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Sepp Hochreiter�,1,2, Djork-Arné Clevert1 and Klaus Obermayer1
1Department of Electrical Engineering and Computer Science, Technische Universität Berlin, 10587 Berlin, Germany
and 2Institute of Bioinformatics, Johannes Kepler Universität Linz, 4040 Linz, Austria

Received on October 7, 2005; revised on December 13, 2005; accepted on January 30, 2006

Advance Access publication February 10, 2006

Associate Editor: Joaquin Dopazo

ABSTRACT

Motivation: We propose a new model-based technique for

summarizing high-density oligonucleotide array data at probe level

for Affymetrix GeneChips. The new summarization method is based

on a factor analysis model for which a Bayesian maximum a posteriori

method optimizes the model parameters under the assumption of

Gaussian measurement noise. Thereafter, the RNA concentration is

estimated from the model. In contrast to previous methods our new

method called ‘Factor Analysis for Robust Microarray Summarization

(FARMS)’ supplies both P-values indicating interesting information

and signal intensity values.

Results: We compare FARMS on Affymetrix’s spike-in and Gene

Logic’s dilution data to established algorithms like Affymetrix

Microarray Suite (MAS) 5.0, Model Based Expression Index (MBEI),

Robust Multi-array Average (RMA). Further, we compared FARMS

with 43 other methods via the ‘Affycomp II’ competition. The experi-

mental results show that FARMS with default parameters outperforms

previous methods if both sensitivity and specificity are simultaneously

considered by the area under the receiver operating curve (AUC).

We measured two quantities through the AUC: correctly detected

expression changes versus wrongly detected (fold change) and

correctly detected significantly different expressed genes in two sets

of arrays versus wrongly detected (P-value). Furthermore FARMS is

computationally less expensive then RMA, MAS and MBEI.

Availability: The FARMS R package is available from http://www.

bioinf.jku.at/software/farms/farms.html

Contact: hochreit@bioinf.jku.at

Supplementary information: http://www.bioinf.jku.at/publications/

papers/farms/supplementary.ps

1 INTRODUCTION

The microarray technique is currently one of the most successful

experimental tools in microbiological research. It extracts a gene

expression profile from a tissue sample and, therefore, supplies the

expression state of tens of thousands of genes. Microarray experi-

ments can be used to infer metabolic pathways, to characterize

protein–protein interactions or to extract target genes for develop-

ing therapies for various diseases (e.g. cancer). One of the leading

microarray chip technologies (GeneChips) has been developed by

Affymetrix and is considered here.

A GeneChip contains probe sets of 10–20 probe pairs represent-

ing unique genes. Each probe pair consists of two oligonucleotides

of length 25, namely the perfect match (PM) and the mismatch

(MM) probe. The perfect match probe is the exact complement

of a 25 bp subsequence in the target gene. It is supposed to bind

a labeled RNA (hybridization) which is obtained from the gene’s

mRNA in the tissue sample. The mismatch is identical to the perfect

match except that one base is changed at the center position of the

oligonucleotide leading to lower affinity to the gene’s labeled RNA.

Mismatches are supposed to detect non-specific hybridization.

The data recorded with the microarray technique are character-

ized by high levels of noise induced by the preparation, hybridiza-

tion and measurement processes. Noise originates from chip

fabrication tolerances, tolerances in the efficiency of RNA extrac-

tion and reverse transcription, background intensity fluctuations,

non-uniform target labeling, temperature fluctuations, pipette

errors, hybridization efficiency and scanning deviations. Also

biological effects may disturb the target signal in the data, e.g.

tissue samples from the same experimental condition may not

show equal levels of RNA.

In order to analyze and evaluate GeneChip data from an experi-

ment with multiple arrays, the data preprocessing at probe-level is a

crucial step. An expression summary value is calculated using a

four-step procedure. (1) ‘Background correction’, which removes

the unspecific background intensities of the scanner images;

(2) ‘normalization’, which reduces the undesired non-biological

differences between chips and normalizes the signal intensity of

the arrays; (3) ‘PM correction’, which removes non-specific signal

contributions such as unspecific binding or cross-hybridization from

the PM probes and (4) ‘summarization’, which combines the

multiple preprocessed probe intensities to a single expression

value. Errors introduced in one of these steps may corrupt further

processing, e.g. spurious correlation with target conditions may

appear especially for few tissue samples (arrays) and large number

genes. For new chip generations with more genes on a chip the

probability of detecting random correlations increases and summar-

ization techniques will become even more important. The probable

number of random correlations is the number of genes multiplied by

the probability of a random correlation for independent measure-

ment noise. Recently the new generation of HGU_133+2 Gene-

Chips has been introduced by Affymetrix which provides the

coverage of the entire human genome on a single array. Here

one chip contains more than 54 000 probe sets and 1 300 000 distinct

oligonucleotides.

In this paper we focus on new techniques for summarization. The

summarization method which comes with an Affymetrix scanner

is the Affymetrix Microarray Suite 5.0 [MAS 5.0, Aff, (2001);

Hubbell et al., 2002]. The two best known approaches to improve

MAS 5.0 are the Model Based Expression Index [MBEI, Li and�To whom correspondence should be adderessed.
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Wong (2001)] and the Robust Multi-array Average [RMA,

Irizarry et al. (2003a, b); Bolstad et al. (2003)]. The Affymetrix

Microarray Suite 5.0 (http://www.affymetrix.com/support/

technical/manuals.affx) provides a ‘present call’ for each gene to

indicate whether the measurement is likely to contain signal rather

than noise but disregards information available at the summariza-

tion step. In addition the relevance of a gene in a certain experi-

mental setting is usually determined by how strongly it is expressed

at the one or the other condition. This, however, may not be the best

way to evaluate the chip data, because even if a signal is present and

strong but Gaussian distributed, its ‘information content’ may be

low [see Friedman and Tukey, 1974; Friedman and Stuetzle, 1981;

Huber, 1985] and it may not be useful to distinguish between con-

ditions. Here we propose a summarization method which supplies

noise corrected measurement values and improved present calls for

genes as well as quantitative measures for the ‘relevance’ of a gene

in a given context. Benchmark results using datasets from the open

challenge ‘Affycomp II’ http://affycomp.biostat.jhsph.edu, Cope

et al., 2004 and the ‘golden spike-in’ dataset from Choe et al.
(2005) show that FARMS performs better than state-of-the-art

methods like MAS 5.0, MBEI and RMA.

2 FACTOR ANALYSIS FOR ROBUST
MICROARRAY SUMMARIZATION (FARMS)

2.1 The model

2.1.1 The basic model Our approach to the summarization

problem is based on a linear model with Gaussian noise. Denote

the actually observed and to zero mean normalized log-PMs by x
and the normalized log-RNA concentration in the hybridization

mixture by z. Then we assume that the log-observations x depend

on the true log-concentration z via

x ¼ lz + e, where x‚l 2 R
n ð1Þ

and

z � Nð0‚1Þ‚e � Nð0‚CÞ: ð2Þ

N ðm, SÞ is the multidimensional Gaussian distribution with mean

vector m and covariance matrix S [Nð0‚1Þ is the one-dimensional

standard Gaussian]. z is usually called a ‘factor’. C 2 R
n·n is the

diagonal noise covariance matrix while e and z are statistically

independent. According to the model, the observation vector x is

Gaussian distributed as shown in the following equation:

x � Nð0‚llT + CÞ: ð3Þ

Consequently, the PMs are log-normal distributed. The lj are the

shape-parameters of the log-normal distribution for each PMj. To

introduce individual shape-parameter for the PMs is justified by the

findings in Li andWong (2001), where the authors found that probes

of the same probe-set may have different response to the same RNA

amount. In Li and Wong (2001) these probe-effects were consistent

over various arrays which implies specific binding characteristics

of the probes. However, lj subsumes also signal contributions via

signal strength s as seen in text before Equation (9), where we set lj
¼ s + tj. Large signal leads to large s which scales up the shape-

parameter which in turn results in a more heavy tail and allows for

higher PM values carrying a signal. In the following we will motiv-

ate our model assumptions and then describe how to use factor

analysis to infer the ‘summarized’ values z from the multiple obser-

vations x for each array and gene.

2.1.2 Using PM values only and the assumption of Gaussian
noise In this section we want to justify the model assumption, that

the vector x is Gaussian distributed. In Naef et al. (2002) replicate
experiments on different arrays were made and the PM values as

well as the PM�MM values were analyzed. The authors found that

the PM values (‘PM’) have lower noise at low intensity than PM

minus MM (‘PM�MM’) whereas for intermediate and high

intensities the noise levels for PM and PM�MM were similar.

Therefore we will use in our model only PM measurements.

Naef et al. (2002) also found that the distribution pdiff of the

difference log(PMx) � log(PMy) (x and y denote arrays of replicate
measurements) is Gaussian, where the width depends on the

intensity of the probe. Let ppm be the distribution of log(PM).

If pdiff is Gaussian and the distribution ppm symmetric around a

mean value m, then ppm is a Gaussian. This can be derived by setting

w.l.o.g. m ¼ 0 (note that the difference of the log-PMs is

considered) and

pdiffðaÞ ¼
Z 1

�1
ppmðbÞ ppmða + bÞdb

¼
Z 1

�1
ppmðb

0 Þ ppmða � b
0 Þdðb0 Þ‚

ð4Þ

where b0 ¼ �b and where we used ppm(�b0) ¼ ppm(b
0). Fourier

transformation of both sides yields

FðpdiffÞðaÞ ¼ ðFðppmÞðaÞÞ2: ð5Þ

Because the Fourier transformation of a Gaussian is a Gaussian and

the square root of a Gaussian is also Gaussian, the above statement

holds.

Freudenberg et al. (2004) also found log-transformed data are

normally distributed using a probe-wise Shapiro–Wilk test. Using

the Affymetrix HGU133A latin square dataset (cf. Section 3), we

confirmed that the log-transformed perfect matches are closer to a

Gaussian distribution than the original perfect matches (Fig. 1).

In conclusion, the assumption of a Gaussian distribution for the

log(PMx) values seems to be justified.

2.1.3 The factor model assumptions In this section we motivate

our linear ansatz lz from Equation (1), where z is interpreted as the

logarithm of the true amount of mRNA in the tissue sample.

Consider one gene, N arrays i—one for each tissue sample—and

n perfect matches PMij, 1� j� n, on each array i. For each array we
have a true (ideal) signal si indicating the logarithm of the amount of

mRNA from this gene which is present in the tissue sample. Let zi
be the signal si normalized to mean zero and variance 1, that is

si ¼ zi s + m‚s > 0: ð6Þ

Now we assume that for each PMij the signal deviates by tj and gj
from the true values s and m giving

Sij ¼ ziðs + tjÞ + m + gj‚ ð7Þ

where we assume that both the tj and the gj a distributed with

zero mean. The value s + tj determines the variance of the j-th
measurement PM�j and m + gj its mean, i.e. we assume that each

oligonucleotide corresponding to PMj has its own characteristics

(e.g. hybridization efficiency or crosstalk). Adding the measurement
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noise e to Sij gives

log ðPMijÞ ¼ Sij + eij ¼ ziðs + tjÞ + m + gj + eij‚ ð8Þ

where eij is a zero mean Gaussian (non-zero mean is accounted for

by gj). The values tj, gj and the standard deviation of the eij may

depend on the gene’s signal intensities for the arrays. This takes the

findings in Chudin et al. (2001); Naef et al. (2002); and Tu et al.
(2002) into account, that the variance of the noise depends on the

signal strength. Therefore, estimated values are only valid for the

measurements under considerations, i.e. the actual signal strength.

If we set lj ¼ s + tj and normalize the observation x to zero

mean by subtracting

1
N

XN
i¼1

log ðPMijÞ¼ ðs + tjÞ 1
N

XN
i¼1

zi

 !

+ m + gj + 1
N

XN
i¼1

eij

 !
� m + gj ¼ mj‚

ð9Þ

where the approximation is due to the zero mean assumptions then

we arrive at Equation (1), the basic model. According to the model

assumptions, z�Nð0‚1Þ [Equation (2)], our approach is best suited
for genes with strong Gaussian distributed signal or for genes with

low signal intensities (small s), because the Gaussian noise is

superimposed on the weak signal. The Gaussian signal assumption

is justified for the majority of genes which are independent of the

conditions, however it is not justified for the genes conveying a

non-Gaussian signal. It will turn out that the model-based approach

also provides good results for non-Gaussian distributions of z,
because the non-Gaussianity of z has only a minor impact on the

model likelihood as we will see at the end of Subsection 2.2.2.

2.2 Estimation of model parameters and signal

We now describe how to estimate the true signal strengths based on

the data model of Section 2.1. The procedure consists of three steps:

(1) normalization of the observations to zero mean

[cf. Equation (9)]

(2) the maximum a posteriori factor analysis to estimate model

parameters lj in order to calculate s and

(3) recovering the true signals si [Equation (6)] from zi,

which we will describe in the following text.

2.2.1 Normalization of the observations In order to fulfill model

assumptions, the log-PM values are normalized to zero mean by

subtracting mj ¼ m + gj which is estimated using Equation (9).

2.2.2 Maximum a posteriori factor analysis The Bayesian

posterior p(l, C j {x}) of the model parameters (l, C) given the

dataset {x} ¼ {x1, . . . , xN} is proportional to the product of the

observation’s likelihood p({x} j l, C) of data {x} given the

parameters l, C multiplied by the prior p(l, C) (e.g. DeGroot,

1970):

pðl‚C j fxgÞ / pðfxg j l‚CÞ pðl‚CÞ: ð10Þ

For the prior we assume that p(l, C) ¼ p(l), i.e. that the prior for
the factor loadings l is independent from the prior for C and that

the latter is uninformative (i.e. flat). The prior for l is pðlÞ ¼Qn
j¼1 pðljÞ and for p(lj) we choose the rectified Gaussian

distribution N rectðml,slÞ (see Hinton and Ghahramani, 1997)

given by

lj ¼ maxfyj‚ 0g with yj � Nðml‚slÞ: ð11Þ

sl is chosen proportional to the mean of the variance Var(x�j) of the
observations to allow the factor to explain the data variance, that is

s2
l ¼ r

1

n

Xn
j¼1

Varðx�jÞ: ð12Þ

The prior reflects the facts that

(1) theobservedvariance in thedata is often lowwhichmakeshigh

values of lj unlikely,

(2) a chip typically contains many more genes with constant

signal (lj � 0) than genes with variable signal (large value

of lj),

(3) negative values of lj are not plausible, because that would

mean that increasing mRNA concentrations lead to smaller

signal intensities.

The two hyperparameters r and ml allow quantifying different

aspects of potential prior knowledge. For example, ml near zero

assumes that most genes do not contain a signal and introduces a

bias for l-values near zero (items 1 and 2 from above).

The second factor of the posterior is the likelihood which is

according to Equation (3)

pðfxg j l‚CÞ ¼
YN
i¼1

Nð0‚ llT + CÞ ðxiÞ‚ ð13Þ

where Nð0‚ llT + CÞ ðxiÞ is the distribution’s density evaluated

at xi.
Following Rubin and Thayer (1982), we estimate the parameters

of the factor analysis model with the expectation-maximization

(EM) algorithm of Dempster et al. (1977) modified to maximize

the Bayesian posterior, Equation (10), of the model parameters

given the data. The EM procedure estimates l, C and the posterior

values for z for every x. Analogous to the EM algorithm for
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Fig. 1. Estimated density of P-values from the Shapiro–Wilk test for

normality using 10 000 randomly selected PM intensities and 42 arrays from

Affymetrix HGU133A latin square data. The continuous and dashed lines

indicate the result for the log2-transformed and the original PMs, respecti-

vely. The deviation from a uniform distribution of the P-values indicates the
deviation from Gaussian distributions. The log2-transformed PMs are closer

to a Gaussian.
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maximum likelihood, the EM algorithm maximizes a lower bound

of the log-posterior

�1

2
s�2
l ðl�ml1Þ

Tðl � ml1Þ

+
nN

2
log ð2pÞ � N

2
log jC j

�1

2

XN
i¼1

Ezi j xiððxi � lziÞT C�1ðxi � lziÞÞ‚

ð14Þ

where x is already normalized to mean zero and

zi j xi � Nðmzi j xi ‚s
2
zi j xiÞ‚

mzi j xi ¼ ðxiÞTðllT +CÞ�1
l and

s2
zi j xi ¼ 1 � lTðllT +CÞ�1

l:

ð15Þ

A detailed derivation of both the lower bound and the complete EM

algorithm can be found in the supplementary information (http://

www.bioinf.jku.at/publications/papers/farms/supplementary.ps).

Note that the maximum a posteriori factor analysis is also able to

extract non-Gaussian signals. The likelihood covariance matrix is

llT + C, therefore increasing the diagonal elements of C would

lead to a larger decrease of the likelihood than increasing one

eigenvalue via llT (note that scaling a non-Gaussian to variance

one increases l). Reason for the larger decrease of the likelihood in

the first case is the cumulative effect of increasing n eigenvalues of

the covariance matrix. Therefore, explaining data variance by a non-

Gaussian factor has higher likelihood than explaining it by n meas-

urement noise corrections.

2.2.3 Estimation of the true signals Finally we need to recover

the ‘true’ signal si from the estimated values zi, i.e. we need to

estimate s and m in Equations (6) and (8). For each perfect match

we have

s ¼ lj � tj and m ¼ mj � gj: ð16Þ

We determine s and m with the least squares fit, which is unbiased

because we assumed in Subsection 2.1.3 that both tj and gj are

drawn from a distribution with zero mean:

s ¼ argmin~ss

Xn
i¼1

ðlj � ~ssÞ2 ¼ 1

n

Xn
j¼1

lj‚ ð17Þ

m ¼ argmin~mm

Xn
j¼1

ðmj�~mmÞ2 ¼ 1

n

Xn
j¼1

mj: ð18Þ

The ‘true’ signal is then computed as

si ¼ s zi f + m‚ ð19Þ

where f is a factor which compensates for the reduction of variance

during preprocessing and factor analysis (some of the data variance

is explained by the noise). The value of f is empirically determined

on toy data for different normalization procedures: 2.0 for quantile

normalization and 1.5 for cyclic loess (see Section 3.2 for the

normalization procedures). Note that the factor f does not influence
the AUC-values which we used to evaluate the different methods in

Section 3.

We call the new summarization procedure which has been

described ‘Factor Analysis for Robust Microarray Summarization’

(FARMS).

2.3 Extraction of the relevant genes

Using factor analysis we estimated the ‘true’ signals si. Their actual
strengths, i.e. the value of s, can be taken as a measure of the

potential relevance of a gene in a given experimental setting:

high value of s indicates more relevant genes. A complementary

and in several cases even better criterion, however, can be derived

via the factor z and its distribution across arrays. Following the idea
of projection pursuit of Friedman and Tukey (1974); Friedman and

Stuetzle (1981); Huber (1985) interesting or ‘relevant’ variables are

often not Gaussian distributed. This assumption is especially true

for most microarray experiment designs, where genes are of interest

if their expression levels are correlated with different experimental

conditions. Often two conditions must be distinguished, thus genes

which show a bimodal rather than a Gaussian distribution are of

interest because they may be correlated with the conditions. But also

for a larger number of conditions one would expect that non-

Gaussianity is a good indicator for relevance. A quantitive measure

can be obtained by a test of Gaussianity for the estimated variables z
through the Shapiro–Wilk test (more robust in the case of a small

sample size than the Kolmogorov–Smirnov test). FARMS is

especially suited for this test because it assumes a Gaussian signal,

thus violating this assumption indicates a strong signal. Genes can

be ranked according to their s-values or according to their non-

Gaussianity, and the top candidates can then be investigated further.

3 EXPERIMENTS AND RESULTS

3.1 Datasets

For the following benchmarks we use four well-known evaluation

datasets denoted by (A), (B), (C) and (D) which were produced by

controlled experiments with known target expression values or

known mutual relations. The first three datasets are from the

open challenge ‘Affycomp II’ (http://affycomp.biostat.jhsph.edu/,

Cope et al., 2004) whereas the fourth dataset is known as the ‘golden
spike-in’ dataset from Choe et al. (2005).

Dataset A. This dataset is the original assessment dataset in Cope

et al. (2004). It consists of two sub datasets with the Affymetrix

human HGU95A array: the spike-in experiments and the dilution

experiments.

For the first, spike-in dataset A1, the concentration of RNA for

14 genes, the so-called spike-in genes, was artificially controlled by

adding RNA with predefined concentrations to the hybridization

mixture. The ‘latin square design’ contained 20 experiments with

different RNA concentrations of the 14 spike-in genes chosen from

{0.0, 0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0,

512.0, 1024.0} pM. For each experiment two replicate arrays were

prepared except one with only two replicates. The datasets consist of

59 arrays stored in ‘CEL’ files. A ‘CEL’ file gives the 75 percentile

pixel intensity of each spot, i.e. each gene in the array image.

The second, dilution dataset A2 from GeneLogic uses two tissue

samples, human liver (HL) and human central nervous system

(CNS), from which the RNAs were hybridized to the 75

HGU95A_v2 arrays. The dataset is based on changing dilutions

(concentrations) and combinations of RNA taken from the two

different tissues. Arrays are hybridized to a mixture of HL and

CNS where the amount of RNA taken from each source is one

from the six values {1.25, 2.5, 5.0, 7.5, 10.0, 20.0} mg. Each dilution

S.Hochreiter et al.

946

http://
http://affycomp.biostat.jhsph.edu/


experiment is replicated five times and each replicate was evaluated

on a different scanner.

Dataset B. This dataset is the first part of the new assessment

from http://affycomp.biostat.jhsph.edu/. It is identical to dataset A1

but separately listed because of the separate Affycomp evaluation

results.

Dataset C. This dataset is the second part of the new assessment

from http://affycomp.biostat.jhsph.edu/. It is based on a ‘latin

square’ experimental design which consists of 42 HGU133A arrays,

with 42 spike-in genes with RNA concentrations from {0.0, 0.0125,

0.25, 0.5, 1.0, 2.0, 4.0, 8.0, 16.0, 32.0, 64.0, 128.0, 256.0,

512.0} pM. Here three spike-in genes of the same concentra-

tion were combined in order to create three replicates for each

experiment.

Dataset D. Recently Choe et al. (2005) supplied a dataset con-

sisting of six Affymetrix DrosGenome1 chips. This dataset mimics

a common used microarray experimental setting, where two

samples, i.e. a treatment and a control sample are compared in

order to identify differentially expressed genes. The array can detect

3860 known individual RNA samples together with 2551 RNA

samples as controls (and background) where the latter have the

same concentration in all experiments. A total of 1309 RNAs

samples mimic the differentially expressed genes, these RNAs

were split into 8 subsets of about 80 to 180 RNAs. Each subset

differs by one predefined relative concentration change from {1.2,

1.5, 1.7, 2.0, 2.5, 3.0, 3.5, 4.0} between the spike-in and control

sample. Finally, the spike-in and control sample were hybridized in

triplicates.

3.2 Benchmark details

We compare our method, FARMS, to the three best known sum-

marization methods MAS5, MBEI and RMA as well with the

43 methods which participated at the challenge ‘Affycomp II’

(as of October 7, 2005). Microarray Suite (MAS) 5.0 is a non-

parametric algorithm implemented by Affymetrix (Aff, 2001;

Hubbell et al., 2002). The Model Based Expression Index

[MBEI, Li and Wong (2001)] is like the Robust Multi-array

Average [RMA, Irizarry et al. (2003a, b); Bolstad et al. (2003)]
a model-based approach (software packages are available at http://

www.dchip.org or www.bioconductor.org).

FARMS does not use background correction and uses either

quantile normalization (Bolstad et al., 2003) or cyclic loess

(Yang et al., 2002; Dudoit et al., 2002). FARMS uses quantile

normalization as default normalization procedure because it is

computational efficient. It does not apply PM corrections and uses

PMs only. For all experiments with FARMS we set r ¼ 1/8, ml ¼ 0

and f¼ 2.0 for quantile normalization and f¼ 1.5 for cyclic loess. The

maximal cycles for factor analysis were fixed to 100 and factor

analysis was terminated if the l-update vector has length smaller

than 0.00001.

RMA can be improved through advanced background correction

leading to a method called GCRMA (Wu et al., 2004, Available at
http://ideas.repec.org/p/bep/jhubio/1001.html). GCRMA has lower

performance on datasets A–C with respect to the AUC-values than

FARMS as can be seen in the supplementary information but is

superior to RMA. For our FARMS method we did not use back-

ground correction, however in future studies we want to investigate

whether background correction can improve our FARMS method

especially whether the GCRMA background corrections is suitable.

3.3 Results

For the evaluation of datasets A, B and C, we participated at the

‘Affycomp II’ challenge (http://affycomp.biostat.jhsph.edu/, Cope

et al., 2004). For the complete challenge results see Tables 1–3

in the supplementary information (http://www.bioinf.jku.at/

publications/papers/farms/supplementary.ps).

3.3.1 AUC fold changes We think that from all challenge results

the area under the curve (AUC) criterion is best suited to measure

the quality of a summarization method. The AUC criterion is the

area under the receiver operating characteristics (ROC) curve which

plots the true positive rate (sensitivity) against the false positive rate

(1� specificity) and serves a quality measure for classification

methods. The AUC criterion can be applied here by defining

gene classes: for a pair of arrays class 1 genes are the genes for

which expression value differences exceed a certain relative factor

(fold change). Now the output of a summarization method can be

interpreted as classification by computing the class membership of

genes based on the predicted expression values. We prefer the AUC

criterion over other measures provided by ‘Affycomp II’ evaluation

because it is independent of scaling of the results (log-expression

values) and trades sensitivity against specificity. Other quality

measures from the ‘Affycomp II’ evaluation focus either on sens-

itivity or specificity and are often not scaling independent. The AUC

is computed for different fold changes, i.e. for different thresholds

for being in class 1. Figures 2–4 show the fold change ROC curves

for A1, C and D, respectively. Table 1 gives the corresponding AUC

for datasets A–D. Note, that dataset D is especially suited to gen-

erate precise ROC curves because of the large number of defined

RNAs. Except for dataset A, FARMS has the best AUC perform-

ance of the 43 competitors of the ‘Affycomp II’ challenge (the

challenge method which has higher AUC values than FARMS in

dataset A has lower AUC values for datasets B and C).

FARMS with quantile normalization is best for datasets A–B,

whereas FARMS with cyclic loess is best for dataset D. However,

both FARMS methods show higher performance than all its
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Fig. 2. ROCcurves for all fold changes in datasetA1. ROCcurve for FARMS

with quantile normalization (solid line) is always above the ROC curve for

RMA (dashed line) and MAS 5.0 (dotted line), therefore FARMS is better

than RMA and MAS 5.0 for all false positive rates.
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competitors (RMA, MAS and MBEI). FARMS shows a large

improvement over RMA for small signal changes: for dataset A

and fold change 2 the AUC value is 0.54 for RMA, 0.84 for FARMS

(quantile normalization) and 0.78 for FARMS (cyclic loess), for

dataset B the low intensity AUC is 0.51 for RMA, 0.89 for FARMS

(quantile) and 0.80 FARMS (cyclic loess), and for dataset C the low

intensity AUC is 0.57 for RMA, 0.94 for FARMS (quantile) and

0.91 for FARMS (cyclic loess). The AUC for random guessing is

0.5 and the maximal AUC is 1.0, therefore the improvement of

FARMS over RMA is considerable.

3.3.2 AUC P-values Above AUCs for fold changes assess the

quality of summarization methods with respect to the identification

of differentially expressed genes in a pair of arrays. Here we want to

go one step further and determine the quality of summarization

methods with respect to the identification of significant differenti-

ally expressed genes in two conditions. To perform a significance

test to the expression values in two conditions is a common experi-

mental setting in biology and in medicine, therefore we evaluate

the quality of different summarization methods by wrongly detected

significant differences and missed differences.

Analogous to the AUC for fold changes we define an AUC for

P-values. Class 1 genes are the genes which have by design different
expression values in the two conditions. A summarization method

classifies a gene as being differently expressed in the two conditions

if the P-value of a test is below a given threshold (we set it to 0.05).

This allows us to compute the ROC curve.

A significance test, a modified t-test, for differentially expressed

genes for microarray experiments with two conditions was sugges-

ted by Tusher et al. (2001). In the modified t-test a small positive

constant (‘fudge-constant’) is added to the denominator to prevent

genes with small variance from being selected as significant.

According to Cui and Churchill (2003) we set the ‘fudge-constant’

to the 90th percentile of the standard deviation of all genes.

Datasets B and C encompass 19 and 14 experimental conditions,

respectively, with 3 replicates for each condition. This leads to 171

and 91 experimental condition pairs (only unique variations),

respectively, with 6 arrays (3 for each condition) for each

experimental setting. The above-mentioned modified t-test is

applied to these 171 (dataset B) and 91 (dataset C) experimental

settings. The average AUC of all ROC curves for P-values is given
in Table 2. For dataset B the average AUC for RMA is larger than

for FARMS but the difference is not significant as confirmed by

Wilcoxon-rank-sum test (P ¼ 0.19). For dataset C FARMS shows

significantly by (P ¼ 0.00027) better results than RMA. Most reli-

able are the results on dataset D, where the number of defined RNAs

is large. However, for dataset D there is only one experiment so that

the Wilcoxon-rank-sum test cannot be applied, but the large number

of spike-in genes allows to perform another test, the conservative

McNemar test. It confirmed that FARMS performed significantly by

better (P ¼ 0.000002) than its competitors.

Table 1. AUC results for fold changes for datasets A–D

AUC FARMS RMA MAS MBEI 1 2 mean

q l 5.0

FC Dataset A

all 0.89 0.85 0.82 0.36 0.67 0.91 0.86 0.71

¼2 0.84 0.78 0.54 0.07 0.17 0.91 0.69 0.42

1 Dataset B

Low 0.89 0.80 0.51 0.07 0.21 0.74 0.68 0.44

Med 0.97 0.95 0.91 0.00 0.43 0.98 0.97 0.65

High 0.97 0.94 0.64 0.00 0.16 0.95 0.94 0.48

Mean 0.91 0.84 0.60 0.05 0.26 0.79 0.75 0.49

1 Dataset C

Low 0.94 0.91 0.57 0.09 — 0.76 0.61 0.48

Med 0.99 0.99 0.91 0.00 — 0.95 0.95 0.64

High 1.00 1.00 0.96 0.00 — 0.99 0.99 0.61

Mean 0.95 0.93 0.65 0.06 — 0.81 0.66 0.44

FC Dataset D

�1.2 0.72 0.74 0.70 0.52 0.49 — — —

�1.7 0.90 0.91 0.88 0.64 0.59 — — —

We compare FARMS with RMA, MAS 5.0 and MBEI and for dataset A–C also with

43 competitors from the affycompBioconductor Project benchmark where the best (‘1’),

the second best (‘2’) and the mean results (‘mean’) are given (as of October 7, 2005).

FARMS results are reported for quantile normalization (‘q’) and for cyclic loess (‘l’).

The table reports AUC values for different fold changes (‘FC’, datasets A and D),

i.e. detection of different concentrations changes, as well as different signal intensities

(‘I’, datasets B and C). The best result is marked bold.
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Fig. 3. ROC curve for fold changes of low intensity genes in dataset C. ROC

curve for FARMSwith quantile normalization (solid line) is always above the

ROC curve for RMA (dashed line) and MAS 5.0 (dotted line) therefore

FARMS is better than RMA and MAS 5.0 for all false positive rates.
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Fig. 4. Dataset D ROC curves for fold changes >1.2 (left) and >1.7 (right)

for RMA (dashed line) versus FARMS (solid line). In both cases FARMS

performs better than RMA as its ROC curve is above RMA’s.
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3.3.3 Computational time: The computational time of FARMS

(quantile normalization), RMA, MAS 5.0 and MBEI is listed in

Table 3. FARMS is the fastest method.

In conclusion FARMS performs better than all competitors with

respect to the AUC criterion for fold changes as well as for P-values
and was the fastest method.

4 CONCLUSION

We have presented a newmethod called FARMS for summarization

of gene expression data obtained from Affymetrix chips. The new

method outperforms known methods both with respect to sensitivity

and specificity, i.e. detects more signals while being more robust

against measurement noise. Further it is faster than the competitors.

ACKNOWLEDGEMENTS

The authors express their gratitude for the funding by the Anna-

Geissler- and the Monika-Kutzner-Stiftung.

Conflict of Interest: none declared.

REFERENCES

Microarray Suite User Guide. (2001) Affymetrix, version 5 edition.

Bolstad,B.M. et al. (2003) A comparison of normalization methods for high density

oligonucleotide array data based on variance and bias. Bioinformatics, 19,

185–193.

Choe,S.E. et al. (2005) Preferred analysis methods for Affymetrix GeneChips revealed

by a wholly defined control dataset. Genome Biol., 6, R16.1–R16.16.

Chudin,E. et al. (2001) Assessment of the relationship between signal transcript

concentration for Affymetrix GeneChip arrays. Genome Biol., 3,

research0005.1–0005.10.

Cope,L.M. et al. (2004) A benchmark for Affymetrix GeneChip expression measures.

Bioinformatics, 20, 323–331.

Cui,X. and Churchill,G. (2003) Statistical tests for differential expression in cDNA

microarray experiments. Genome Biol., 4, 210.1–210.10.

DeGroot,M.H. (1970) Optimal Statistical Decisions. McGraw-Hill, NY.

Dempster,A.P. et al. (1977) Maximum likelihood from incomplete data via the EM

algorithm. J. R. Stat. Soc. B, 39, 1–22.

Dudoit,S. et al. (2002) Statistical methods for identifying genes with differential

expression in replicate cDNA microarray experiments. Stat. Sin., 12, 111–139.

Freudenberg,J. et al. (2004) Comparison of preprocessing procedures for oligo-

nucleotide micro-arrays by parametric bootstrap simulation of spike-in

experiments. Meth. Inform. Med., 43, 434–438.

Friedman,J.H. and Stuetzle,W. (1981) Projection pursuit regression. J. Am. Stat. Assoc.,

76, 817–823.

Friedman,J.H. and Tukey,J.W. (1974) A Projection Pursuit algorithm for exploratory

data analysis. IEEE Trans. Comput., 23, 881–890.

Hinton,G.E. and Ghahramani,Z. (1997) Generative models for discovering sparse

distributed representations. Pilos. Trans. R. Soc. B, 352, 1177–1190.

Hubbell,E. et al. (2002) Robust estimators for expression analysis. Bioinformatics, 18,

1585–1592.

Huber,P.J. (1985) Projection pursuit. Ann. Stat., 13, 435–525.

Irizarry,R.A. et al. (2003a) Summaries of Affymetrix GeneChip probe level data.

Nucleic Acids Res., 31, 1–8.

Irizarry,R.A. et al. (2003b) Exploration, normalization, and summaries of high density

oligonucleotide array probe level data. Biostatistics, 4, 249–264.

Li,C. and Wong,W. (2001) Model-based analysis of oligonucleotide arrays:

expression index computation and outlier detection. Proc. Natl Acad. Sci. USA,

98, 31–36.

Naef,F. et al. (2002) Empirical characterization of the expression ratio noise structure

in high-density oligonucleotide arrays. Genome Biol., 3, research0018.1–0018.11.

Rubin,D. and Thayer,D. (1982) EM algorithms for ML factor analysis. Psychometrika,

47, 69–76.

Tu,Y. et al. (2002) Quantitative noise analysis for gene expression microarray

experiments. Proc. Natl Acad. Sci. USA, 99, 14031–14036.

Tusher,V.G. et al. (2001) Significance analysis of microarrays applied to the ionizing

radiation response. Proc. Natl Acad. Sci. USA, 98, 5116–5121.

Wu,Z., Irizarry,R., Gentleman,R., Murillo,F.M. and Spencer,F. (2004) A model based

background adjustment for oligonucleotide expression arrays. Johns Hopkins

University Dept. of Biostatistics Working Paper Series 1001, Berkeley Electronic

Press.

Yang,Y.H. et al. (2002) Normalization for cDNA microarray data: a robust composite

method addressing single and multiple slide systematic variation. Nucleic Acids

Res., 30, e15.

Table 2. AUC results for P-values for datasets B–D

FARMS RMA MAS MBEI

q l 5.0

Dataset B

AUC [e ¼ 171] 0.955 0.955 0.948 0.772 0.670

Dataset C

AUC [e ¼ 91] 0.975 0.974 0.981 0.892 0.875

Dataset D

AUC [e ¼ 1] 0.802 0.823 0.767 0.286 0.397

We compare FARMSwith RMA,MAS 5.0 andMBEI on e experiments (one experiment

consists of 6 arrays—3 arrays for each condition). Results which are significantly

better than others are marked bold, where mutual differences between bold results

are not significant.

Table 3. Computational time in (s) for dataset A2

FARMS RMA MAS 5.0 MBEI

Computational time 246 472 1323 957

A new summarization method for Affymetrix data

949


