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A New Technique for Instantaneous
Frequency Rate Estimation

Peter O’Shea

Abstract—This letter introduces a two-dimensional bilinear
mapping operator referred to as the cubic phase (CP) function.
For first-, second-, or third-order polynomial phase signals, the
energy of the CP function is concentrated along the frequency
rate law of the signal. The function, thus, has an interpretation
as a time-frequency rate representation. The peaks of the CP
function yield unbiased estimates of the instantaneous (angular)
frequency rate (IFR) and, hence, can be used as the basis for an
IFR estimation algorithm. The letter defines an IFR estimation
algorithm and theoretically analyzes it. The estimation is seen
to be asymptotically optimal at the center of the data record for
high signal-to-noise ratios. Simulations are provided to verify the
theoretical claims.

Index Terms—Cramer–Rao bound, cubic phase, estimation, in-
stantaneous frequency rate, time-frequency rate representation.

I. INTRODUCTION

CONSIDER THE CUBIC phase (CP) signal

(1)

where the are arbitrary parameters, and
is the signal phase. The signal’s instantaneous (angular) fre-
quency rate (IFR) is

(2)

Consider now the CP function, defined by

(3)

Substituting (1) into (3) yields

(4)

It is not hard to see that peaks along the curve
. Thus, the peaks of the CP function are along the

IFR law of the signal and can be used for IFR estimation. It will
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be assumed in practice that the observed signals are “noisy” and
discrete-time. The model for such signals is

elsewhere
(5)

where is a noiseless CP signal, and is complex
white Gaussian noise of power . The sampling rate is unity,
and is an odd integer. The discrete-time CP function is defined
by

(6)

II. IFR ESTIMATION ALGORITHM

The IFR estimate at time is

(7)

The above IFR estimator is analyzed in the Appendix and is
seen to be asymptotically optimal at the center of the data record
for high signal-to-noise ratios (SNRs). The algorithm requires a
one-dimensional maximization, in contrast to maximum-likeli-
hood estimation which requires a three-dimensional maximiza-
tion. By estimating the IFR at several time positions, one could,
for example, find estimates for the parameters.

The maximization in (7) can be implemented with a “coarse”
search followed by a “fine” search. The coarse search can be
implemented directly according to (7), requiring oper-
ations, or with a subband decomposition approach in thefre-
quency rate domain, requiring computations. The
subsequent fine search can be implemented with a Newton al-
gorithm and requires operations.

III. SIMULATIONS

A signal with parameter values , , ,
, , and was immersed in

various different levels of noise. The IFR at was esti-
mated according to (7), with 1000 simulations being run for each
SNR value. The observed mean-square error (MSE) for the IFR
estimate was plotted in Fig. 1 as a function of SNR. The CR
bound (full line) and the theoretically predicted MSE (dotted
line) are also shown in the plot. The observed MSE values are
seen to be close to the predicted values and to the CR bound at
high SNR. The algorithm was found to threshold at4 dB for a
515-point signal. This is significantly lower than the thresholds
for the rival algorithms in [1] and [3], which are approximately
2 dB.
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Fig. 1. IFR estimate mean square error (in dB) versus SNR.

APPENDIX

ASYMPTOTIC MSE OF THE IFR ESTIMATE

It is assumed, initially, that the IFR estimate is required at
, i.e., at the center of the data record. For the noise-free

CP signal , the CP function is

(8)
and there is a global maximum at , corresponding to
the IFR. If is “perturbed” by noise , then
is perturbed by

(9)

where

Now with this perturbation, the peak of moves to
. This Appendix follows the approach in [2] for de-

riving an expression for the MSE of . The following formula
for the asymptotic mean-square fluctuations of the maximum of
a random function is used [2]:

(10)

where denotes expected value and where

(11)

(12)

Using (10)–(12), the following results can be deduced:

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

where . By comparison, the Cramer–Rao
(CR) bound for estimating the IFR is approximately

. Thus, the MSE of the IFR estimate
at approaches the CR bound asymptotically at high
SNR. If an expression is required for the IFR estimate at

, the analysis proceeds similarly. The resulting asymp-
totic MSE expression differs only in that is replaced by

.
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