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Abstract. We present a simple but powerful new probabilistic technique for analyzing 

the combinatorial complexity of various substructures in arrangements of piecewise-linear 

surfaces in higher dimensions. We apply the technique (a) to derive new and simpler proofs 

of the known bounds on the complexity of the lower envelope, of a single cell, or of a zone in 

arrangements of simplices in higher dimensions, and (b) to obtain improved bounds on the 

complexity of the vertical decomposition of a single cell in an arrangement of triangles in 
3-space, and of several other substructures in such an arrangement (the entire arrangement, 

all nonconvex cells, and any collection of cells). The latter results also lead to improved 
algorithms for computing substructures in arrangements of triangles and for translational 
motion planning in three dimensions. 

1. Introduction 

The study of arrangements of  curves or surfaces is an important area of research in 

computational and combinatorial  geometry, because many geometric problems in diverse 

areas can be reduced to problems involving arrangements. We assume in this paper the 

reader is familiar with basic terminology and results concerning arrangements, and refer 

to [14], [18], and [20] for more details. 

In this paper we present a new technique for analyzing the combinatorial complexity of  

various substructures in arrangements of  piecewise-l inear surfaces in higher dimensions. 

The technique uses a simplified variant of  the Clarkson-Shor  probabilistic analysis 

technique [11], and combines it with local geometric analysis of the arrangement under 

* Work on this paper was partially supported by a grant from the G.I.E, the German-Israeli Foundation for 
Scientific Research and Development. The research reported in this paper is part of the author's Ph.D. thesis 
prepared under the supervision of Prof. Micha Shafir. 
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consideration. The technique is a simplification of a previous technique that was used for 

analyzing the complexity of lower envelopes and other substructures in arrangements of 
more general algebraic surfaces (see [2], [19], and [24]). Our technique also somewhat 
resembles the inductive technique used in [3], [5], and [16] for analyzing arrangements 
of piecewise-linear surfaces, but is more general and more powerful. 

We first exemplify the technique in Section 2 on the problem of bounding the maxi- 

mum complexity of the lower envelope of n line segments in the plane. We obtain a bound 
O(n logn), which is slightly weaker than the tight bound of | [21, [26]. The 
proof however is very short and simple. Ontuitively, the new technique is not "sensitive" 

enough to yield bounds with factors like a(n).) 
We then describe, in Section 3, the technique in a general abstract setting, and then 

apply this general methodology to several specific problems. 
The first application, given in Sections 4 and 5, is to arrangements of n (d - 1)- 

simplices in R d. We obtain new (and simpler) proofs of the known bounds for the 

maximum complexity of the lower envelope, of a single cell, and of a zone in such an 
arrangement of simplices. For lower envelopes, the bound is | previous 
proofs of this bound are given in [15], [23], and [25]. For a single cell or a zone of a 
fixed-degree algebraic surface or an arbitrary convex surface, the bound is O (n d- 1 log n); 
a previous, and considerably more involved, proof is given in [5]. 

We then derive, in Section 6, an improved bound on the complexity of vertical de- 
compositions in arrangements of n triangles in 3-space. The previous bound in [13] for 

the complexity of the vertical decomposition of a single cell in such an arrangement was 
O (n2+e), for any e > 0, where the constant of proportionality depends on e. We improve 
this bound to O (n 2 log 2 n) (actually, this bound applies also to the vertical decompo- 
sition of the zone of any fixed-degree algebraic surface or the surface of any convex 

body). We then extend the result to several more complex portions of the arrangement: 
We show that the complexity of the vertical decomposition of the entire arrangement is 
O(K + n2ot(n)log n), where K is the complexity of the undecomposed arrangement; 
the previous bound of [13] was O(K + n2+E), for any e > 0. We also obtain a bound of 

O (n 2"5) for the complexity of the vertical decomposition of all nonconvex cells of the 
arrangement, and a bound of O(ml/3n 2 + n log 2 n) for the complexity of the vertical 

decomposition of any m ceils of the arrangement. We are not aware of any previous 
subcubic bounds for these two latter complexities. Still, we do not know whether the last 
two bounds are close to optimal; the actual complexities of the (undecomposed) cells in 
question are known to be smaller. 

Using the randomized algorithm of [12] and applying our new bounds in its analysis, 
we obtain improved bounds for constructing the relevant substructures. For example, (the 
vertical decomposition of) a single cell in an arrangement ofn triangles in 3-space can be 
computed in O (n 2 log 3 n) expected time. Also, we obtain an algorithm for constructing 
all nonconvex cells of the arrangement, whose running time is close to O(n2"5). This 

yields a simple motion-planning algorithm, of the same complexity, for an arbitrary 
polyhedron translating in a three-dimensional polyhedral environment. 

This paper does not exhaust all currently known applications of our new technique. 

In several companion papers [8], [9] we apply the technique to obtain tight complexity 

bounds for the union of axis-parallel hypercubes in higher dimensions, and tight or 

nearly tight bounds for various generalized Voronoi diagrams in higher dimensions. 
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Other applications of our technique improved bounds on the complexity of the union of 

convex polyhedra in 3-space, improving by a logarithmic factor earlier bounds given in 

[6] and [7]. 

2. Lower Envelope of Segments 

We begin by exemplifying our technique on the problem of bounding the maximum 

complexity of the lower envelope of n line segments in the plane. 

Let s be a set of n nonverfical line segments in the plane, in general position. By 

general position we mean that any two segments intersect in at most a single point, and 

that no three segments share a single point. Let ,A(L) denote the arrangement of s  An 

intersection point p between the interiors of two segments of/2 is said to be a k-level inner 

vertex of.A(/2) if there are exactly k segments in/2 passing strictly below p. (We refer to 

such vertices as inner vertices, to distinguish them from the endpoints of the segments.) 

Let Ck(/2) denote the number of k-level inner vertices in .A(/2), and let Ck(n) denote 

the maximum of Ck (/2) over all sets of n segments in the plane, in general position. We 

want to bound Co(n), the maximum number of inner vertices on the lower envelope of 

/2. It is well known that Co(n) = | [21], [26]; here we only prove a weaker 

upper bound of O (n log n). This serves as an introductory example of our technique for 

analyzing the complexity of various substructures in arrangements. 

Our technique consists of two parts. The first part involves geometric analysis that 

enables us to bound the number of 0-level inner vertices in terms of the number of l-level 

inner vertices, plus some excess that we can bound using a more direct analysis (which 

is trivial in the case of segments). It proceeds as follows. 

Let p be a 0-level inner vertex of.,4(/2). We sweep a vertical line from p to the right, 

and stop the sweeping as soon as we encounter one of the following two types of events 

(see Fig. 1): 

(i) We reach an endpoint of one of the segments. 

(ii) We reach a l-level vertex. 

An important observation is that the sweeping line can never reach a 0-level inner vertex 

before any of these events are encountered, so we can reach every such event only from 

(at most) one 0-level vertex. Let D (E) denote the number of events of type (i); we clearly 

have D(E) < 2n, which leads to the inequality 

Co (L) _< C1 (s + D (/2) < C~ (/2) + 2n. (1) 

The second part of our technique applies a simple variant of the random-sampling 

technique of Clarkson and Shor [ 11 ]. Together with inequality (1), this gives a recurrence 

relation whose solution yields a bound on Co(n). 

This part proceeds as follows. We take a random sample R of n - 1 segments of E, 

that is, we obtain ~ by removing a random segment from 12. Each 0-level inner vertex 

p of ,A(E) will appear as a 0-level vertex of .A(7r if an only if the two intersecting 

segments containing p are in R.  This will happen with probability (n - 2)/n. Similarly, 
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Fig. 1. 

type (i) event type (ii) event 

Sweeping from a 0-level inner vertex: terminal events of types (i) and (ii). 

each l-level inner vertex p '  of.A(L) will appear as a 0-level vertex of .A(7~) if and only 

if the segment in L below p '  is not chosen in 7~. This will happen with probability 1/n. 

No other inner vertex of A(L) can appear as a 0-level vertex of .A(~). Hence 

n - 2  1 
E(Co(7~)) = Co(L) + -C1 (L), (2) 

n n 

where E denotes expectation with respect to the random sample R.  Putting (1) and (2) 

together, we get 

n - 1 C0 (12) n - 2 Co (L) + 1 Co (L) 

n n n 

n - 2 1 2n) <_ - - C o ( L ) +  (C~(L)+ 
n n 

= E(C0(~))  + 2. 

Since E(C0(7~)) < Co(n - 1), we obtain the following recurrence: 

n - -  1 
- - C o ( n )  < C o ( n -  1 ) + 2 ,  (3) 

n 

and C0(2) = 1. The solution of this recurrence is easily seen to be Co(n) < 1 + 

2n loge(n - 1), so we obtain: 

T h e o r e m  2.1. The number of inner vertices on the lower envelope of n segments in the 

plane is at most 2n log e n. 

Remark.  The same bound for Co(n) has been obtained by a different proof, given in 

[25] and based on analysis of Davenport-Schinzel sequences of order 3. Both proofs 

obtain essentially the same recurrence for Co (n). An intriguing open problem is to obtain 

a purely geometric (and hopefully simple) proof of the known tight bound | (na (n)). 

3. T h e  T e c h n i q u e  in an  A b s t r a c t  Se t t ing  

In this section we describe our analysis technique in a more general and abstract manner, 

so as to facilitate its subsequent application to several different problems. It would be 

helpful to compare the general setting with the specific example given above. 
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The general setup is similar to that used by Clarkson [10], Clarkson and Shor [11], 

de Berg et al. [12], Mulmuley [22], and others. Let/2 be a set of n (geometric) objects. 

Let 0(/2) be a set of "features," where each feature is defined in terms of d objects 

of/2. We refer to d as the combinatorial dimension of the problem. In addition to the 

d objects defining a feature ~o, there may be other objects that "conflict" with ~0. If no 

object conflicts with ~o, then ~0 is said to be exposed, or to lie at level 0. Otherwise, we 

define the level of ~o to be the smallest number of objects whose removal causes ~o to 

become exposed (observe that none of the removed objects can be any of the d objects 

defining ~o). Let Ok (/2) denote the subset of features in �9 (/2) whose level is exactly 

k. An important characteristic property that we use is that for any ~ C /2 we have 

0 ( ~ )  N 0o(s  c 0o(7~). This states the obvious property that, if a feature ~o ~ 0(/2) 

is defined only by objects in ~ and does not conflict with any object of/2, then it does 

not conflict with any object o f ~  and is thus in 00(~) .  Our goal is to bound IO0(s as 

a function of n. 

Remark.  In most applications the minimal set of objects whose removal exposes a 

feature ~o is unique, and consists of all objects that conflict (individually) with ~o. In some 

cases, though, exposing ~o can be done in more than one way. As an example, consider 

the case where/2 is again a set of segments in the plane, and where a vertex of the 

arrangement of/2 is exposed if it lies on the boundary of the face of the arrangement 

that contains the origin. In this case it may be possible to expose a vertex by removing 

several different subsets of segments. (See also [12]). 

Our analysis technique consists of two parts. The first part, which is specific for the 

problem under consideration, uses geometric analysis to bound the number of 0-level 

features in terms of the number of l-level features plus some known excess. The result 

of this part is an inequality of the form 

pCo(/2 ) ~ C 1 (/2) --1- D(E), (4) 

for some constant p > 0, where Ck (12) is the number of k-level features in �9 (/2), and 

D(E) is the excess. We assume that D(/2) can be bounded, using separate analysis, by 

some function D(n) of n. 

The second part of our technique is based, as in the case of segments, on a simple 

variant of the random-sampling technique of Clarkson and Shor [11]. Together with 

the above inequality, this gives us a recurrence relationship for Co(n), the maximum of 

C0(/2) over all collections/2 of n objects of the type that we consider here. The solution 

of this recurrence yields the desired bound. 

As in the case of segments, we take a random sample ~ ___ /2 of size n - 1, that is, 

we obtain R by removing a random object from/2. Each 0-level feature ~o of 0(/2) will 

appear as a 0-level feature of O(7~) if (and only if) the d objects defining ~0 are chosen 

in ~ .  This will happen with probability (n - d) /n .  For each l-level feature ~o' of O(/2), 

there exists at least one conflicting object whose removal makes ~o' a 0-level feature. 

Hence the probability that ~0' will appear as a 0-level feature of O(7~) is at least 1In. 
Hence we have 

n - d  1 
E(C0(~))  > - - C o ( / 2 )  + C1(s (5) 

n n 
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where E denotes expectation with respect to the random sample ~ .  Putting (4) and (5) 

together, we obtain 

n - d + P c o ( E )  - n - d c o ( E  )+s  
n n n 

n - d ! D(E)) - - C o ( s  + (C~(s + 
n n 

E(Co(TE)) + i D ( s  
n 

Since E (C0(~ ) )  < Co(n - 1), we get the following recurrence: 

n - d + p  1 
Co(n) ~ C o ( n -  1 ) + - D ( n ) .  (6) 

n n 

This recurrence may have different solutions, depending on the possible values of  p 

and D(n). In general, we have: 

Proposi t ion 3.1. The solution F(n) of the recurrence 

n -  tF(n) < F(n - 1) + 1D(n), (7) 
n n 

for any ftxed real t > O, satisfies 

( [ F ( n ) =  0 n t .  1-F ~ ~ j l  

j=Ftl+l  

(8) 

In particular, 

(a) I f  D(n) = O(nt'),for any t' < t, then F(n) = O(nt). 

(b) I f  D(n) = O(n t log c n),for any c > O, then F(n) = O(n t log c+l n). 

(c) I f  D(n) = O(nt'),for any t' > t, then F(n) = O ( n t ' ) .  

Proof. Claims (a)-(c) follow from (8) by routine calculations, which we omit here. 

We thus only give the proof of  (8). The proof  is trivial for integer t: Dividing (7) by 

(n - 1)(n - 2 ) . . - ( n  - t), we obtain a telescopic recurrence whose solution is easily 

seen to satisfy (8). The proof is more involved when t is not an integer, and proceeds as 

follows. 

For any positive real number t, and for any n > t, define the factorial-like function 

ft(n) = n ( n -  1 ) . . - ( n -  LtJ + 1)(n - [tJ) t-Ltj = O(nt), 

and let fo(n) = 1. First we show that for all positive integers k < n - t we have 

ft(n) fk(n) 
- -  > 

ft (n - k) - fk (n - t) 
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The proof  proceeds by induction on k. Let m = [tJ and r = t - m. For k = 1 we have 

( )r ( 1 )--r 
n - m  n 1 

f t (n)  n n - m - 1  n m n m 
f t (n  - 1) n - - m  

n r n f l ( n )  
> - -  1 . . . .  
- n m n m - -  n - -  t f l ( n  - -  t )  

(the inequality holds since 0 < r < 1). For k > 2, we have, by the induction hypothesis 

(applied to k - 1 and to 1), 

f,(n) 

ft  (n - k) 

f~(n) f t (n  - k + 1) 

f , (n  - k + 1) f t (n  - k) 

f k - I  ( n )  n - -  k + 1 

- f k - l ( n - - t )  n - k + l - t  

f k (n )  

fk(n - t ) '  

as long as k < n - t. Next we unfold the recurrence formula, to obtain, 

F(n)  < - -  

< 

n 

n - t  

n 

n - t  

( F ( n - 1 ) +  D~n) )  

n - 1 F (n - 2) + + 

- -  n - - - t ' - -  1 n -  1 ] 

fk(n) ~ f i (n)  D ( n - i  + 1) 

< _ -  �9 F ( n  - k) + 2_., f T ~ - - t ) "  n - i + 1  A ( n  - t) i=l 

k 
< f t (n)  . F ( n - k ) + E  f t (n)  D ( n - i + l )  

- -  f t ~ - - - i ) "  n - i + l  - f , ( n - k )  i=1 

Taking k = n - [t] (which satisfies the constraint k < n - t), we get 

- - < - - + F ( n )  F ( [ t ] ) s  ( ( j )  

f t (n)  - f t ( [ t ] )  j f [ ~  --- 1) j=[t]+l t 

Since f t ( j  - 1) = ( ~ ( j t ) ,  the bound of  (8) follows. This completes the proof of the 

proposition. [] 

4. L o w e r  E n v e l o p e s  in  A r r a n g e m e n t s  o f  S i m p l i c e s  

Let 8 be a set o f n ( d  - 1)-simplices in •d, and let ,,4(8) denote the arrangement of  8 .  In 

this section we consider the problem of bounding the combinatorial  complexity of the 

lower envelope of,5. That is, i f  we regard each simplex in ,5 as a partial l inear (d - 1)- 

variate function, the lower envelope is the (graph of  the) pointwise minimum of  these 

functions. The lower envelope is a polyhedral  set, and we measure its complexity by the 
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number of vertices. (The number of all other faces is easily seen to be proportional to the 

number of vertices, if the simplices are in general position. We do indeed assume that 

the simplices are in general position, arguing, as in previous works,/hat the maximum 

complexity of the envelope is attained for sets S in general position.) Note that the 

pointwise minimum of simplices is generally not continuous. 

We derive here a new, and simpler proof of the known tight bound on the complexity 

of the envelop, previously proved in [15], [23], and [25]: 

Theorem 4.1. The maximum number of vertices of the lower envelope of n (d - 1)- 

simplices in Rd,for d > 2, is | 

Proof. We draw a vertical hyperplane through each (d - 2)-face of every simplex in 

S, and add those hyperplanes to our arrangement. An outer vertex in the augmented 

arrangement is a vertex that lies in one of these vertical hyperplanes, whereas an inner 
vertex lies in the intersection of exactly d simplex interiors and avoids these hyperplanes. 

We assume that the simplices of S are bounded and in general position�9 It is easily 

seen that neither assumption involves any real loss of generality (see also the previous 

cited proofs). 

The lower bound has been shown, e.g., in [23]; it follows easily from the lower bound 

f2 (not(n)) for arrangements of segments in the plane, as given in [26]. 

We prove the upper bound by induction on d. The bound holds for d = 2 (the case of 

line segments in the plane), as follows from the results of [21]. Fix d > 3, assume that the 

upper bound holds for all 2 < d' < d -  1, and let S be a collection ofn (d - 1)-simplices 
in R d. 

A vertex v e .A(S) is said to be a k-level vertex if there are exactly k simplices of S 

passing strictly below v. Let C~ (S) denote the number of k-level inner vertices in ,4(3), 
and let C~(n, d) denote the maximum of Ck(S) over all possible sets S of n (d - 1)- 

simplices in ]~d in general position. Let D(S) denote the number of outer vertices of 

the lower envelope, and let D(n, d) denote the maximum of D(S) over all sets ,S of 

n simplices as above. Our goal is thus to bound Co(n, d) and D(n, d), which together 

serve as our measure of the combinatorial complexity of the lower envelope. 

The outer vertices are easy to deal with. Let f be a (d - 2)-face of a simplex s, and let 

hf be the vertical hyperplane passing through f .  We intersect hf with all the simplices 

in S, thereby obtaining a (d - 1)-dimensional arrangement of O (n) (d - 2)-simplices 

within h f, which we denote by .Ay (the intersection of a simplex with a hyperplane is 

not necessarily a simplex, but it is a convex polytope of constant complexity, and can 

be partitioned into O(1) simplices, where this constant depends on d). We also denote 

by .Af the arrangement J4f after removing the intersection s fq hf from it. Then each 

outer vertex of the lower envelope of .A(S) within hy c a n  be identified with an (inner 

or outer) vertex of the lower envelope of either .Af or .Af. Since there are nd(d - 1)/2 

such (d - 2)-faces f ,  we get 

D(n, d) < 
n d ( d -  l) 

�9 2 ( C o ( O ( n ) ,  d - 1) + D ( O ( n ) ,  d - 1)), 

and the induction hypothesis implies that D(n, d) = 0 (nd-lot(n)). 
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Next we bound the number of inner vertices, using our new technique. Each 0-level 

inner vertex v of .A(S)  is incident to exactly d edges of .A(S) ,  each of which emanates 

from v and is hidden from below by one of the simplices incident to v. We trace each of 

these edges from v, and stop tracing as soon as we first encounter one of the following 

types of events: 

(i) We reach a vertical (d - 1)-dimensional slab h, spanned by a (d - 2)-face of 

some simplex in S. 

(ii) We meet a new simplex at a point v', which is necessarily a l-level inner vertex of 

.A(S) .  In this case we say that v' and v are neighbors (in the arrangement .A(S)) .  

An important observation is that we can never reach a 0-level vertex during any of 

these d tracings, before one of these types of events is encountered. Hence any of these 

"terminal" events can be reached at most once along any of its incident edges. 

If we intersect the n d ( d  - 1)/2 vertical slabs that arises in case (i) above with the 

simplices in S, we get nd(d  - 1)/2 arrangements, each consisting of O(n)  (d - 2)- 

simplices in I~ a-1. Each of the terminal events of type (i) is easily seen to be either 

a l-level or a 2-level inner vertex of one of these arrangements. We charge each such 

vertex by, say 2 units from each of the two possible directions in which it can be reached, 

for a total of 4 units. The total charge of all terminal events of types (i) and (ii) is thus 

bounded by 

n d ( d -  1) 
�9 4 ( C 1 ( 0 ( n ) ,  d - 1) + C2(O(n ) ,  d - 1)). 

Using a standard application of the Clarkson-Shor probabilistic technique [11] (with a 

random sample of, say, half of the simplices in such a (d - 1)-dimensional arrangement), 

we easily obtain 

C l ( O ( n ) ,  d - 1) + C e ( O ( n ) ,  d - 1) = O ( C o ( O ( n ) ,  d - 1)). 

Thus, by the induction hypothesis, the total charge of all terminal events of type (i) is 
bounded by O(nd- lo t (n ) ) .  

In case of a type (ii) terminal event, we charge the l-level inner vertex v' that we 

reach�9 Let m(v ' )  denote the number of O-level neighbors of v', which is the number of 

times v' will be charged. We give v' a total of 1 unit of charge, and it pays 1 / m ( v ' )  units 

to each O-level neighbor. A l-level inner vertex can be charged by type (ii) events up to 

d times, thus the charge it can pay to a O-level neighbor will be at least 1/d units. This 

implies that any O-level inner vertex v receives at least 1 unit of charge. 

4 units of charge. By We next claim that every 0-level inner vertex v receives at least 

construction, this is the case when at least one of the tracings from v reaches a terminal 

event of type (i), so we only consider vertices v for which all d tracings from v terminate 

at type (ii) events. 

We represent each inner vertex of ,A(S) by the (unordered) tuple of the d simplices 

incident to the vertex. Let v be a 0-level inner vertex represented by the tuple (1, 2 . . . . .  d). 

For any simplex x, not incident to v, let Vx be the collection of all l-level neighbors 

of v incident to x, let Sx be the set of simplices hiding some vertex in Vx, and let Nx 
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be the set of  0-level neighbors of  the vertices in Vx (note that IS~l = IV~l). We have the 

following two claims: 

(a) 

(b) 

Any member  of  Nx \{ v} is represented by (1 . . . . .  j - 1, x,  j + 1 . . . . .  d) for some 

j ~ {1 . . . . .  d]\S~. 
Indeed, any vertex v' E Vx is obtained by replacing one of  the simplices incident 

to v, say simplex 1, by x, where the replaced simplex 1 hides v' from below. We 

represent such a vertex v ~ by the tuple (x, 2 . . . . .  d[1). To prove the claim, let 

v' E Vx have this representation, and suppose that v' has another 0-level neighbor 

vl. The representation of  any such 0-level neighbor is obtained by removing one 

of the simplices 2 . . . . .  d incident to v' and by replacing it with the hiding simplex 

1. Suppose that Vl is not incident to the simplex 2; then vl is represented by the 

tuple (x, 1, 3 . . . . .  d). Now v cannot have a l-level neighbor incident to x and 

hidden by simplex 2, since the representation of such a neighbor would have to 

be the same as that of  vl, which is not a l-level vertex. Thus the simplex 2 cannot 

be in Sx. The claim now follows. 

For any k E {1 . . . . .  d}, only one set Nx can have a member  that is not incident 

to the simplex k. 

To see this, consider, with no loss of  generality, the case k = 1, and assume to 

the contrary that v' 1 E Vx has a 0-level neighbor vl represented by (x, 2 . . . . .  d), 

and that v~ E Vy has a 0-level neighbor v2 represented by (y, 2 . . . . .  d),  and 

x ~ y. (It follows from claim (a) that these are the only possible vertices with 

these properties.) The three vertices v, Vl, v2 lie on the same line segment e, 

formed by the intersection of the simplices 2 . . . . .  d, and none of them is hidden 

from below by any simplex of S. Suppose, with no loss of  generality, that Vl is the 

vertex in the middle. Then the hyperplane yrx containing the simplex x must pass 

strictly below one of the vertices v, v2,; suppose, for definiteness, that is passes 

below 02. Consider the polygonal path p: VlO' 1 vv'2v2. By construction, p starts 

on simplex x, and it does not meet any vertical slab through any (d - 2)-face 

of  x. Thus p must reach 02 while it is above the simplex x,  a contradiction that 

establishes our claim. See Fig. 2 for an illustration. Similar arguments apply when 

v or v2 is the middle vertex. 

Suppose that the l-level neighbors of  v are grouped into m subsets Vxl . . . . .  Vx~,, for 

appropriate distinct simplices Xl . . . . .  xm. We clearly have )"~,i~1 [Vx, I = d. Claim (a) 

implies that I Vx, I +1Nx~ \ { v } I < d, for each i, and Claim (b) implies that )--~ 7=i I Nx, \ { v } I < 
d. The number of  0-level neighbors of  each member  of  Vx, is at most INx, I, so each of 

these members  will pay to v at least 1/I Nx, I units. Summing this over all l-level neighbors 

_ v . ~ .  _ ./~_1 . .~v.2.. e 

N _ /  

Fig. 2. The polygonal path used in the proof of Claim (b); it is illustrated in ~3, with a side view (left) and 
a top view (right). 
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m 
of v, we conclude that the total charge that v will receive is at least )-~.i=1 ]Vxi I/INx, I. 
We thus want to minimize the sum )--~m=l a i / ( b i  + l ) ,  subject to the constraints (i) a i are 
positive integers, (ii) bi are nonnegative integers, (iii) Eim=l ai = d,  (iv) ai + bi <_ d, 

for each i = 1 . . . . .  m, and (v) ~,i"=l bi < d. A simple (but formally somewhat tedious) 

exercise shows that the total charge is minimized when m = 2, al = b2 = Ld/2J, and 
a2 = bl = [d/2q. In this case v receives 

[ d J  1 [ d l  1 

�9 [d/2] + 1 + " [d/2J + 1 

units of  charge. For d = 2r or d = 2r - 1, this amount is 1 + (r - 1) / ( r  + 1), which 

is at least 4 for any d > 3. To summarize, we have shown that each 0-level inner vertex 
4 receives at least g units of  charge. This implies that 

4Co(S) < C1 (S) + O(nd-lot(n)). 

Using our technique, we obtain the recurrence 

n d + 
~ Co(n) <_ Co(n - 1) + l o ( n d - l  ot(n)), 

n n 

whose solution is Co (n) = O (nd-lot (n)) (see Proposition 3.1). This completes the proof  

of  the theorem. [] 

R e m a r k .  This analysis extends the one give in Section 2 for the case of  segments in 

the plane. It is interesting to note that the argument given above fails for d ---- 2; that is, 

we can only show in that case that a 0-level vertex gets 1 unit of  charge, which leads to 

the logarithmic factor in the bound. This indicates that the planar case is much subtler 

than the higher-dimensional cases, and that our technique is not sensitive enough to yield 

the bound O(na(n)) for the planar case. 

5. Single Cell or Zone in an Arrangement of Simplices 

Let S be a set of n (d - 1)-simplices in ~d. As in the preceding section, we assume that 

the simplices of S are in general position. As argued in [4] and [5], this involves no loss 

of generality in the foregoing analysis. 

Let P be a fixed algebraic surface of dimension < d - 1 and of constant algebraic 

degree, or the boundary of an arbitrary convex set. We denote by Zp (S) the zone of P in 

,A(S), namely the collection of all cells of. ,4(8) whose intersection with P is nonempty. 

We want to bound the combinatorial complexity of  Zp (S), which we measure by the 

number of vertices of the boundary of Zp (S) (the number of  all other faces of  the 

boundary is clearly proportional to the number of  vertices, assuming general position of 

the simplices of  S, where the constant of  proportionality depends only on d). If  P is a 

singleton, Z e  (S) is the cell of  .A(S) that contains P,  so our analysis applies to single 

cells as well. 

We obtain a new and simple proof of  the following result; earlier proofs were given 
in [3] and [5]: 
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Theorem 5.1. The maximum number of vertices in a single cell or in the zone of a 
fixed-degree algebraic surface, or of the boundary of any convex set, in an arrangement 
of n (d - 1)-simplices in l~ d is O(n d-1 log n). 

Proof. Let Zt,(S) be the closure of the union of Ze(S). A k-face of .A(S) is called 

inner if it lies in the intersection of the relative interiors of exactly d - k simplices 

of S and avoids simplex boundaries. A k-face is called outer if it is contained in the 

relative boundary of at least one simplex in S. An inner k-face f is said to be popular 
if f c_ Zp(S) but f ~ OZt,(S). For instance, every cell of Zp(S) is popular, and a 

popular facet is one that touches cells of Zp (S) on both sides. This notation is borrowed 

from [5]. 

For each simplex o- e S, let h~ be the hyperplane containing o-. For each inner vertex 

v of ,A(S), the triple (v, R, F) is called a k-border if the two following conditions are 

satisfied: 

�9 R is a closed cone ofR d whose interior is a connected component o fRd \  u/d=l h~, 

where o-1 . . . . .  o-d are the d simplices incident to v. Each inner vertex v induces 2 d 

cones R of this form. 

�9 F is an intersection o f d - k  hyperplanes from {ho~ . . . . .  h~ } (F  is a k-flat containing 

v). If k = d, then F must be I~ d. 

Let (v, R, F) be any k-border and let f be the unique k-face f C F of.A(S), having 

v incident to f fq R. We call f the face of (v, R, F) in .A(S). If f is a popular face, we 

say that (v, R, F) is a O-levelpopular k-border of Zp(S). 
For a simplex o- e S we say that the quadruple (v', R', F', o-) is a 1-levelpopulark- 

border if (v', R', F ~) is not a 0-level popular k-border of Zp (S), but it is a 0-level popular 

k-border of Zp (S\{o- }). Let C~ k) (P, S) be the number of/-level popular k-borders, for 

i = 0, 1 and k = 0, 1 . . . . .  d, and let C~ k) (P, n) be the maximum of C~ k) (P, S) over 

all sets S of n (d - 1)-simplices in ~d in general position. (Note that C~ok)(P, S) is 

equal to the quantity r0 ~k~ (p, S) in [5], when P is the single point p used in that paper, 

although the subscript 0 has a different meaning in each case.) The quantity C~ d) (P, S) 
counts all the inner vertices on the boundary of every cell in Zp (S), where a vertex 

is multiply counted, once for every 0-level popular d-border that it generates within 

Zp(S). Since the number of all outer vertices in .A(S) is O(nd-1), it suffices to show 
that C(od; ( P, S) = O(n d-1 logn). 

Let b0 = (v0, R0, F) be a 0-level popular k-border of Z? (S), and let f0 be the 

(popular) k-face of b0 in .A(S). Let el be an edge of f0 incident to v0 and within R0, and 

let o-1 be the (unique) simplex containing v0 but not containing el. Let e' 1 be the other 

edge in .A(S) incident to v0 but not contained in o-1 (el and e' 1 are adjacent edges on the 

same line), and let vl be the other endpoint of e' 1 . See Fig. 3 for an illustration. 

If vl is an inner vertex, then let R1 be the unique "cone" induced by Vl and containing 

R0, and let f l  be the face (whether popular or not) of (Vl, R1, F) in .A(S). Let gl be 

the (k - 1)-face of (v0, R0, F tq hal) in .A(S). Note that if Vl is an inner vertex, then e~ 

is incident to f l ,  v0 ~ R1, gl is a (k - 1)-face incident to f0 and f l ,  and if we remove 

o'1 from S, then the faces f0 and f l  become part of a larger inner k-face f( ,  which is 

clearly also popular. Note that it is possible that f0 = f~; this is reflected in the case 



Analyzing Substructures in Arrangements of Piecewise Linear Surfaces 467 

Fig. 3. Moving from an inner vertex o0 to another vertex Pl along an edge Wansversal an incident simplex. 

analysis given below. We conclude that if vl is an inner vertex, then (vl, Rx, F) is a 

O-level popular k-border of Zp (S\{tr }). In any case, one of the following three types of 

configurations must arise: 

(i) vl is an outer vertex. 

(ii) f l  is a popular face (in Zp(S)). In this case gl is also a popular face and 

b' = (v0, R0, F N h~)  is a 0-level popular (k - 1)-border of Zp(S). 
(iii) vl is an inner vertex and fl  is not a popular face. Then bl = (vl, RI, F, trl) is a 

l-level popular k-border of Zp (S). We say that b0 and bl are neighbors in A(S). 

We repeat this analysis for each of the k edges of f0 incident to o0 and within R0. 

For type (i) configurations, we charge the outer vertex vl by 2 units. The vertex vl is 

in the intersection of d - 1 simplices and on the boundary of one of these simplices. The 

only inner edge incident to vl is thus e' 1, so Vl can be charged in type (i) configurations 

only along e' 1 by 0-level popular k-borders of the form (v0, R', F') ,  where e' 1 is contained 

by F'  but not in R'. There are 2 d-1 such cones R' and (dd-~) such k-fiats F'. Thus each 
d-1  d - I  outer vertex can be charged at most (~_k)2 times in type (i) configurations, and the 

total charge for this type of events is thus O (rid-l), where the constant of proportionality 

depends on d. 

For type (ii) configurations, we charge the popular (k - 1)-border b' in the config- 

uration by 2 units. A 0-level popular (k - 1)-border (v0, R0, G) can be charged only 

by 0-level popular k-borders of the form (v0, R0, F') where G C F ~. Since there are 

d - k + 1 such k-flats F',  it follows that (vo, Ro, G) can be charged at most d - k + 1 

times in type (ii) configurations, and the total charge for this type of events is at most 

2(d - k + 1)C~k-1)(P, S). 

For type (iii) configurations, we charge the l-level popular k-border bl; we may 

also charge some outer vertices of Zv (S) (see case (b(i)) below). Let m (bl) denote the 
number of 0-level popular k-border neighbors of bl, which is the number of times bl 

will be charged (in type (iii) events). Since bl can be charged only along the k edges 

of f l  incident to vl and within R1, we have m(bl) < k. We give bl a total of 1 unit of 

charge, and it pays 1/m(bl) units to each 0-level neighbor. Thus the charge it can pay 

to a 0-level neighbor will be at least 1/k units. This implies that any 0-level popular 

k-border receives at least 1 unit of charge (it will receive at least 2 units of charge if we 

reach a configuration of type (i) or (ii) along at least one of the k incident edges). 

We want to show that, for k > 3, every 0-level popular k-border will receive more 

than 1 unit. As just noted, this is the case when at least one of the charging configurations 
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Fig. 4. Two l-level neighbors on the same new simplex. 

involving such a border is of type (i) or (ii), so we only consider popular k-borders for 

which all these charging configurations are of type (iii). 

We denote each inner vertex of .A(S)  by the (unordered) tuple of the d simplices 

incident to the vertex. Let b0 = (v0, R0, F) be a 0-level popular k-border, with the 

inner vertex v0 represented by the tuple (1, 2 . . . . .  d). Let b' 1 = (vii, R'l, F, 1) be a l-  

level popular k-border neighbor of b0, and suppose, without loss of generality, that v' l is 

represented by (x, 2 . . . . .  d), for some new simplex X e S. Let b~ = (v~, R~, F, 2) be 

another l-level k-popular neighbor of b0, with v~ represented by (1, y, 3 . . . . .  d), for a 

simplex y e S. We consider the following three cases: 

(a) x = y. In this case it is easily seen that b' 1 (and also b~) can have at most k - 1 

0-level neighbors. Indeed, the representation of (the vertex of) any such 0-level 

neighbor b is obtained by removing one of the simplices x, 2 . . . . .  d incident to 

v'  1 and replacing it with the "hiding" simplex 1. Moreover, the vertex of b must 
/ 

be contained in R' 1. However, one of the vertices obtained in this manner is v 2 

(when we replace simplex 2 by simplex 1), which is not contained in R' 1, as easily 

follows by construction; see Fig. 4. It follows that b' l can pay at least 1 / ( k  - 1) 

units of charge to b0, so b0 gets a total of at least 

1 k - 1  1 
- - + - - - - 1 + - - > 1  
k -  1 k k ( k  - 1) 

units of charge. 

(b) x ~ y. Suppose that b' 1 has a 0-level neighbor bl -- (vl, R1, F), and that b~ has 

a 0-level neighbor b2 = (v2, R2, F). We consider the following two subcases: 

(i) Suppose that vl and v2 are both obtained by replacing the same simplex, 

say simplex 3, by the respective hiding simplices 1 and 2. That is, va is rep- 

resented by (x, 1, 2, 4 . . . . .  d) and v2 is represented by (y, 1, 2, 4 . . . . .  d). 

It is easily seen by construction, that both vl and v2 must belong to R0. 

Moreover, the three vertices all lie on the same line segment s, formed by 

the intersection of the d - 1 simplices 1, 2, 4 . . . . .  d. Since Vo is the apex 

of R0, it follows that v0 cannot be the middle vertex along s. Suppose, 

with no loss of generality, that the middle vertex is vl, and consider the 

triangle z with vertices v0, v2, and v~. See Fig. 5 for an illustration. Let A 

be the 2-flat containing the intersection of the simplices 1, 4 . . . . .  d, and 

thus containing r. By construction, the edges VoV~ and v2v' 2 of r are not 

crossed by any simplex of S. On the other hand, vl, on the edge roY2, is 

the intersection of s with the simplex x. We conclude that f~, the 2-face of 

(v~, R~, A) in .A(S) ,  in not convex and thus has an outer vertex p '  as one 
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Fig. 5. Charging an outer vertex in the triangle r. 

of its vertices. We charge p' by 4 units, to be divided between b0 and b2. 

The vertex p'  is contained in the intersection of A with a simplex, say a,  

and is on the boundary of a.  It follows that p'  can be charged in type (iii) 

configuration only as a vertex of a unique 2-face in A, namely the 2-face 

f~. It also follows that p'  can only be charged, via f~, by the pair b0 and 

b2, and this charging already implies that b0 receives at least 2 units of 
charge in this case. Since the number of outer vertices is O (n d-I ), the total 

charge of this kind is also O(nd-l).  

(ii) Suppose next that the preceding subcase does not occur, and that vl is not 

incident to simplex j ,  for some j E {3 . . . . .  d} (that is, Vl is obtained by 

replacing simplex j by simplex 1 in the tuple defining v'l). Then v2 must 

be incident to simplex j ,  or else the preceding subcase would occur. This 

is easily seen to imply that rn(b'l) + m(b')  < k + 2, so at least one of 

m(b'l), rn(b'2) must be strictly smaller than k (for k > 3), which means 

that b0 will receive, as in case (a), at least 1 + 1/k(k - 1) units of charge. 

If we put Pk = 1 + 1/k(k - 1), we can conclude that, for k > 3, 

pkC~k)(P, S)  < C (k)r n -- I ~ r , 8 )  q- O(n d-1 • c~k-1)(P, 8))  

and that, for k = 2,  

C0(2)(P, S) < C~2~(P, S ) +  O(nd-'  + C~I)(P, S)).  

Remark. Using arguments similar to those in the proof of Theorem 4.1, we can replace 
Pk by 4, for k > 3. 

We now apply our probabilistic analysis technique. Since l-level borders are not quite 

the same as 0-level borders, we go over the application in more detail. That is, let R C S 

be a random sample of n - 1 simplices. Then the expected number of 0-level popular 
k-borders of Zp (~)  is still 

n - dc k (p, S )  + S) .  
n n 

This follows from the fact that the probability that a l-level popular k-border of Zp (S) 
will yield a 0-level popular k-border of Zp (~) is 1/n. More precisely, a triple (v, R, F) 

may have several simplices a e S such that the quadruple (v, R, F, a)  is a l-level 
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popular k-border of Zp (S). When each of these simplices is removed, the triple (v, R, F) 

becomes a 0-level popular k-border of Zp (~).  This is easily seen to imply the above 

equality. Thus, using our technique, we obtain, for k > 3, the recurrence 

n - d + P k C ( o k ) ( p , n )  <_ C(ok)(p, n _ 1) + l o ( n d - 1  + C J ' - l ) ( P , n ) ) ,  (9) 
n n 

and, for k = 2, 

n - d + l c ~ 2 ~ ( P , n ) < C ( o 2 ~ ( P , n - 1 ) + l o ( n a - l + C ~ l ) ( P , n ) ) .  (10) 
n n 

As shown in [3] and [5], the number of cells in Zp (S) is O (n a- 1), where the constant 

of proportionality depends on d (and on the degree of P if P is an algebraic surface). 

By the Chopping Theorem of [5], the cells in Ze(S )  can be divided into O(n d-l)  
convex polyhedra with pairwise-disjoint interiors. If (v, R, F) is a 0-level popular 1- 

border, then v is either a locally lowest vertex or a locally highest vertex (relative to 

the xa-direction) of a cell in Zp (S). By rotating the coordinate system slightly, we may 

assume that each of these convex polyhedra contains (at most) one locally lowest vertex 

and one locally highest vertex. Since any such vertex belongs to at most d2 a popular 

1-borders, we conclude that C~I)(P, n) = o(na-~). Using the recurrence (10), we 

get, by Proposition 3.1, C~2)(P, n) = O(n a-1 logn). Then, for k > 3, we proceed 

by induction on k, and use the recurrence (9). Applying again Proposition 3.1, we 

obtain C~k)(P, n) = O(n d-1 logn), for k = 3 . . . . .  d. This completes the proof of the 

theorem. [] 

6. Vertical Decompositions in Arrangements of Triangles in ll~ 3 

In this section we obtain the main new result of the paper: improved bounds on the 

complexity of vertical decompositions in arrangements of triangles in 3-space, improving 

and extending previous bounds in [13]. 

Let T be a set of n triangles in II~ 3. Let ,A(T) denote the arrangement of T .  Let P 

be a fixed point set in I~ 3. We denote by Zp (T) the zone of P in .A(T),  as defined in 

the previous section. Let el, e2 be two edges of ,,4(7-) intersecting a common vertical 

line s The open segment s C s between el and e2 is said to be a k-level visibility 
segment, and the triple (el, e2, S) is said to be a k-level visibility configuration, if exactly 

k triangles of 7- intersect s, and s intersects a cell in Zp (T). We distinguish between 

outer visibility configurations, where at least one of the edges e~, e2 is a portion of the 
boundary of some triangle, and inner configurations, where each of these edges is a 

portion of the intersection of the relative interior of two triangles. Denote by Ck (P, 7-) 

(resp. Dk(P, 7")) the number of inner (resp. outer) k-level visibility configurations. 

Denote by Ck ( P , n) (resp. Dk ( P , n ) ) the maximum of Ck ( P , 7-) (resp. Dk ( P , 7-)) over 

all sets 7- of n triangles in general position. 

We want to analyze the combinatorial complexity of the vertical decomposition of 

Zp (7) .  This is a decomposition of the cells of Ze (T) into subcells of constant complex- 

ity, obtained as follows. We take each edge e of each cell C of Zp (T), and extend from 

each point on e a vertical segment up and down into C until it meets the boundary of C 
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again. The resulting collection of vertical faces partitions each cell of Zp (7") into sub- 

cells, each of which has a unique top face and a unique bottom face, each being a portion 

of some triangle in 7". The complexity of each of these subcells need not be constant, so 

we further refine each subcell, slicing it by planes parallel to the y-axis, into prism-like 

subcells of constant complexity. We refer the reader to [13] for more details concerning 

vertical decompositions in arrangements of triangles. As shown there, the complexity of 

the vertical decomposition of Zp (7") is proportional to the sum of the number of 0-level 

visibility configurations and the number of vertices of Zp (7"), so we concentrate on 

bounding the number Co(P, 7") + D0(P, 7`) of 0-level visibility configurations. 

We begin by estimating the number of outer visibility configurations. I~t e be a 

boundary edge of a triangle in 7`, and let h be the vertical strip spanned by e (it is the union 

if all vertical lines intersecting e). Let h +, h-  denote, respectively, the portions of h that 

lie above and below e. We intersect h with all the other triangles in 7`, thereby obtaining 

a two-dimensional arrangement of segments within h. Let .A +, .A e denote, respectively, 

the portions of this arrangement within h + and within h- .  Each 0-level outer visibility 

configuration involving e can be identified with a vertex of either the lower envelope of 

the arrangement .A + or the upper envelope of the arrangement .A e. Since the complexity 

of any such envelope is O(not(n)) [21], and since there are 3n boundary edges of the 

triangles of 7", the total number of 0-level outer visibility configurations is 

Do(P, n) = O(n2ot(n)), 

even if P is the entire 3-space. Similarly, each l-level outer visibility configuration can 

be identified with a l-level vertex in some arrangement .Ae + or .A~-. Using a simple variant 

of the Clarkson-Shor probabilistic technique [11], it is easily seen that we also have 

DI(P, n) = O(n2a(n)). 

Consider next the (more involved) case of inner visibility configurations. We may assume, 

with no loss of generality, that the given trangles are in general position. Otherwise, if 

we perturb them slightly, so as to put them in general position, the number of inner 

visibilities can only increase, as easily checked. 

Let v = (e~, e2, s) be a 0-level inner visibility configuration, where el (resp. e2) is 

a portion of the intersection of two triangles tl, t2 (resp. t3, t4) of 7`, and where el is 

above ea. The visibility segment s lies fully within a single cell, which is necessarily 

a cell of Zp (7`), so, in particular, el and e2 are edges of Zp (7"). We slide a vertical 

segment s', starting from s, so that the top endpoint of s' moves along el and its bottom 

endpoint moves along t3, so that s' crosses t4. (Later we will repeat this sliding in all 

other directions too.) There is always a unique direction of movement of s' where these 

conditions are satisfied; if we move in the reverse direction, similar properties will hold, 

with t3 and t4 interchanged. See Fig. 6 for an illustration. We stop the sliding process as 
soon as we first encounter one of the following types of events: 

(i) s' reaches an endpoint of el, which is either an outer or an inner vertex (in the 

notation of the preceding sections) of some cell of Zp (7"). 

(ii) s' reaches a boundary edge e3 of t3, at the l-level outer visibility configuration 

(el, e3, s'). 
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Fig.  6. 
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Sliding a vertical segment from a 0-level visibility configuration. 

(iii) s' passes through a boundary of a triangle between t3 and et, at an appropriate 

l-level or 0-level outer visibility configuration. 

(iv) s' reaches an intersection edge e', between t3 and a new triangle, at the corre- 

sponding l-level inner visibility configuration (el, e', s ') .  

We apply this sliding process four times, twice by sliding along el and along one of  the 

triangles t3, t4 (as described above), and twice by sliding along e2 and along one of  the 

triangles q ,  t2, in a fully symmetric manner. 

An important observation is that the sliding process can never reach a 0-level inner 

visibility configuration before any of  these terminal events are encountered, so we can 

reach any terminal event at most  once in each possible sliding direction. 

In any of the above cases, we charge the appropriate terminal configuration or vertex 

by 1 unit. Thus each 0-level inner visibility configuration receives 4 units of  charge. 

Each vertex v of  some cell C of  Zp (7") can be charged at most six times in events of  

type (i) (along the at most six edges of C incident to v), and each (0-level or l-level) outer 

visibility configuration can be charged at most twice in events of  type (ii) or (iii). Hence, 

if we denote by M ( P ,  7") the complexity of  Zp (7"), we can bound the total amount of  

charge made in cases (i), (ii), and (iii) by O(n20t(n) + M ( P ,  7")). 
A l-level inner visibility configuration may be charged at type (iv) events up to four 

times. We give each such configuration 2 units of  charge, so, if  more than two charges 

are made to such a configuration, we need to pass the extra charges to other features. 

This is done as follows. 

Let v = (et, e2, s) be a l-level inner visibility configuration, with el lying above e2. 

The visibility segment s stabs a single triangle, which we denote by tx, at some face 

fx ~ tx of ,4(7"). Let tt, t2 be the two triangles whose intersection contains et and 

let t3, t4 be the two triangles whose intersection contains e2. I f  v is charged more than 

twice, then it must be charged by at least one 0-level inner visibility configuration Vl 

of the form (et, e, cr) and by at least one 0-level inner visibility configuration v2 of  the 

form (e', e2, or'). We say that the first charge is made by sliding toward v " f rom above," 

and that the second charge is made by sliding toward v "from below." Then e must be 

a portion of the intersection of tx with either t3 or t4, and e' must be a portion of the 

intersection of tx with either tl or t2. With no loss of  generality, assume that e c tx fq t3 
and that e' c tx fq tl. It is important to notice that e and e' are edges of  the face fx,  and 
that fx is a (popular) face of  Zp  (7"). 

Construct a path rr = yr(v) within fx that connects the points a tq tx and cr' N tx by 

two straight links with s A tx as a common point. See Fig. 7 for an illustration. Since vl 

and v2 both charge v, it follows by definition that no event of  type (i), (ii), (iii), or (iv) 

can occur between 01 and v or between v2 and o (except at v itself). This implies that the 



Analyz ing  Substructures in Ar rangements  o f  Piecewise Linear  Surfaces 473 

. . . .  e -  - -~. . . . .  �9 2 

Fig. 7. Constructing a path from a l-level visibility configuration; the dashed edges are the projections of 
el, e2 onto tx. 

relative interior of Jr does not pass directly below or above any edge of,A(T), except for 

el and e2 (that is, there does not exist a vertical segment whose relative interior meets 

no triangle of 7", which connects a point on Jr with a point on any other edge of,A(7")). 

Also, zr does not intersect any triangle, except for lying on tx. 

Note that the path zr(v) is not necessarily unique. For example, if v is charged by four 

0-level inner visibility configurations, then we obtain four pairs of these configurations, 

where one configuration in each pair charges v from above and one charges v from 

below. Each such pair induces a path like the path rr(v), and all four paths pass through 

the common point s A fx. To avoid this technical issue, we construct for each v as above 

only one of the (up to four) possible paths zr(v), and pass to this path up to 2 units of 

charge, leaving v with only 2 units of charge. 

We construct one such path for each l-level inner visibility configuration v' whose 

vertical segment stabs fx and which is charged at least once "from above" and at least 

once "from below," as v was charged. This will produce a collection of paths within fx,  
each connecting two points on its boundary. The above analysis is easily seen to imply 

that no pair of those paths can cross each other. We repeat this construction over all 

popular faces fx of Zp (7"). 
Our next goal is to bound the number of paths zr (v). The system of these paths within 

a fixed popular face fx can be regarded as a plane embedding of a planar graph G(fx) ,  
whose nodes are represented by the edges of fx and whose edges are represented by the 

paths rr(v). By Euler's formula, the number of such paths is bounded by three times the 

number of nodes (edges of f~) plus the number of graph-faces of degree 2; each such 

face is bounded by two paths zr (v), zr (v'), connecting between the same pair of edges, 

e, e' of fx,  and by appropriate portions of the edges e and e'. We thus need to bound the 

number of these degree-2 faces. See Fig. 8 for an illustration. 

Suppose there are z + 1 adjacent paths that connect between the same pair of edges e, e' 

of f~ and create z degree-2 faces between them, where z _> 2 (see Fig. 8, where the case 

z = 2 is illustrated). Suppose that, as above, e _c t~ tq t3 and e' c_ tx tq tl. By construction, 

each of these paths must then start on e at a 0-level inner visibility configuration whose 

Fig. 8. Constructing a planar graph from the paths rr(v); two faces of degree 2 are shaded. 
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tx Nh  

Fig. 9. The vertical envelope induced by "parallel" paths starting from the edge e. 

other edge lies on tl above e. In other words, consider the vertical strip h spanned by 

e and define in the upper portion of h the two-dimensional arrangement .Ae +, as above. 

Then the z + 1 paths above induce z + 1 inner vertices of the lower envelope of.Ae + that 

lie all on the segment sl = tl A h. However, as is easily seen, for any triple a, b, c of such 

vertices appearing in this order along sa, there exists an endpoint of some segment in 

.,4 + that appears on the lower envelope between a and c. See Fig. 9. It follows that there 

are at least z' = /z/2J such endpoints over the portion of e bounding our z degree-2 

faces. Each of these endpoints induces a 0-level outer visibility configuration, and we can 

charge our z faces to these z ~ outer visibility configurations, concluding that the number 

of such faces is at most three times the number of 0-level outer visibility configurations 

involving edges of fx. This analysis fails when z = 1, but in such a case we simply 

ignore the degree-2 face, replace the two adjacent paths bounding it by a single path, and 

note that none of the two faces adjacent to this path has degree 2. All this implies that the 

number of paths drawn within a face fx is bounded by six times the number of edges of 

fx plus three times the number of 0-level outer visibility configurations involving edges 

of fx. Summing these bounds over all (popular) faces of Zp (T), we conclude that the 

overall amount of excess charges made to l-level inner visibility configurations (over 2 

units of charge per configuration) is O (M (P, 7") + n2~ (n)). In other words, we have 

shown that 

4C0(P, T)  < 2Ca(P, T)  + O(M(P,  T)  + n2ot(n)) 

or 

2C0(P, T)  < CI(P, '7") -t- O(M(P,  T)  + n2ot(n)). (11) 

We can now obtain our first main result: 

Theorem 6.1. Let P be an algebraic surface in I~ 3 of dimension 0, 1, or 2 and of con- 

stant degree, or the boundary of an arbitrary convex set. Then the vertical decomposition 

of the zone of P in the arrangement .A(T) of a set T of n triangles in R 3 consists of 
O(n 2 log 2 n) cells. 

Proof. Since the complexity of the zone of P is O(n 2 log n) (see [3] and [5] and 

Section 5), (11) becomes 

2Co(P, 7") < CI(P, T)  d- O(n 2 logn). 

We now plug this into our probabilistic analysis technique, and note that the abstract 

dimension of the problem is 4, because each inner visibility configuration is defined in 
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terms of four triangles. The recurrence (6) thus becomes 

1 
n - 2C0(P  ' n) < C0(P, n - 1) + -o(nelogn),  

n n 

whose solution is easily seen to be Co (P,  n) = O (n 2 log 2 n) (see Proposition 3.1). The 

asserted bound now follows from the fact, mentioned above, that the number of  cells in 

the vertical decomposition is proportional to the sum of the complexity of  Zp (7-) and 

of Co(P, n) + Do(P, n). [] 

If  P is the entire 3-space, we can modify the above analysis in the following fairly 

straightforward manner. Let ,5 C T be a random sample of  m triangles. Let K(m) = 
E s ( M ( R  3, S)) ,  where E s  denotes expectation with respect to the random sample S. 

Every inner vertex of ,A(T) has probability n-3 (~-3) / (m)  to appear in ,A(S) (this will 

happen if and only if the three triangles incident to the vertex are chosen in S), and the 

number of  outer vertices in .A(S) is O (m2). Thus 

K(m)=O(~3M(I~3 ,  T ) + m 2 ) .  

Let C---;(m) = Es(Ck(]~ 3, S)),  and let E n  denote expectation with respect to a random 

sample R ___ S of  size 17el = m - 1. Plugging (11) into our new technique, we get 

m - 2 - -  m - 2 ( n ) - I ) - - ~  
- - C o ( m )  - C0(ll~ 3, S)  

m m S C T  
ISl=rn 

< ET-e(Co(~ 3, T~)) + 1 0 ( M ( ] ~ 3 ,  S) + m20t (m)) 
m 

ISl=m 

= Co(m - 1) + O K(m) + mc~(m) 

= C- -~ (m-1)+O(~3M(N3 ,T)+m~(m) ) .  

The solution of this recurrence is easily seen to be (again using Proposition 3.1) 

~0(m) = O(~.33M(l~3,7")+m2ot(m)logm). 

Putting m = n, we thus conclude: 

Theorem 6.2. The vertical decomposition of the entire arrangement of a set of n tri- 
angles in I~ 3 in general position consists of 0 (K + n~ log n) cells, where K is the 
complexity of the arrangement. 

R e m a r k .  Theorems 6.1 and 6.2 improve previous bounds given in [13]. Those bounds 

were O(n2+~), for an e > 0, for the cases covered in Theorem 6.1, and O(K + n2+e), 
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for any e > 0, for the entire arrangement (where the constants of proportionality de- 

pend, rather badly, on e). Using the algorithm given in [13] and Theorem 6.2, the ver- 

tical decomposition of the entire arrangement can be computed (deterministically) in 

O(K logn + n2ot(n)log 2 n) time. Using the randomized algorithm given in [12], the 

vertical decomposition of the zone of P (as defined, for an appropriate set P, in Theo- 

rem 6.1) can be computed in O(n 2 log 3 n) expected time. 

Finally, we consider cases where P designates more complex portions of .4(7-). By 

an appropriate adaptation of the preceding analysis, we obtain: 

Theorem 6.3. 

(a) If P is a connected curve that has L crossing points with the triangles of 7", 
then the complexity of the vertical decomposition of the zone of P is 
O(N3/2 L 1/2 + n 2 log 2 n). 

(b) The complexity of the vertical decomposition of all the nonconvex cells of.A(7") 
is 0(n5/2). 

(c) The complexity of the vertical decomposition of any m cells of .,4('-1") is 
O(ml/3n 2 + n 2 log 2 n). 

Remark. The bounds in the preceding theorem are significantly larger than the actual 

complexity of the relevant cells. For example, as shown in [1], the complexity of all 
nonconvex cells is O (n7/3), and the complexity of any m cells is O (m2/3n + n 2 log n). 

Nevertheless, all bounds states in the theorem appear to be new. 

Proof. We start with the proof of (a). If we apply the analysis technique obtained above, 

we get the recurrence 

- - n - 2 c ~ 1 7 6 1 6 2  1 M ( P ' 7 - ) + n ~  

where P is the given curve, and where ~ is a random sample of n - 1 triangles of T.  ff 

we divide the recurrence by (n - 1) (n - 2), and put V ( P, 7") = Co (P, T)/ITI ([TI - 1), 

we obtain 

V(P, T) <_ E(V(P,  T~)) + O M(P, 7") + . 

We unfold this recurrence, and replace V (P, 7-) by the maximum value V (P, n) of this 

quantity, over all collections of n triangles in R 3 (with the same original curve P), to 

obtain 

s M(P, j) s  
V(P, n) <_ + (12) 

j=l ~ 7 '  j= l  

where M (P, j ) is the expected complexity of the zone P in an arrangement of a random 

sample of j triangles of 7". We note that the expected number of crossings of P with the 

triangles in such a random sample is Lj/n ,  so the expected number of cells in the zone of 

P in the sample arrangement is also Lj/n .  Using the bound in [1], we can easily obtain 
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M(P, j) = O((Lj/n)2/3j + j2 log j ) .  (We use here the fact that E(x 2/3) < (E(x))2/3.) 

We substitute this bound into (12), and rewrite the first sum in the bound as 

(L/nW" M(P, j) j - - - - - - - T ~ - t - k  M(P'j)  

J=(L/n) 1/2+1 j3 

In the first subsum we simply use the trivial bound M(P, j )  = O(j3), so this subsum 
is O((L/n)l/2). 

In the second subsum we use the bound on M(P, j) derived above, to obtain 

( (L/n)2~3 " ( ( L / n ) 2 / 3  + log 2 n )  
0 k j4/3 + 1 ~ )  = O~k(L/n)l/6 

j=(L/n}l/2+l 

= o( (L) l /2wlog2n) .  

Since the second sum in (12) is only O(ot(n)log(n)), it is subsumed in the bounds 
just obtained. This is easily seen to imply that Co(P, n) = o(L1/2n 3/2 q- n 2 log 2 n), thus 

proving (a). 

Assertion (b) follows from (a) by taking P to be a spanning path of the union of the 

triangle boundaries; in this case L = O(n2). 
We next prove (c). We apply a similar analysis, with P equal to a set of m "mark- 

ing" points, one in each of the given cells. As shown in [1], we have M(P, j) = 
O(m2/3j + j2 log j) .  We obtain the same bound (12), and we write the first sum in that 

bound as 

ml/3 M(P, j) + ~ M(P, j) 

j~l J-'-"""~ j3 "= j=ml/3+l 

The first subsum is O(m 1/3) (using, as above, the trivial estimate M(P, j )  = O(j3)). 

The second subsum is 

( m2/3 " ( m2/3 n) .  
O ~---~ k- l - ~  ) = O ~ ml/---"~ + l~ 2 

j=ral/3 + l 

Hence C0(P, 7") = O((m 1/3 + log 2 n)n2), as asserted. [] 

The bound in Theorem 6.3(b) can be used to obtain a lazy randomized incremental 
algorithm, of comparable efficiency, for constructing all nonconvex cells of .,4(7). This 

algorithm is based on the recent technique of [12], and is useful for translational motion 

planning in 3-space. In more detail, let B be an arbitrary polyhedron free to translate 

among a collection of polyhedral obstacles. We transform the problem as follows. We 

fix some reference point O on B, and represent each placement of B by the position 

of O. For each pair of a vertex (resp. edge, face) u of B and a face (resp. edge, vertex) 

v of some obstacle, we form the locus tu,v of all placements of O such that u touches 

v at the corresponding placements of B. Each tu.v is a planar polygon. We triangulate 

these polygons, and thus obtain a collection 7" of triangles in 3-space. Let Z1, Z2 be two 
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given placements of B (that is, of O). Clearly, any collision-free translational motion of 

B at which O moves from Z1 to Z2 cannot cross any triangle of T,  so such a motion is 

possible if and only if Z1 and Z2 lie in the same cell of.A(T). To determine whether this 

is the case, we precompute all nonconvex cells of .A(T), and process them for efficient 

point location. Then, given the pair of placements Z1, Z2, we test whether Z1 and Z2 lie 

in nonconvex cells of.A(T). If at least one of them lies in such a cell, then both must lie 

in the same nonconvex cell, so the point locations already determine whether a desired 

motion between ZI and Z2 exists. Otherwise, Z1 and Z2 must lie in the same convex cell 

of.A(T). It is easy to test whether this is the case: Take the straight segment ZI Z2 and test 

whether it intersects any triangle in 7". If not, we have found the desired motion (along 

Z1Z2); otherwise no such motion exists. We thus get an algorithm that requires about 

O (n s/2) preprocessing time and storage, where n is the number of "contact" triangles, 

and can perform motion-planning queries of the above kind in O (n) times per query. 
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