because most of 
marks are located above the isoscore line shown by the dotted 

line in those figures. This tendency is remarkable in the region 
of low alignment score. This indicates that BSPSM can detect 
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Fig. 6. Comparison of alignment scores in local homology search of the 

kinase-related transforming protein family. Alignment scores for BSPSM and 

MDM78, which are listed in Table VI, are plotted against each other. The 

dotted lines in these figures show the isoscore line. The solid lines are the 

regression lines of the ordinate on the abscissa. The regression line is 

y = 3.41 + 0.69x, and the correlation coefficient is 0.88. 

more distant relationships than UM and GCM. The situation is 
not simple in the cases of BSPSM versus SGM and BSPSM 
versus MDM78. Figure 5(c and d) shows that SGM yields many 

scores whose values are larger than those of BSPSM. That 
tendency is more clear in the case of BSPSM versus MDM78 
(see Figure 5e and f). However, those figures also show that 
scores whose values are larger for BSPSM than for SGM or 
MDM78 tend to be located in the region of low alignment score. 

The regression lines in Figure 5(c and d) indicate the possibility 
that BSPSM may yield larger scores than SGM in the region 

below 4 SD of the SGM score. In the case of BSPSM versus 
MDM78, that point is between 2 and 4 SD of the MDM78 score, 
indicating that MDM78 may be superior throughout the whole 
meaningful region since even 3 SD is a marginal score for saying 
that two sequences may have a common ancestor. Feng et al. 

(1985) pointed out in their work of testing scoring matrices that 

many sequences in the hemoglobin superfamily were used to 
evaluate MDM78, so that MDM78 may be more biased towards 

the hemoglobin superfamily. They tried to use an alternative data 
set of a kinase-related transforming protein family. However, 
this data set does not include many distantly related sequences, 
making it difficult to compare scores of BSPSM with those of 

MDM78 in the region of low alignment score. So, we tried 
carefully to choose distantly related sequences from the kinase­

related transforming protein family in a recent PIR protein 

database. 
In the case of the kinase-related transforming protein family, 

members are not homologous to one another over a whole 

sequence but have local regions which are homologous. 
Therefore, a local homology search should be done. For this 
reason we did not use the 'ALIGN' program to calculate global 

alignments of a certain region in the proteins, as Feng et al. 

(1985) did, but the 'LFASTA' program to find locally 
homologous regions between the proteins. Table VI shows align­

ment scores, the length of aligned regions and the percentage 
identity in the aligned region for scoring matrices BSPSM and 
MDM78. The aligned regions shown in Table VI are ones with 

the highest score found by 'LF AST A'. To calculate alignment 
scores of the most similar regions found by 'LF AST A', the mean 
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Fig. 7. Comparison of the length of best aligned regions in local homology 

search of the kinase-related transforming protein family. The lengths of 

aligned regions for BSPSM and MDM78, which are listed in Table VI, are 

plotted against each other. The dotted line in this figure shows the iso-length 

line. The solid line is the regression line of the ordinate on the abscissa. 

The regression line is y = 24 + 0.8lx, and the correlation coefficient is 

0.83 . 

and standard deviation of scores in the case of randomized 

sequences were estimated by using 'RDF2'. To do a complete 
search, the 'ktup' parameter, which determines how many 

consecutive identities are required in a match, and the cut-off 
parameter of scores of initial regions for the optimization step 
are both set to 1 in the 'LFASTA' and 'RDF2' programs. Default 

values are used for other parameters for both MDM78 and 
BSPSM; the deletion penalty is equal to -12-4(n-1), where n 

is the number of gaps. It should be noted here that the log 

relatedness odds matrix multiplied by 10 is used as a scoring 
matrix for BSPSM and MDM78 (see Table II for BSPSM). 
Please refer to Pearson and Lipman ( 1988) for the details of these 
parameters. The number of shuffles in 'RDF2' is 100. Each 
protein is shuffled and alignment scores of both cases are averaged 
and listed in Table VI. Most aligned regions are < 30 3 identity, 
indicating that those protein pairs are distantly related. Even so, 

the alignment scores of those regions are quite high; almost all 

are >6 SD, indicating that they evolved from a common 
ancestor. Some regions have alignment scores > 15 SD. Please 
note that values of alignment score by 'RDF2' should not be 
compared with those of 'ALIGN', because the distribution 
(Pearson and Lipman, 1988) of scores in randomized sequences 

may be different in the two methods. Alignment scores for 
BSPSM are plotted against those for MDM78 in Figure 6, and 
the length of best aligned regions is shown in Figure 7. In the 

region of alignment score > 15 SD, alignment scores tend to be 
higher for MDM78 than for BSPSM, but in the region < 10 SD 

BSPSM can yield higher alignment scores than MDM78, 
indicating that BSPSM may be more useful for detecting distantly 
related relationships between proteins than MDM78. 

Discussion 

The average energy increments of protein native structures caused 
by amino acid exchanges were estimated, and used to evaluate 
the fitness of amino acid replacements. The estimated values of 
the average energy increments for amino acid exchanges 
reasonably represent the physico-chemical similarities of amino 

acids. Not taken into account in these estimates of the average 
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energy increments is variation in the size of amino acid side 
chains. Replacement of a small residue in size by a bulky residue 

could destabilize protein structures. Such an effect should be taken 
into account; however, the flexibility of protein structures may 
reduce such volume effects. 

Also, similarities in the conformational properties of residues 
are not explicitly taken into account in the estimate of the average 

energy increments of amino acid exchanges. As evidence for the 
unimportance of these effects, Kelly and Holladay (1987) showed 
that the mean area buried scale of Rose et al. (1985) and the 

optimal matching hydrophobicities (OMHs) scale of Sweet and 
Eisenberg (1983) are well conserved among homologous 

sequences as well as other hydrophobicity scales but that the 
conformational scale of alpha, beta and coil propensities of amino 
acids compiled by Chou and Fasman (1978) is the least conserved 

of the scales that they examined. Their result indicates that the 
hydrophobicity may be more essential for retaining the 3-D 
structure than the conformational properties of the alpha, beta 

and coil regions. The contact energies estimated by Miyazawa 

and Jernigan (1985) include the hydrophobic interaction between 
amino acids. Rose et al. (1985) pointed out that their values of 
the characteristic fractional area loss and the average energy 

change of the i type of residue, e;,, upon contact formation are 

well correlated (the correlation coefficient is 0.94). Thee;, also 
correlates well with the optimal matching hydrophobicities of 
Sweet and Eisenberg (1983) (the correlation coefficient is 0.89). 

Sweet and Eisenberg (1983) calculated a set of optimal 
matching hydrophobicities (OMHs) of the 20 kinds of amino acids 

which will give the maximum possible value of the correlation 
coefficient for sequences being compared, from the observed 
frequency of amino acid replacements compiled by Dayhoff et al. 

(1978). They showed that significant correlations of OMHs are 
obtained for sequences whose 3-D structures are similar, even 

though the alignment has few identical residues . Because their 
scale depends only on a single residue type, some information 
included in the observed frequency of amino acid replacements 
may be lost. The average energy change, e;,, upon contact 

formation cannot reflect the full information of the 
residue-residue interactions that the contact energies eij do; it 

is a kind of average of eij. The maximum amount of informa­
tion should be utilized, if available and appropriate. 

In this work, the log relatedness odds matrix is used as a scoring 
matrix to detect distant relationships between protein sequences. 
The log relatedness odds matrix includes the effects of the genetic 
code and base mutation rates on amino acid substitutions. The 
genetic code and base mutation rates must be taken into account 

for analyzing amino acid substitutions that occurred in the 

evolutionary process. However, if one is interested in comparing 
amino acid sequences with each other in order to judge whether 

the two sequences may adopt similar 3-D structures or not, only 
the physico-chemical and conformational properties of amino 
acids should be considered. The amino acid exchange energy 

matrix (.1.eij) rather than the log relatedness odds matrix should 
be used in such a case to score amino acid matches and 
mismatches. 

Alignment scores strongly depend on the pattern of amino acid 
substitutions that may vary widely among proteins. This is why 

GCM and UM yield better results for some proteins than others, 
although they generally yield significantly poor results for 

distantly related sequences. This may happen because of the 

conservation of what are usually more mutable amino acids . In 
detecting relationships, best results would presumably be obtained 
with a matrix corresponding to the same evolutionary distance 

277 



S.Miyazawa and R.L.Jernigan 

as that between the sequences being compared. UM should 
therefore yield larger scores for closely related sequences than 
MDM78 and BSPSM, which are log relatedness odds matrices 
corresponding to 250 PAM. Of course, we are most interested 
in obtaining a significant score for comparison between distantly 

related sequences, and so BSPSM may be useful for such a 

purpose as well as MDM78, as shown in Figure 6. 
One significant advantage of BSPSM over MDM78 is that we 

can calculate different sets of BSPSM by adjusting the equilibrium 
frequencies of codons for each protein family, and also by 
changing base mutation rates. We tried to change the parameter 

min equation (14) for transversion and transition. The alignment 
scores in global homology search are not significantly different , 

even if m for transition is twice m for transversion. The effects 
of changing the equilibrium frequencies of codons have not been 

examined. 
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