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ABSTRACT

The  1st  Chinese  carbon  dioxide  (CO2)  monitoring  satellite  mission,  TanSat,  was  launched  in  2016.  The  1st  TanSat
global  map of  CO2 dry-air  mixing ratio (XCO2)  measurements  over  land was released as  version 1 data  product  with an
accuracy of 2.11 ppmv (parts per million by volume). In this paper, we introduce a new (version 2) TanSat global XCO2

product that is approached by the Institute of Atmospheric Physics Carbon dioxide retrieval Algorithm for Satellite remote
sensing (IAPCAS), and the European Space Agency (ESA) Climate Change Initiative plus (CCI+) TanSat XCO2 product
by  University  of  Leicester  Full  Physics  (UoL-FP)  retrieval  algorithm.  The  correction  of  the  measurement  spectrum
improves the accuracy (−0.08 ppmv) and precision (1.47 ppmv) of the new retrieval, which provides opportunity for further
application  in  global  carbon  flux  studies  in  the  future.  Inter-comparison  between  the  two  retrievals  indicates  a  good
agreement, with a standard deviation of 1.28 ppmv and a bias of −0.35 ppmv.
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The 1st Chinese carbon dioxide monitoring satellite mission, TanSat, which was supported by the Ministry of Science
and Technology of  China,  the  Chinese  Academy of  Sciences,  and the  China  Meteorological  Administration,  launched in
December 2016 (Liu and Yang, 2016; Ran and Li, 2019). The objective of the TanSat mission is to monitor carbon dioxide
(CO2) concentrations in the atmosphere over the globe to better understand carbon cycle processes. Since CO2 has been recog-
nized as the most important anthropogenic greenhouse gas owing to its significant impact on global warming and climate
change, there are a substantial number of studies that have focused on investigating the status of CO2 in the atmosphere in
the past and present, and how it will change in the future. In support of the upcoming global stocktake in 2023, we require a
new method to verify how much human emissions impact the global carbon cycle and climate change. The lack of global
high-precision measurements of the CO2 content in the atmosphere is a major limiting factor. Satellite measurements coordin-
ated with ground-based observations will eventually lead to an improved anthropogenic CO2 emissions MVS (monitoring
and verification support) capacity (Pinty et al., 2017).

In  order  to  improve  our  measurement  of  atmospheric  CO2,  multiple  satellite  missions  have  been  launched.  The
European  Space  Agency  (ESA)  Scanning  Imaging  Absorption  Spectrometer  for  Atmospheric  Chartography  (SCIA-
MACHY)  onboard  ENVISAT  which  carried  a  space-based  shortwave  infrared  CO2 spectrometer  and  is  recognized  as  a
pathfinder  of  greenhouse satellites  (Bovensmann et  al.,  1999).  The first  dedicated greenhouse gas satellite  missions were
the  Japanese  Greenhouse  Gases  Observing  Satellite  (GOSAT)  and  the  U.S.  Orbiting  Carbon  Observatory-2  (OCO-2), 
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launched  in  2009  (Kuze  et  al.,  2009)  and  2014  (Crisp  et  al.,  2008)  respectively.  The  TanSat  mission  is  the  3rd  mission
launched that has the capability to provide CO2 space-based measurements.  The CO2 instrument,  the atmospheric carbon
dioxide grating spectrometer, measures backscattered sunlight (Wang et al., 2018) in two CO2 bands at 1.61 and 2.06 μm
respectively. In addition, a 0.76 μm oxygen A-band channel is on-broad in order to correct the light path modification by
atmospheric scattering from aerosols and thin clouds (Chen et al., 2017).

The Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS) has
been  developed  for  space-based  satellite  measurement  of  greenhouse  gases  (Yang  et  al.,  2015),  and  has  been  applied  to
TanSat  retrieval.  In  IAPCAS, a  well-known physical  quantity,  the  column-averaged CO2 dry-air  mixing ratio  (XCO2),  is
retrieved  using  the  Optimal  Estimation  Method  (OEM)  by  iteratively  analyzing  and  optimizing  the  spectrum  residual
between the simulation and measurement. We use a full-physics strategy in IAPCAS to ensure the retrieval accuracy. The
1st TanSat XCO2 global map has been released (Yang et al., 2018), followed by the version 1 (v1) XCO2 data product (Liu
et al., 2018), which can be publicly accessed from the China GEO data service archive, the Cooperation on the Analysis of
Carbon Satellites Data (CASA) at www.chinageoss.org/tansat, which is hosted by the International Reanalysis Cooperation
on Carbon Satellites Data (IRCSD). Global validation by the Total  Carbon Column Observing Network (TCCON) indic-
ates a 2.11 ppmv (parts per million by volume) accuracy on average from March to July 2017 (Liu et al., 2018). Unfortu-
nately, it is not accurate enough to estimate the anthropogenic CO2 emissions in cities due to the fact that it only has a 1–1.5 ppm
gradient across the urban area as shown in the ground-based measurements in Paris (Vogel et al., 2019).

This XCO2 retrieval makes use of only the CO2 weak band (1.61 μm) without any correction of aerosol and thin cloud
scattering, which means the uncertainty of the light path modification directly induces retrieval errors, especially in areas
highly impacted by aerosols, e.g., industrial regions and megacities. On the other hand, carbon flux inversion by assimilat-
ing the XCO2 data, which is a popular technique to estimate land–atmosphere carbon exchange, also requires strict accur-
acy and precision of the XCO2 data product (Miller et al., 2007).

A new approach has been developed to improve the retrieval accuracy by optimizing the TanSat measured spectrum, par-
ticularly, a wavelength-dependent continuum gain effect in O2 A band, and hence we successfully include the O2 A band in

 

 

Fig. 1. Global TanSat v2 XCO2 distribution from March 2017 to May 2018 (land only). Colors indicate the values of
XCO2 in ppmv.
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retrieval (Yang et al., 2020). Analysis of the fitting residuals and validation against TCCON measurements show that this
new approach leads to a significant improvement in the retrieval quality, with an average bias of −0.08 ppmv and RMSE of
1.47 ppmv. Also, the retrieval precision is 53.6% better than for the TanSat v1 data product in individual validation studies
(Yang et al., 2020). This new technique is used in TanSat IAPCAS V2 data processing.

The new TanSat XCO2 data product is now retrieved by IAPCAS using the O2 A-band and CO2 weak band together. Fif-
teen months of the global XCO2 distribution (Fig. 1; land only) is shown for each month, indicating the CO2 seasonal vari-
ations in the Northern Hemisphere and the continually increasing CO2 values in the Southern Hemisphere. The anthropo-
genic impact is visible in winter and spring around China, Europe and the U.S. The TanSat v2 XCO2 data product can be
obtained from the CASA TanSat data and science service (www.chinageoss.org/tansat). Information on measurement and
retrieval quality, such as cloud clearing and post screening, is also provided in the data. Top-down carbon flux estimation
research will be one of main objectives of the TanSat CO2 data, and hence we produce a special lite version with only core
elements (e.g., XCO2, averaging kernel, and a priori CO2 profile) toward climate change studies.

In January 2020, a protocol was signed between the National Remote Sensing Center of the China Ministry of Science
and  Technology  of  China  (MOST/NRSCC)  and  the  ESA  regarding  the  intended  coordination  of  their  activities  in  the
Remote Sensing of Greenhouse Gases and Related Missions. MOST/NRSCC and ESA intend TanSat to be a third-party mis-
sion of ESA, and TanSat data have been included in key ESA programs such as the Climate Change Initiative plus (CCI+)
(Buchwitz et al., 2015) and Earthnet Data Assessment Pilot (EDAP). The preliminary CCI+ TanSat XCO2 data product has
been processed by the University of Leicester Full Physics Retrieval Algorithm (UoL-FP) (Bösch et al., 2006) for TCCON
overpasses only, to evaluate the retrieval strategy and data quality, and is available to the public on the CCI+ data archive at
http://cci.esa.int/data. Future plans will focus on the production of global TanSat retrievals, and those data will be part of
the CCI+ data product.

The IAPCAS and UoL-FP algorithms use a similar OEM (Optimal Estimation Method) technique but a different for-
ward model, physical module and strategy (e.g., pre-screening, post-screening and state vectors) in their retrieval. The inter-
comparison of TanSat XCO2 retrieval between the two algorithms shows a good agreement for all TCCON overpass measure-
ments with 34 699 individual measurements (Fig. 2). The dispersion between the two data products has a standard deviation of
1.28 ppmv, which mostly comes from noise error.  There is  a  −0.35 ppmv overall  bias  between both,  and this  systematic
error is probably induced by the differences of the two algorithms and bias correction method.

Acknowledgements.      This work was supported by the National  Key R&D Program of China (Grant  No. 2016YFA0600203),  the
Key Research Program of the Chinese Academy of Sciences (Grant No. ZDRW-ZS-2019-1), the International Partnership Program of the
Chinese Academy of Sciences (Grant No. GJHZ201903), the National Natural Science Foundation of China (Grant No. 41905029), ESA
Climate Change Initiative CCI+ (GhG theme), Earthnet Data Assessment Pilot (EDAP) project and ESA-MOST Dragon-4 programme

 

 

Fig.  2.  Intercomparison of  individual  XCO2 retrievals  between the  IAPCAS
TanSat  v2  data  product  (horizontal  axis)  and  the  CCI+  TanSat  product
(vertical  axis)  for  a  total  number  of  34  699  individual  data  points.  Color
coding is the number density of the data. The solid gray line indicates the 1:1
line,  and  the  red  dashed  line  shows  the  linear  regression  results,  with
quantitative results given in the upper-left of the plot. RMSE and STD denote
the  root-mean-square  error  and  standard  deviation  of  the  differences  of  the
two data products.
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