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Abstract. Canonical correspondence analysis (CCA) is probably the most popular or-
dination method in community ecology. However, it is only a heuristic approximation to
maximum-likelihood estimated canonical Gaussian ordination (CGO), which is the ‘‘ideal’’
method. When proposed in the mid-1980s, CCA held two advantages over CGO: it was
computationally cheaper, and its algorithm was not complex. However, an exponential
increase in computing speed over the last two decades has meant that computation cost is
no longer such a compelling advantage. The computational complexity of CGO has always
been its major difficulty, even though it is statistically more sound and simpler to understand
than CCA. For these reasons, no general computational framework or software has appeared
until now.

This article proposes a new class of statistical regression models called quadratic re-
duced-rank vector generalized linear models (QRR-VGLMs) for maximum-likelihood es-
timated CGO. This is achieved by extending a recently developed class of statistical models
called RR-VGLMs. The extension is named QRR-VGLMs because of the addition of a
quadratic form to each linear predictor, with the consequence that bell-shaped responses
can be modeled as functions of latent environmental variables or gradients. QRR-VGLMs
have several major positive features; for example, their framework is unifying and broad,
so that canonical Gaussian ordination can potentially be performed on a wide range of data
types. The two most important special cases of CGO in ecology, multispecies presence/
absence and Poisson abundance data, are considered in this article. The methodology is
illustrated with a real data set using a software implementation written by the author in
the S statistical language. The code, called the VGAM package in R, is object-oriented and
free, and it allows QRR-VGLMs to be fitted to moderate-sized data sets conforming rea-
sonably closely to the Gaussian model.

Key words: canonical correspondence analysis; canonical Gaussian ordination; direct gradient
analysis; iteratively reweighted least squares; latent variables; maximum-likelihood estimation; or-
dination; quadratic reduced-rank vector generalized linear models; regression: logistic, Poisson, and
reduced-rank; tolerance; unimodal response curve; vector generalized linear models.

INTRODUCTION

Canonical correspondence analysis (CCA) is prob-
ably the most popular dimension-reducing/ordination
technique among ecologists today. Proposed by ter
Braak (1986), CCA is a technique for multivariate di-
rect gradient analysis (ter Braak and Prentice 1988)
whereby species abundances y are regressed against
optimal linear combinations of environmental variables
x in order to ‘‘explain’’ the data as much as possible.
Many biologists fit CCA models using the package
CANOCO (ter Braak and Šmilauer 1998), which runs
under the Windows operating system and has a user-
friendly graphical user interface that has contributed
to its wide popularity. Unfortunately, practitioners of
CCA who are unfamiliar with the literature (e.g., ter
Braak 1986, ter Braak and Prentice 1988) are unaware
that it is only an approximate solution to canonical
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Gaussian ordination (CGO) fitted by maximum like-
lihood estimation. That is, Gaussian ordination with
linear external constraints estimated by maximizing the
likelihood function can be considered the ‘‘ideal’’
methodology because it is statistically sound, whereas
CCA is a heuristic approximation to this. For the last
two decades, this important gap between ideal and heu-
ristics has not been bridged.

Like all statistical methods, CCA possesses both
strengths and weaknesses. One weakness is that CCA
makes assumptions relating to optima, tolerances, and
abundances that cannot simultaneously hold (ter Braak
1987b, ter Braak and Prentice 1988). Another is that
it assumes linearity of the x and the chi-square-trans-
formed y (although Makarenkov and Legendre [2002]
is an attempt to offer some flexibility over this). An-
other deficiency is that CCA models relative abundance
rather than absolute abundance. The strengths of CCA
include its low computational expense and robustness
to the four underlying assumptions (e.g., ter Braak
1987a, Palmer 1993). Johnson and Altman (1999)
showed that CCA provides a reasonable approximation
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to CGO when species’ tolerances do not differ too
much (within a factor of three), are independent of their
optimum environment, and species’ maxima are within
a factor of 10 from each other.

The reasons put forth at the time for using CCA
instead of CGO were mainly because of the latter’s
computational complexity and expense. However, since
the mid-1980s when CCA was proposed, computing
power has increased exponentially so that computa-
tional expense can no longer be considered such a ma-
jor advantage over CGO. Despite the simplicity of ca-
nonical Gaussian ordination (e.g., Eqs. 2–4), a major
reason why CGO has not been used is that no software
has been written that is easy to use and accessible.
Furthermore, no algorithm has been developed to han-
dle responses coming from, more generally, the ex-
ponential family (such as GLMs [Nelder and Wedder-
burn 1972], which handle normal, binomial, and Pois-
son responses).

To this end, the purpose of this paper is to propose
a new class of statistical regression models called qua-
dratic reduced-rank vector generalized linear models
(QRR-VGLMs), which allow the maximum likelihood
estimation of CGO to be performed on a wide range
of statistical models and data types. QRR-VGLMs ex-
tend a class of models called RR-VGLMs by allowing
for the inclusion of a quadratic form to each linear
predictor, so that a bell-shaped response can be mod-
eled for each species. The class of RR-VGLMs was
proposed by Yee and Hastie (2003), and they enable
the potential benefits of reduced-rank regression to be
conveyed to a very wide class of models. RR-VGLMs
themselves are a variant of the class of VGLMs, which
were introduced by Yee and Wild (1996). VGLMs are
a very large class that encompasses a wide range of
multivariate response types and models including uni-
variate and multivariate distributions, categorical data
analysis, time series, survival analysis, generalized es-
timating equations, correlated binary data, bioassay
data, and nonlinear least-squares problems. VGLMs are
expounded with a biological focus in Yee and Mac-
kenzie (2002). QRR-VGLMs inherit many properties
of VGLMs; therefore they can be used to fit CGO to
a wide range of data types. With the unifying theoret-
ical framework provided by QRR-VGLMs, it is also
simpler to write software implementing the method.
This article describes a software implementation called
VGAM and illustrates its use on some real data.

Ordinary generalized linear models (GLMs; see
McCullagh and Nelder 1989) are a special case of the
VGLM class. In an article comparing GLMs with CCA,
Guisan et al. (1999) highlight one strength that CCA
has over GLMs: for community delineation and inter-
pretation CCA is clearly more valuable because it deals
with the co-occurrence of species whereas GLMs are
a distinct regression. To overcome this limitation of
GLMs, they mention the idea of designing a system of
simultaneous regression equations (simultaneous

GLMs) to integrate species co-occurrence/exclusion in-
formation. QRR-VGLMs are a direct answer to this
need: Eq. 12 links M species to a common set of latent
variables v. Actually, CCA is also a separate regres-
sion, but it then projects the fitted values onto an or-
dination diagram (typically in two dimensions) and
gives an impression of community analysis.

Notation and outline of article

In this article, the data consists of matrices Y and
X, which are n 3 M and n 3 p, respectively. There are
M species, n sites, and p environmental variables (the
first environmental variable is an intercept term.) We
write Y 5 (y1, y2, . . . , yn)T as the response matrix (e.g.,
containing counts or species abundances), and X 5 (x1,
x2, . . . , xn)T is the matrix of environmental variables
at each site. Elementwise, Y 5 [(yij)] and X 5 [(xik)],
and i will index sites, j will index species, and k will
index environmental variables. We write xi 5 (xi1, . . . ,
xip)T and x 5 (x1, . . . , xp)T, where x1 5 1 is an intercept
term, i.e., the first column of X is a vector of ones, 1.
All logarithms are to base e. We let \x 2 y\ be the
Euclidean distance between two vectors x and y, i.e.,

. Intercept terms need special care,TÏ(x 2 y) (x 2 y)
therefore we use the vector x(21)i to denote the vector
xi with the first element removed, and B(21) denotes a
matrix B with the first row deleted.

While QRR-VGLMs belong to a much larger family
of statistical models, we only present the simplest types
of QRR-VGLMs (those based on the GLM class) in
this article, for brevity. Recall for GLMs that

Tg(m ) 5 h 5 x b Var(Y ) 5 fV(m) (1)i i i

where m 5 E(Y), g is the known link function, h is the
linear predictor, f is the dispersion parameter which
may be known or unknown, and V is the known var-
iance function.

Canonical Gaussian ordination

One of the simplest and important example of CGO
is Poisson data with M species. The rank-1 model (i.e.,
one latent environmental variable n 5 cTx) for species
j is the Poisson regression

log m (n) 5 h (n) j 5 1, . . . , Mj j (2)

where mj 5 E(Yj) is the mean abundance, and

2h (v) 5 b 1 b v 1 b v (3)j ( j )1 ( j )2 ( j )3

21 v 2 uj
5 a 2 (4)j 1 22 tj

is the linear predictor. Eqs. 2–4 are GLMs in the latent
variable n.

The justification for the squared term n2 is provided
by a large literature dealing with unimodal response
curves to environmental variables. This spans much of
ecological theory, e.g., the ideas of Shelford, Igoshina,
Ellenberg, Hesse, Gause, etc. (see, e.g., Gauch and
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Whittaker 1972b, Gauch 1982, Austin 1985, ter Braak
and Prentice 1988). The n2 accommodates symmetric
bell-shaped curves on the original Y scale.

Eq. 4 is similar to that of the normal or Gaussian
distribution, hence the adjective ‘‘Gaussian’’ is used.
In the second formulation (Eq. 4), uj is often called
species j’s optimum and tj (.0) its tolerance. This rep-
resentation is often used instead of Eq. 3 because of
the ecological interpretations that can be ascribed to
the parameters. The tolerance measures how wide the
response curve is, i.e., how much deviation the species
can tolerate from its optimal environment so that tj is
large for stenoecous species and small for eurycous
ones. It is a measure of niche width. The parameter uj

is the value of the gradient (in the ecological rather
than the mathematical sense) in which mj(n) is a max-
imum; therefore it is the optimal environment for spe-
cies j. Since mj(uj) 5 e , the parameter aj is directlyaj

related to the prevalence/abundance of the species at
its optimum. We call mj(uj) the maximum of species j.

The coefficient b( j)3 in Eq. 3 is important because a
negative value implies the response curve is unimodal
about the optimum uj. If b( j)3 5 0, then the curve is
sigmoid, and if b( j)3 . 0, then the curve is ‘‘u’’ shaped.
Interesting submodels of the above based on ecological
theories include testing H01: h1 5 . . . 5 hM (all species’
response surfaces are equal), H02: t1 5 · · · 5 tM (all
species’ tolerances are equal), and H03: u1 5 · · · 5 uM

(all species’ optima are equal). All these are considered
more generally in Simplification hypotheses.

Another simple example of CGO is with the pres-
ence/absence data of M species at a site. Then Eq. 2
becomes

logit m (n) 5 h (n) j 5 1, . . . , Mj j (5)

the so-called ‘‘Gaussian logit model’’ for species j (ter
Braak and Looman 1986) applied to the hypothetical
environmental gradient n. Here, the logit link function
is used, but other link functions include the probit and
complementary log-log links; VGAM easily allows the
user to choose among these.

VECTOR GENERALIZED LINEAR MODELS

VGLMs, which are described in detail in Yee and
Hastie (2003), involve a set of M linear predictors hj:

Th (x) 5 b x 5 b x 1 · · · 1 b xj j ( j )1 1 ( j )p p

j 5 1, . . . , M. (6)

The VGLM class encompasses all known GLMs (Eq.
1), and are deliberately general so that it includes as
many distributions and models as possible. We attempt
to be limited only by the assumption that the regression
coefficients enter through a set of linear predictors. Eq.
6 can be written as follows:

 h (x )1 i 
Th 5 h(x ) 5 _ 5 h 1 [B ] x i 0 (21) (21)i 

h (x )M i 

T b x(21)1 (21)i 
5 h 1 _ (7) 0  

Tb x(21)M (21)i 

where h0 5 (b(1)1, . . . , b(M)1)T is a vector of intercepts,
and B 5 (b1b2 · · · bM) is p 3 M.

Most VGLMs have a log-likelihood function , 5
,i(h1, . . . , hM), or at least a log-quasilikelihoodnSi51

function (McCullagh and Nelder 1989). Maximum
likelihood estimation is performed by iteratively re-
weighted least squares (IRLS; see, e.g., Green 1984)
using either Newton-Raphson or Fisher scoring.

With multispecies Poisson data, Poisson regression
fits within the VGLM framework (Eq. 6) because

Th 5 log m 5 (log m , . . . , log m ) . (8)i i i1 iM

Here, Yij has a Poisson distribution with mean mij 5
E(Yij), and is the mean of the ith row of Y. Thus log
mi 5 hi 5 BTxi allows M simultaneous Poisson regres-
sions on the environmental variables xi—one for each
species.

In a similar manner, multispecies binary data fits
within the VGLM framework by letting Yij 5 1 or 0
for presence and absence, respectively, of species j at
site i. Then instead of Eq. 8, one simply has

h 5 logit m 5 {log[m /(1 2 m )], . . . ,i i i1 i1

Tlog[m /(1 2 m )]} .iM iM (9)

The two important topics of constraints on the func-
tions and the scaling parameter for VGLMs are briefly
summarized in Appendix B.

REDUCED-RANK VGLMS

Motivation for the class of reduced-rank VGLMs
(RR-VGLMs) can be obtained from the observation
that, for various VGLM models, the matrix of regres-
sion coefficients B(21) in Eq. 7 may be very large for
the data at hand. For example, for M $ 5 species and
p $ 9 environmental variables, there are at least 40
regression coefficients. Consequently, it is clearly ad-
vantageous to reduce the number of parameters. Re-
duced-rank regression can achieve this by constraining
B(21) to be of a lower rank, i.e., B(21) can be replaced
by the approximation

TB 5 CA(21) (10)

where C 5 (c(1)c(2) · · · c(R)) is (p 2 1) 3 R, A 5 (a(1)a(2)

· · · a(R)) 5 (a1 · · · aM)T is M 3 R, and R (#min(M, p
2 1)) is the rank (A and C are both of full-column
rank). Eq. 10 shows that B(21) is approximated by the
(outer) product of two ‘‘thin’’ R-column matrices, and
when applied to the VGLM class, this gives rise to the
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class of RR-VGLMs. A more parsimonious model re-
sults if R K p 2 1 because the resulting number of
parameters is often much less than the full model (the
difference is (M 2 R)( p 2 1 2 R)).

The reduced-rank idea is also important for a number
of reasons:

1) The concept is readily interpretable because
can beT T T T[c x , . . . , c x ] [5 C x 5 n, say](1) (21) (R) (21) (21)

interpreted as a vector of latent variables or hypothet-
ical environmental variables—linear combinations of
the original predictor variables that give more explan-
atory power. They often can be thought of as a proxy
for some underlying variable behind the mechanism of
the process generating the data. In plant ecology, the
idea is an important one, for example, in direct and
indirect gradient analysis (see, e.g., ter Braak and Pren-
tice 1988). The role of C can be considered as choosing
the ‘‘best’’ regressors from a linear combination of the
original regressors, and A as regression coefficients of
these new regressors.

2) The reduced-rank approximation provides a ve-
hicle for a low-dimensional view of the data via an
ordination diagram.

3) It allows for flexible generalizations based on
smoothing.

4) Reduced-rank regression/redundancy analysis
(RDA; ter Braak and Prentice 1988, ter Braak and Loo-
man 1994) for quantitative linear data can be replaced
by RR-VGLMs for binary data and counts. Features
such as biplots are available for RR-VGLMs.

Embedding the reduced-rank constraint within a
large class of models such as VGLMs has the additional
advantage that many models become just special cases,
and software is more easily written and used.

Partial RR-VGLMs

More flexibility is gained by partitioning x into ( ,Tx1

)T, and B 5 ( )T accordingly. Yee and HastieT T Tx B B2 1 2

(2003) propose the class of partial RR-VGLMs, which
is given by

T T Th 5 B x 1 AC x 5 B x 1 An1 1 2 1 1 (11)

where B1 is of full rank (or rather, is subject to known
constraint matrices) and B2 5 CAT. Partial RR-VGLMs
are RR-VGLMs but with the reduced-rank component
only applied to a subset of the regressors. We let pj 5
dim(xj).

Eq. 11 can be interpreted as a reduced-rank regres-
sion of x2 after adjusting for covariates in x1. It follows
the same idea as partial CCA (ter Braak 1988), where
the effects of a set of covariables x1 have been partialed
out to allow the relationship between a set of response
variables and a set of variables of interest to be seen.
Eq. 11 restricts a species’ response to be a linear func-
tion of n, i.e., sigmoid, but in this paper we extend Eq.
11 to give the class of quadratic (partial) RR-VGLMs.
This enables (partial) CGO to be performed. For QRR-

VGLMs, x1 often contains the intercept term only and
x2 are the ‘‘real’’ environmental variables.

QUADRATIC RR-VGLMS

Quadratic (partial) RR-VGLMs extend Eq. 11 by
adding quadratic terms in n to give

Tn D n 1
 

Th 5 B x 1 Av 1 _ 1 1  
Tn D n M

T 21(n 2 u ) T (n 2 u ) 1 1 1
1  

5 a 2 _ (12) 2  
T 21(n 2 u ) T (n 2 u ) M M M

where Dj are R 3 R symmetric matrices, and a is some
vector depending on x1, uj, and the tolerance matrices
Tj. The definition (Eq. 12) is also more general than
the ‘‘partial canonical Gaussian ordination’’ model (ter
Braak 1988) because, for example, the tolerance ma-
trices can differ. The justification for adding the qua-
dratic forms in Eq. 12 is to accommodate the unimodal
response tenet mentioned above.

The jth response surface in Eq. 12 is bell shaped in
the latent variables n if and only if Dj is negative-
definite, i.e., if and only if Tj 5 2 is positive-1 21D2 j

definite. The matrices Dj and Tj control the (ellipsoidal)
contours of the bell-shaped surface in the R-dimen-
sional latent variable space, for example, if they are
diagonal, then the axes of the ellipsoids are parallel to
the nr (r 5 1, . . . , R) (ordination) axes. The contours
represent points that have the same fitted value (e.g.,
abundance or probability). The fitted Ĉ are called (es-
timated) canonical coefficients, the jth column of Ĉ are
called the jth canonical coefficients (which are inter-
preted as weights), and

u 5 T aj j j (13)

is the optimum of species j.
One feature about fitting (partial) CGO models using

maximum likelihood estimation is that the rank-R so-
lution cannot be obtained from a higher rank solution.
This is unlike CCA, where the canonical coefficients
are the same no matter what the dimension, i.e., the
CCA solution is nested. Users of CGO need to specify
a value of R.

Simplification hypotheses

In Eq. 12, the Tj are general symmetric matrices.
Consequently, the total number of parameters grows
very quickly with R. For many applications it is not
practical to have so many parameters, and some sim-
plification is strongly recommended. The following hy-
pothesis tests give some simplications, and some of
these can be handled with the constraints-on-the-func-
tions framework.

H00: Dj 5 O, j 5 1, . . . , M. This states that all the
species’ responses are sigmoid and not quadratic, so
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that the QRR-VGLM becomes a RR-VGLM. This hy-
pothesis will be more likely to be accepted if there is
little environmental variability in the sample.

H01: h1 5 · · · 5 hM. This is a very strong hypothesis.
It states that the response surfaces of all the species
are identical.

H02: T1 5 · · · 5 TM. That is, all species have the
same tolerance matrix. VGAM has an argument
EqualTolerances for this. If true, this hypothesis
simplifies the interpretation of the ordination diagram
and decreases the computational cost of estimating the
model. Ter Braak and Prentice (1988) note that when
the tolerance of the species are allowed to differ, the
likelihood function typically contains many local max-
ima.

H03: u1 5 · · · 5 uM. That is, all species have the
same optimum. Fitting this model does not appear pos-
sible using the constraints-on-the-functions frame-
work.

H04: Tj 5 IR. We call this the ‘‘spherical’’ assump-2t j

tion because the tolerance with respect to each canon-
ical axis is the same. For rank R 5 2, the elliptical
contours are circular. The spherical hypothesis was as-
sumed in ter Braak (1987b:113). The hypothesis H04

must be made in reference with a normalization, e.g.,
Eq. 14.

H02 is particularly important to the user because, if
it is true, then the latent variable space can be rotated
so that all the Tj become diagonal. The canonical axes
can then be stretched/shrunken so that all the Tj become
IR. At this stage, the ordination diagram becomes par-
ticularly easy to interpret.

Theoretically, CGO with Poisson and binary re-
sponses can be fitted to any data set satisfying nM
greater than or equal to the number of parameters. The
benefits of having any of the above hypotheses holding
is that it reduces the number of parameters to be es-
timated. Consequently, there is a gain in speed and
there may be a greater chance of successful conver-
gence.

Ordination diagrams

A major by-product of CGO is an ordination diagram
(also called a latent variable plot in this article), which
is practical for ranks R 5 1 and 2. They enable one to
visualize relationships among the site scores i, then̂
environmental variables x2, and the optima ûj. Relative
abundances can also be read off CGO diagrams.

A CGO latent variable plot for rank R 5 1 is straight-
forward: the x-axis is and the y-axis is or . Forn̂ m̂ ĥ
a CGO diagram for a rank R 5 2 model, the x-axis is

1 and the y-axis is 2. However, ideally, one wouldn̂ n̂
want directions and Euclidean distances to have a nat-
ural meaning, as well as latent variables that are un-
correlated. All these ideals can be met provided an
equal-tolerances assumption (Tj 5 T, say, for all j) is
made.

Distances between points on an ordination diagram
must be viewed in terms of the quantity (n 2 uj)T

(n 2 uj) in Eq. 12. This term is like a squared21Tj

Mahalanobis distance, therefore proximities must be
viewed with respect to the contours associated with the
bell-shaped response surfaces defined by Eq. 12. This
is because, for example, the abundance or probability
of occurrence of a species decreases with distance from
its optimum. We want the Mahalanobis distance and
Euclidean distance to coincide by having Tj 5 IR.

However, currently VGAM uses the normalization
Eq. 14 during the estimation process, which leads to
site scores which are uncorrelated, but in general, the
T̂j will be non-diagonal. Since the elliptical contours
of the T̂j are needed to judge distances correctly, it is
a very good idea if a transformation can be done to
circumvent the need for contours to be displayed on
the ordination diagram. Fortunately, this is possible by
transforming the T̂j so that they are IR. This results in
contours that are spherical, therefore distances between
two points naturally measure the dissimilarity between
the two points. That is, the ordination diagram becomes
a ‘‘distance plot’’—the ‘‘distance rule,’’ whereby a site
that is close to an optimum is more likely to contain
the species than a site that is far from the optimum,
holds. For example, in Fig. 2, sites 12 and 11 are the
most abundant sites of Pardosa monticola.

By default, VGAM’s functions Coef() and
lvplot() (for ‘‘latent variable plot’’) transform the
Tj to IR if the T̂j are constrained to be equal and are
positive-definite. However, in order to retain the un-
correlatedness of the latent variables, the site scores
are first rotated so that the T̂j are diagonal and then the
T̂j are fully transformed into IR. Consequently, Eq. 14
no longer holds, though Var( i) remains diagonal.n̂

Such CGO diagrams need to be scaled so that the
(circular) contours appear circular, i.e., a correct aspect
ratio. When this is done, the circular contours can be
omitted from the plot. Also, CGO diagrams will gen-
erally result in the range of the site scores along the
second latent axis being smaller than the first canonical
axis. One explanation for this is that the first canonical
axis will usually do better at separating out the species
so that there is more overlap between species on the
second axis. This feature can be seen in Figs. 2 and 3.

How can a rank-2 CGO diagram be constructed if
the Tj are not all equal? To do this, one can use Eq.
14 and add the contours of the response surfaces in
order to supply a metric for judging distances and di-
rections. Without the contours, the ordination diagram
will be deceptive and misleading. When the Tj are very
different, the interpretation is unfortunately compli-
cated.

Regardless of the normalization of the latent variable
plot, for R 5 2, one has the as the canonical axes,n̂
with the optima ûj superimposed, and the rows of Ĉ
can be plotted as arrows emanating from the origin. By
projecting the arrows onto the canonical axes nr, the
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way in which each latent variable depends on each
environmental variable can be readily seen. The n in-
dividual site scores i can also be added to the plot. Itn̂
is sometimes useful to add the convex hull of the site
scores to the rank-2 latent variable plot to give an idea
of the sampled range of environments. Any optimum
lying outside this region should be viewed with greater
uncertainty.

It can be noted that CGO diagrams have several fea-
tures not available to CCA. One is that contours of the
bell-shaped surfaces can be added to the plot. VGAM
allows the contour levels to be either relative to the
species’ maximum (e.g., 95%) or an absolute value, or
simply be a specified number of tolerance values away
from the optimum. Another feature is that optima are
not plotted unless the fitted response surface is actually
bell shaped; CCA plots them (weighted averages) re-
gardless. Finally, note that if x2 has mean 0 then E(n)
5 E(CTx2) 5 0; this implies that if the covariates x2

have been centered, then the sample mean (centroid)
of the site scores i over the entire data set will ben
located at the origin.

Residuals

With QRR-VGLMs, there are several types of resid-
uals. These include ‘‘response’’ residuals yij 2 mij, Pear-
son residuals, deviance residuals (applicable for binary
and Poisson data), and working residuals based on the
adjusted dependent vectors zi from the Newton-Raph-
son/Fisher-scoring algorithm. Residual analysis is po-
tentially very useful to check the adequacy of fitted
models and is highly recommended. In VGAM, the
generic function plot() is used to produce residual
plots, whereas lvplot() produces a latent variable
plot or ordination diagram.

SOME TECHNICAL DETAILS

Normalizations

The factorization Eq. 10 is not unique because ACT

5 AMM21CT for any nonsingular matrix M. There are
a number of possible uniqueness constraints, e.g., Yee
and Hastie (2003) use corner constraints. For QRR-
VGLMs, it is convenient to consider two normaliza-
tions. The first is to restrict C so that

TVar(n) 5 Var(C x ) 5 I .2 R (14)

This normalization means the site scores (latent vari-
ables) are uncorrelated and have unit variance. It is
always possible to use this normalization, therefore this
is currently used by VGAM during the fitting stage.

Using Eq. 14 has several advantages. As well as
being always possible, the tolerance of each species
can also be compared to the total variation of the latent
variables, i.e., unity. Another advantage is that it is
quite numerically stable.

The following second normalization is only practical
when the tolerance matrices Tj are equal and corre-

spond to bell-shaped response surfaces, i.e., Tj is pos-
itive-definite under H02. Then we choose M so that

T 5 I j 5 1, . . . , Mj R (15)

i.e., the contours of the response surface are spherical
(circular when the rank is two). The normalization Eq.
15, which gives an ecological scale to the canonical
axes because the individual tolerances are all unity, is
similar in aim to ‘‘Hill’s scaling.’’ Also, Eq. 15 has the
important property that in a rank-2 latent variable plot,
distances in the ordination diagram between optima ûj

and site scores j measure dissimilarities between thesen̂
quantities—the smaller the distance the more similar.

In general, both normalizations cannot hold simul-
taneously. When the second normalization is applicable
(it is to be preferred in latent variable plots), we apply
a rotation followed by a scaling operation. This results
in a relaxing of the first normalization (Eq. 14) so that
Var(n) is merely diagonal. The rotation does not affect
Eq. 14 because the Var(Rn) 5 IR for all orthogonal R.
Consequently, Eq. 14 is not unique.

Even if all the Tj are not all equal, it is possible to
choose one of the species and rotate its (assumed bell-
shaped) response surface so that its elliptical contours
have either minor-axis or major-axis parallel to the first
ordination axis. This is equivalent to transforming Tj

to be diagonal for that species. It is more convenient
to choose the minor axis rather than the major axis
because the former, corresponding to a lower tolerance,
often is associated with a greater separation between
all the species. When the ordination diagram is rotated
as such, the interpretation that can be ascribed is that
the latent variables are uncorrelated, and that the two
latent variables do not interact for this species. In prac-
tice, the species best chosen for this rotation might be
a dominant species whose full environmental range is
reflected in the data set.

Note that Eqs. 14 and 15 differ from the common
normalizations of CCA, viz. Hill’s scaling and biplot
scaling. Consequently, the ordination diagrams pre-
sented here cannot be compared ‘‘exactly’’ to those of
CCA. Currently, by default, VGAM’s Coef() and
lvplot() for CGO objects choose Eq. 15 if
EqualTolerances 5 TRUE; otherwise Eq. 14 is used.

Interpretation of the estimated canonical coefficients
Ĉ should be made only when the site scores i aren̂
uncorrelated, cf. principal components analysis.

Inference and identification of the number
of latent variables

Up to this point, we have assumed the rank R to be
known whereas in practice it is rarely known. Its de-
termination is an important subproblem. Unfortunately,
the likelihood ratio test is not valid due to technical
reasons (see, e.g., the discussion in Anderson [1984]).
Yee and Hastie (2003) suggest the use of information
theoretic-quantities such as minimizing the AIC (Akai-
ke 1974) to determine R.
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VGAM has a methods function Coef. qrrvglm()
that shows which of the fitted hj(n) are bell-shaped.
One ad hoc method is to increase R until many species’
response curves are no longer bell-shaped. Ideally, they
are bell shaped for R 5 1 and 2. As R increases, it is
less likely for species’ response surfaces to be bell-
shaped, therefore it is sometimes necessary to assume
an equal-tolerances assumption Tj 5 T. In practice, it
pays to keep R low if possible (e.g., between 1 and 3,
inclusive) because the computational cost increases
very rapidly with R. This compares with CCA, where
fits are often rank-2 because they are plotted on com-
puter screen and/or paper (although the analysis itself
is of full rank) and CANOCO as currently programmed
extracts only the first four axes.

Empirically, if a higher-rank model is fitted to lower-
rank data (rank R, say), then only the ‘‘first’’ R toler-
ances will be finite under Eq. 14. That is, the contours
of the ellipsoids will be elongated along the R 1 1, R
1 2, . . . canonical axes. Consequently, there is much
‘‘overlap’’ between the species in these higher dimen-
sions. The practical lesson from this is that, provided
the data and the statistical model agree, very wide tol-
erances relative to the site scores among all the species
can be indicative of a model with too high rank. This
is coupled with the problem that too high rank models
become difficult to fit in the first place.

ESTIMATION

Successful application of QRR-VGLMs requires a
fast computer, experimentation, patience, and at least
a rudimentary understanding of how they are estimated.
Such an account is given in Appendix A because of its
higher technical level. In this section, we consider im-
portant practical issues, which are based on Appendix A.

Initial values

Canonical Gaussian ordination estimated by maxi-
mum likelihood will converge faster if good initial val-
ues are provided. As Koojiman (1977b) notes (for non-
canonical Gaussian ordination), good initial values can
be crucial, and the quality of these become more im-
portant with increasing numbers of parameters.

One idea to obtain initial estimates is by fitting the
smallest rank-R QRR-VGLM that is possible. For ex-
ample, in Poisson or binary Gaussian ordination, this
means only fitting R species. Given the Ĉ from the
initial model, this can be fed into the full QRR-VGLM
as initial values. Practical experience with this ‘‘trick’’
has shown it can dramatically decrease the total com-
puting time. A related idea is to fit a CCA model and
use the solution as initial values for the QRR-VGLM—
note however, that software such as CANOCO return
standardized coefficients and use a different normali-
zation.

Given the solution of a rank-R QRR-VGLM, initial
values for the rank-(R 1 1) model could be 50CR11

(ĈR, «) where « is a vector of p2 random normal variates
with zero means.

In the absence of inputted initial values by the user,
VGAM currently chooses each element of C to be in-
dependent normal random variates with zero means.

It should be noted that it is a good idea for each xk

to be checked for outliers, high amounts of skew, etc.,
and appropriate action such as transformations be ap-
plied. For example, Palmer (1993) advocated using the
logarithm transformation for soil chemical data. Ide-
ally, nr 5 x2 needs to be a plausible underlying gra-Tc(r)

dient with bell-shaped responses for each species. If
the individual variables in x2 are ‘‘well behaved,’’ then
linear combinations of such variables should also be
well behaved.

Dispersion parameters

Up until now, it has been assumed that the dispersion
parameters f j are known, so that QRR-VGLMs are
maximum likelihood estimates. When the f j are un-
known, they may be estimated by the method-of-mo-
ments (McCullagh and Nelder 1989), and although the
final model is no longer fully estimated by maximum
likelihood, we loosely still say that QRR-VGLMs give
maximum likelihood estimates because the f j are usu-
ally treated as nuisance parameters.

Approximate standard errors

Standard errors for parameter estimates are generally
available from an IRLS algorithm. For RR-VGLMs,
there are complications due to the fact that A and C
are not simultaneously estimated under a single re-
gression; however, Yee and Hastie (2003) show how
to compute the complete variance-covariance matrix
for the estimated elements of A, B1, and C by fitting
two overlapping models and then combining their es-
timated variance-covariance matrices. For QRR-
VGLMs, one cannot use this method, and furthermore,
the second derivative matrix with respect to the ele-
ments of C appear intractable.

The following is a crude approximation. If we treat
Ĉ as known, and then produce standard errors for the
estimated elements of A, B1, and Dj, then these standard
errors will be generally too small, nevertheless, they
can still be useful for approximate inference. Standard
errors for Ĉ, therefore, are currently unavailable.

EXAMPLE

In this section, VGAM is used to fit QRR-VGLMs
to a Dutch hunting spider data set (ter Braak 1986).
VGAM is based on Version 4 of the S language
(Chambers 1998) and uses the modeling ideas of
Chambers and Hastie (1993), viz. formula, data
frames, and generic functions. Two texts on S
modeling are Venables and Ripley (2002) and Dal-
gaard (2002). All timings presented here were cal-
culated using R 1.8.0 on a 2.4-GHz Pentium 4 ma-
chine running Linux. VGAM is under continual
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FIG. 1. Output from the generic function lvplot() when applied to a rank-1 Poisson QRR-VGLM with unequal tol-
erances. The fitted values are joined by lines; hence the lack of smoothness in the curves. The rug plot at the bottom shows
jittered (slightly to separate ties) values of the site scores i 5 ĉTx2i, i 5 1, . . . , n. The species are: Alopacce, Alopecosan̂
accentuata; Alopcune, Alopecosa cuneata; Alopfabr, Alopecosa fabrilis; Arctlute, Arctosa lutetiana; Arctperi, Arctosa perita;
Auloalbi, Aulonia albimana; Pardlugu, Pardosa lugubris; Pardmont, Pardosa monticola; Pardnigr, Pardosa nigriceps; Pardpull,
Pardosa pullata; Trocterr, Trochosa terricola; and Zoraspin, Zora spinimana.

development. Therefore future changes to its usage
cannot be ruled out. Software implementing VGLMs,
RR-VGLMs, and vector generalized additive models
(VGAMs) are packaged in the VGAM package for
S-PLUS and R.2

Hunting spider data

Ter Braak (1986) applied CCA to M 5 12 species
(see Fig. 1 caption) of hunting spiders in a Dutch dune
area, and a similar analysis is presented here based on
Poisson CGO via QRR-VGLMs (Eqs. 8 and 12). The
data, which originally came from Van der Aart and
Smeek-Enserink (1975), consists of abundances (num-
bers trapped over a 60-wk period) and six environ-
mental variables. There were n 5 28 sites. In the CCA
analysis, a square-root transformation was applied to
the abundances to reduce the effect of large values; we
defer such an analysis to later. For comparison with the
CCA analysis of ter Braak (1986), each of the six en-
vironmental variables was standardized to zero mean
and unit variance.

Suppose the data is stored in a data frame called
hspider. A rank-1 model with unequal tolerances can
be fitted using the following:

2 ^http://www.r-project.org/&

p1 5 cgo(cbind(Alopacce, Alopcune, Alopfabr,
Arctlute, Arctperi, Auloalbi,
Pardlugu, Pardmont, Pardnigr,
Pardpull, Trocterr, Zoraspin)

; WaterCon 1 BareSand 1 FallTwig
1 CoveMoss 1 CoveHerb 1 ReflLux,
family 5 quasipoissonff,
data 5 hspider,
Crow1positive 5 FALSE,
EqualTolerances 5 FALSE).

The VGAM family function quasipoissonff is used
so that a dispersion parameter fj may be estimated for
each species. The environmental variable names cor-
respond, in order, to those in Table 1. Residual plots
of p1 (not given here) did not reveal any gross outliers.
The ordination diagram

lvplot(p1, 1col 5 1:12, llwd 5 2,
llty 5 1:12, y 5 TRUE,
pch 5 1:12, pcol 5 1:12,
las 5 1, main 5 “Hunting spider data”)

gives Fig. 1. Most of the arguments refer to graphical
parameters such as line width, colors, etc. and are op-
tional. With a dozen species, the plot is quite cluttered,
especially with the abundances overlaid as points (dif-
ferent line and symbol for each species). The plot sug-
gests the model provides a reasonable fit to these data.



November 2004 693CANONICAL GAUSSIAN ORDINATION

TABLE 1. Estimated rank-1 Poisson QRR-VGLMs applied to the standardized hunting spider data.

Variable

Ĉ (count data)

Unequal Equal

Ĉ (square-root count data)

Unequal Equal CCA1 CCA2

Water content
Bare sand
Fallen twigs
Cover moss
Cover herbs
Light refl.

20.119
0.261

20.306
0.107

20.172
0.406

20.150, 20.356
0.234, 0.554

20.387, 20.918
0.134, 0.318

20.128, 20.304
0.297, 0.703

20.215
0.227

20.302
0.204

20.089
0.253

20.127, 20.224
0.244, 0.432

20.421, 20.745
0.192, 0.339

20.064, 20.113
0.219, 0.388

20.51
0.33

20.14
0.05

20.28
0.27

20.41
20.10

0.37
20.27
20.15
20.03

Deviance 1176.00 1585.11 167.22 252.29

Notes: ‘‘Unequal’’ and ‘‘equal’’ refer to the tolerances. For the equal-tolerances column, the LHS estimate corresponds to
the normalization Eq. 14, whereas the RHS estimate corresponds to T̂j 5 I2. The unequal-tolerances columns correspond to
Eq. 14. The first two canonical coefficients of CCA (ter Braak 1986) are included (CCA1 and CCA2) for ‘‘comparison.’’
The log-transformed environmental variables are water content (percentage of soil dry mass), bare sand (percent cover of
bare sand), fallen twigs (percent cover of fallen leaves and twigs), cover moss (percent cover of the moss layer), cover herbs
(percent cover of the herb layer), and light refl. (reflection of the soil surface with cloudless sky).

Coefficients and other useful quantities can be ob-
tained using the generic function Coef(), for example,
typing Coef(p1) produces

C matrix:

lv

WaterCon 20.119

BareSand 0.261

FallTwig 20.306

CoveMoss 0.107

CoveHerb 20.172

ReflLux 0.406

Optimum Maximum Tolerance

Alopacce 0.854 19.29 0.508

Alopcune 20.169 18.38 0.431

Alopfabr 1.445 13.03 0.532

Arctlute 20.327 6.17 0.241

Arctperi 1.993 14.59 0.430

Auloalbi 20.298 19.24 0.365

Pardlugu NA NA NaN

Pardmont 0.363 48.60 0.481

Pardnigr 20.270 87.90 0.269

Pardpull 20.213 110.39 0.303

Trocterr 20.347 102.29 0.474

Zoraspin 20.377 27.25 0.360.

It appears that all the environmental variables are
important for the latent variable, and that the strongest
weighting is for light reflection. In Table 1, the first
canonical coefficients of CCA ‘‘agree’’ with the QRR-
VGLM coefficients in that the signs match.

The output reveals that all species except Pardosa
lugubris had a fitted quadratic that was bell shaped. In
general, the estimated response curve of a species has
a higher chance of being bell shaped the larger the

environmental range of the sample data. At their op-
timal environment, Pardosa pullata and Trochosa ter-
ricola are the most abundant species. The location of
the optima, when overlaid on Fig. 1, show seven spe-
cies with their estimated optimum ûj clustered between
20.4 and 20.1 on the latent variable scale.n̂

The estimates of the dispersion parameters were:

Alopacce Alopcune Alopfabr Arctlute Arctperi

2.802 7.526 2.136 1.139 0.848

Pardmont Pardnigr Pardpull Trocterr Zoraspin

12.358 5.575 5.394 14.480 3.115

Auloalbi Pardlugu

5.730 8.849.

Not surprisingly, there is a tendency for species to ex-
hibit overdispersion relative to a Poisson distribution.
If one was willing to assume that each species’ dis-
persion parameter was equal (not realistic here), then
the estimate of this common value would be 5 4.47f̂
for the unequal-tolerances model—a significant amount
of overdispersion.

To test whether the species have equal tolerances,
the above analysis was repeated but with the argument
EqualTolerances 5 TRUE. This gave a deviance of
1585.11 whereas deviance was 1176.00 for the un-
equal-tolerance model. Then a likelihood ratio test
gives P value P[ . 409.11/4.46] ø 0, which gives2x11

extremely strong evidence against H02: 5 · · · 5 .2 2t t1 12

This is not surprising, since the species’ tolerances dif-
fer by a factor of 2. The tolerance for Pardosa lugubris
is undefined because its response curve is not bell-
shaped, and with so little data from this species, it is
not surprising that its fitted curve is ‘‘U’’-shaped. Table
1 also gives the estimated C from the equal-tolerances
model, and these appear to be a little different from
the unequal-tolerances model.

Using a number of different sequences of random
initial C values, estimation typically took between 20 s
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and 80 s (median, 30 s) to converge for the unequal-
tolerances model. The equal-tolerances model typically
took between 10 s and 30 s.

Note that, if a few species are not bell shaped, fitting
a model with equal tolerances may force all species to
become bell shaped because the common tolerance
pools information from all species to give an overall
estimate. For these data, t̂ 5 0. 422 under normalization
(Eq. 14).

Practical experience with this data showed that con-
vergence to the global maximum likelihood solution
was generally the case for the unequal-tolerances mod-
el. With the equal-tolerance model, convergence to its
global solution was less likely.

Square root of the count data

The analysis described in the last section is domi-
nated by the abundant species. For a closer comparison
with ter Braak (1986), we repeated the analysis with
the square root of these data. Doing this can result in
a distribution that can never be exactly Poisson but can
nevertheless be closer to a Poisson distribution than
the original data.

The estimated regression coefficients are given in
Table 1. It can be seen that the signs of the canonical
coefficients Ĉ match in both cases; this is a comforting
property. The latent variable plot (not given) is quite
similar to Fig. 1, and is arguably superior in that the
residual plots are better and a small number of species
no longer dominate the analysis. The estimated dispersion
parameters for the unequal variances model are:

Alopacce Alopcune Alopfabr Arctlute Arctperi

0.523 0.711 0.771 0.279 0.115

Pardmont Pardnigr Pardpull Trocterr Zoraspin

0.970 0.599 0.654 0.564 0.549

Auloalbi Pardlugu

0.836 1.319

which indicate most species are now under-dispersed
relative to a Poisson dispersion. This seems to suggest
the square-root transformation is too severe, and raising
the counts to an intermediate power such as 3/4 might
be better.

Rank-2 model

An equal-tolerances rank-2 model was fitted to 10
species, resulting in a fit with a deviance of 856.5.
Compared to the rank-1 model, it was necessary to
assume equal tolerances to get any useful results (it is
usually difficult for individual species to be bell shaped
in two dimensions; pooling their tolerances can sta-
bilize the results.) Additionally, it appeared necessary
to omit two species from the analysis because of nu-
merical reasons.

The code

r2 5 cgo(cbind(Alopacce, Alopcune, Alopfabr,
Arctlute, Arctperi, Auloalbi,
Pardmont, Pardnigr, Pardpull,
Trocterr)

; WaterCon 1 BareSand 1 FallTwig
1 CoveMoss 1 CoveHerb 1 ReflLux,

family 5 quasipoissonff,
data 5 hspider,
Rank 5 2,
EqualTolerances 5 TRUE.
Crow1positive 5 c(FALSE, FALSE))

typically took between 35 and 60 s to compute. Then
ĈT is

WaterCon BareSand FallTwig CoveMoss

lv1 20.284 0.807 20.86677 0.277

lv2 20.574 0.180 0.00410 20.849

CoveHerb ReflLux

lv1 20.271 0.4822

lv2 0.392 20.0249

which uses T̂j 5 IR scaling, and is similar to the rank-
1 results. The second latent variable can be interpreted
as a contrast between CoveHerb and the two variables
WaterCon and CoveMoss. Compared to the CCA
model of ter Braak (1986),the first column of Ĉ largely
agrees but the second column differs somewhat (see
Table 1) especially in the variable CoveHerb.

The code

clr 5 (1:(10 1 1))[27] # Omit yellow color
adj 5 c(20.1, 20.1, 20.1, 1.1, 1.1, 1.1,

20.1, 20.1, 20.1, 1.1)
lvplot(r2,label 5 TRUE, xlim 5 c(22.7,5.1),

ellipse 5 FALSE, C 5 TRUE,
Cadj 5 c(1.1. 20.1, 1.2, 1.1, 1.1,

20.1),
adj 5 adj, las 5 1, chull 5 TRUE,
pch 5 “1”, pcol 5 clr, sites 5 TRUE)

produces Fig. 2. Both ordination axes are plotted on a
common scale. The arrows display Ĉ and show how
much the environmental variables make up the two
latent variables—by projecting them onto the canonical
axes. Ellipsoid contours at 95% of the maximum values
are plotted later to avoid clutter. The plot here preserves
the rank-1 feature (Fig. 1) that there is a cluster of
species optima along the first ordination axis.

There are many other interesting features of the plot.
The distribution of the site scores i are spread overn̂
an elliptical region (delineated by the convex hull) and
contrasts sharply with CCA where the site scores fall
on the path of an arch—no doubt a spurious artifact.
Additionally, the ‘‘order’’ and the length of the arrows
representing the canonical coefficients Ĉ differ be-
tween CGO and CCA substantially. To compare Fig. 2
and the CCA biplot (Fig. 1 of ter Braak 1986) more
rigorously, a Procrustes analysis would be suitable.
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FIG. 2. CGO diagram for the hunting spider data (using T̂j 5 IR). The dashed line is a convex hull of the labeled site
scores (i for i). The ‘‘1’’ symbols denote the position of the species’ optima, and the arrows denote the canonical coefficientsn̂
Ĉ. Species abbreviations are in the Fig. 1 legend; abbreviations for environmental variables are defined in Table 1.

Fig. 2 is quite cluttered, so

lvplot(r2, label 5 TRUE, xlim 5 c(22.8, 5.0),

las 5 1, chull 5 TRUE,

adj 5 adj, ecol 5 clr,

pch 5 “1”, pch 5 clr,

sites 5 TRUE)

was used to produce Fig. 3. As an example of inter-
preting CGO diagrams, the latent variable plot suggests
sites 3, 4, and 5 have similar abundances of Alopecosa
cuneata, but sites 3 and 4 are expected to have more
Pardosa monticola than site 5. The latent variable plot
does not imply that site 5 has the same absolute abun-
dance of Trochosa terricola and Alopecosa cuneata
because the contours are relative to each species’ max-
imum.

Relative abundances of one species at two sites can
be readily read off from the CGO plots. For example,
let A9 and A23 be the absolute abundance of Pardosa
monticola for sites 9 and 23, respectively. Then, be-
cause T̂ 5 I2, we have A9 5 exp(aPardmont 2 \n9 21

2

uPardmont\
2) and A23 5 exp(aPardmont 2 \n23 2 uPardmont\

2),1
2

where the Euclidean distances are measured in latent
variable units. In Figs. 2 and 3, it can be seen that

2 ûPardmont\ ø 1 and \ 2 ûPardmont\ ø 2; therefore\n̂ n̂9 23

Â9 / Â23 ø exp{ (22 2 12)} ø 4.5. That is, site 9 is1
2

expected to have ;4.5 times more counts of Pardosa
monticola than site 23. In fact, the actual ratio is 26/6
ø 4.3. In general, if site i2 is c times further from a
species optimum u than site i1 (c . 1), then

2A \n 2 u\i i1 1 25 exp (c 2 1) .5 6A 2i2

In the same vein, relative abundances of two species
at one site can be readily read off from the CGO di-

agrams. Let be the absolute abundance of species jA9j
at site i. Then, because

1
2A9 5 exp a 2 \n 2 u \j j i j1 22

we have

A9j1 5 exp(a 2 a )j j1 2A9j2

1
2 23 exp (\n 2 u \ 2 \n 2 u \ ) .i j i j2 15 62

When the maxima of the two species j1 and j2 are equal
(i.e., aj1 5 aj2), then the first exponential can be ig-
nored. To give a few specific examples, we note that,
from the output from the rank-1 model, the maxima of
the following pairs of species are very similar: Alo-
pecosa accentuata and Alopecosa cuneata; Alopecosa
fabrilis and Arctosa perita; Pardosa pullata and Tro-
chosa terricola. Now \ 26 2 ûArctperi\ ø \ 26 2 ûAlopfabar\n̂ n̂
ø 1 so site 26 is expected to have approximately the
same Arctosa perita and Alopecosa fabrilis counts. An-
other example is site 6:

\ n̂ 2 û \ ø 16 Trocterr

\ n̂ 2 û \ ø 16 Trocterr

\ n̂ 2 û \ ø 1.5.6 Pardpull

Therefore site 6 is expected to have approximately
exp{ (1.52 2 1)} ø 2 times more Trochosa terricola1

2

counts than Pardosa pullata counts. In fact, the actual
ratio is 63/24 ø 2.6.

Note that when T̂ 5 I2, the absolute abundance of a
species at a location that is a distance k away (in latent
variable units) from the species’ optimum is exp(2 k2)

1
2
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FIG. 3. Fig. 2 with contours included and arrows representing Ĉ omitted. The circular contours denote 95% of each
species’ maximum (these are called relative contours). Species abbreviations are defined in the Fig. 1 legend.

FIG. 4. The same type of analysis as shown in Fig. 2, but applied to transformed abundance data instead of the raw0.75y ij

counts yij. Site 22 has been omitted from the ordination. Species abbreviations are in the Fig. 1 legend; abbreviations for
environmental variables are defined in Table 1.

multiplied by the species’ maximum. For example,
\ 6 2 ûTrocterr\ ø 1 implies the absolute abundance ofn̂
Trochosa terricola at site 6 has been reduced by a factor
of 1 2 e21/2 ø 40%. Site 12 is approximately a distance
two away from ûTrocterr, therefore the absolute abundance
of Trochosa terricola at site 12 is expected to be
;102.29 3 exp(2 22) ø 13.8. The actual count is 13.1

2

Note that optima lying outside the convex hull of
site scores are subject to more statistical error and
therefore must be viewed with less confidence. In Fig.
2, Arctosa perita and Pardosa nigriceps are two such
species.

The above analysis was tried on the square root of
the abundance data but the estimated T was not posi-
tive-definite. Evidently, it appears that a square root
transformation is too severe. Using a power of 0.75
worked (but with site 22 deleted because it is an in-

fluential point), and the resulting canonical coefficients
are

WaterCon BareSand FallTwig CoveMoss

lv1
lv2

20.376
20.356

0.601
0.165

20.870
0.024

0.131
20.531

CoveHerb ReflLux
lv1
lv2

20.317
0.697

0.420
20.191

and the latent variable plot is given in Fig. 4. One
can see that is roughly similar to Fig. 3. As with the
raw counts, compared to the CCA model of ter Braak
(1986), the Ĉ here is roughly similar except the sec-
ond canonical coefficient’s CoveHerb is substan-
tially different. When compared to CCA (see Fig. 1
of ter Braak 1986), Fig. 4 shows a few similarities,
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FIG. 5. Ordination diagram for the hunting
spider (presence/absence) data. Some selected
curves are labeled at the position of their op-
timas and maxima. This latent variable plot is
comparable to Figs. 2–4 because equal toler-
ances have been assumed; therefore the toler-
ances have been scaled to unity. Species abbre-
viations are in the Fig. 1 legend.

but there are many differences. An obvious one is
that the optima of Pardosa nigriceps and Arctosa
perita differ greatly—but these optima lie outside
the convex hull, therefore are subject to greater un-
certainty.

Presence/absence data

For purely illustrative purposes of a canonical
Gaussian logit ordination, the hunting spider species
data were converted to presence/absence and a rank-
1 model was fitted. QRR-VGLMs with binary re-
sponses are more prone to numerical instability if
the fitted probabilities become very small during it-
erations. This is because the IRLS algorithm be-
comes unstable for the inner minimization problem
described in Appendix A. The numerical problems
are often due to species with small tolerances, and
a possible method of circumventing this problem is
to assume that all the species have common toler-
ances, i.e., a common Dj (an assumption that is made
by CCA). Another way numerical problems can oc-
cur is, for example, for a rank-1 model, if the data
are sorted with respect to the latent variable and the
resulting response vector is a sequence of absences
followed by a sequence of presences followed by a
sequence absences (i.e., y 5 (0T, 1T, 0T)T); then a
Gaussian model will result in estimates that go to
infinity. Numerical problems such as these occur
with ordinary logistic regression (see e.g., Rous-
seeuw and Christmann 2003). For this reason, fitting
QRR-VGLMs with binary responses generally re-
quires n large and n k M, e.g., n . 100 for M 5 2.

For the hunting spiders data, there are only 28
sites, which would be far too few for QRR-VGLMs
to work in general. It was therefore not surprising
that numerical difficulties were encountered with an
unequal tolerances assumption. With an equal tol-
erances assumption, it was necessary to omit species
1 and 5 from the analysis:

attach(hspider)

ybin501(cbind(Alopacce,Alopcune,Alopfabr,
Arctlute,Arctperi,Auloalbi,
Pardlugu,Pardmont,Pardnigr,
Pardpull,Trocterr,Zoraspin)

. 0) # Matrix of 0’s and 1’s

detach( )

b1 5 cgo(ybin[,2c(1,5)] ; Watercon
1 BareSand 1 FallTwig 1 CoveMoss
1 CoveHerb 1 ReflLux,
family5quasibinomialff(mv5TRUE),
data 5 hspider,
EqualTolerances 5 TRUE,
Crow1positive 5 FALSE)

lvplot(b1, type 5 “predictors”, llwd 5 2,
las 5 1, ylab 5 “logit p”,
ylim 5 c(220, 11), 1col 5 1:10)

c1 5 Coef(b1);
cts 5 c(“Trocterr”, “Pardmont”, “Alopfabr”,

“Arctlute”)

text(c1@Optimum[1, cts],
logit(c1@Maximum[cts]) 1 1.0, cts)

Estimation typically took between 10 and 30 s, and a
deviance of 154.6 was obtained. The latent variable
plot for the above model is given in Fig. 5. It is plotted
on the h (logit) scale, therefore the fitted curves are
quadratics. For this, t̂ ø 0.36 is the estimated tolerance
under Eq. 14, and

WaterCon BareSand FallTwig CoveMoss

lv 20.127 0.185 20.498 0.228

CoveHerb ReflLux
lv 20.031 0.15

is ĈT; these coefficients agree with the rank-1 unequal
tolerances Poisson model with respect to their signs.

In some applications, given abundance data, canon-
ical Gaussian logit ordination will work better than a
Poisson CGO, especially if the abundances are not
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TABLE 2. Statistics pertaining to estimated C matrices from
simulated rank-1 Poisson unequal-tolerances QRR-VGLMs
fitted to the hunting spider data.

Variable Ĉ (original model) Mean SD

Water content
Bare sand
Fallen twigs
Cover moss
Cover herbs
Light refl

20.119
0.261

20.306
0.107

20.172
0.406

20.116
0.261

20.308
0.107

20.174
0.406

0.017
0.008
0.018
0.011
0.013
0.015

Notes: The sample mean and standard deviation are based
on 100 simulations. See Table 1 notes for definitions of var-
iables.

Poisson distributed. However, if the abundances are
Poisson distributed, conversion to presence/absence
will result in a loss of information and therefore give
inferior inferences. In general, Poisson CGO is pre-
ferred over canonical Gaussian logit ordination because
it is less prone to numerical problems and does not
require n to be as large.

A simulation experiment

When fitting a statistical model to real data, often
we have no idea how much to believe our model be-
cause the ‘‘truth’’ is unknown. Furthermore, if there
are alternative solutions, it is often not easy to deter-
mine which is closer to the ‘‘truth.’’ One method to
address this problem is to check the assumptions behind
the statistical model, e.g., by model diagnostics such
residual analyses. Another method is to use simulated
data sets with various properties in order to gauge some
idea of the likely performance of the model. In this
subsection, a small simulation study is reported to
check that the proposed methodology is reasonable in
this respect. This was done for the rank-1 unequal tol-
erances Poisson model applied to the hunting spider
data. For each site–species combination, a Poisson
abundance was randomly generated based on the es-
timated mean from the original model (Table 1). This
was performed 100 times. A QRR-VGLM was fitted
to each of these simulated data sets, and Table 2 shows
the amount of variation in the estimated C matrices. It
can be seen that the fitted models conform closely to
the ‘‘true’’ model. Furthermore, all latent variable plots
were very similar to Fig. 1. A closer analysis of the
results showed that separate 95% confidence intervals
of each coefficient covers the corresponding coefficient
from the original model, and that the signs of the re-
gression coefficients matched those from the original
model. All these results are encouraging—it gives con-
fidence that QRR-VGLMs can be expected to fit at least
some data sets well, provided the data and the fitted
model match. More simulation studies, with the help
of software tools such as CoenoFlex (available online)3

and COMPAS (Minchin 1987a), are needed to deter-

3 ^http://labdsv.nr.usu.edu&

mine the practical limitations and strengths of QRR-
VGLMs.

In the simulations, the distribution of execution
times, using randomly chosen starting values, had a
median of 50 s and had values ranging between 20 s
and 95 s.

DISCUSSION

Gaussian response surfaces hold an important role
in ecological theory, but despite their simple functional
form, the capability to fit them to common forms of
biological data in a constrained ordination has only
now been achieved. This paper has sought to show that
QRR-VGLMs are a suitable vehicle for maximum-like-
lihood-estimated CGO, and with the software described
in this article, practitioners can experiment with the
methodology on their own data sets.

It is beneficial to summarize the advantages and dis-
advantages of the methodology presented in this article.
In doing this, one must be careful to distinguish be-
tween CGO and QRR-VGLMs because the former rep-
resents the ‘‘problem’’ and the latter is one particular
‘‘solution.’’

Advantages of CGO include:
1) CGO is easy to understand and has clear statistical

assumptions. Independence of the n sites and, given
the model, M species is assumed. Strictly speaking,
there is some violation of this assumption due to spatial
correlation, but this will be so with any regression tech-
nique such as linear models, GLMs, and so forth ap-
plied to these data. Dependence between species could
possibly be handled using generalized estimating equa-
tions (see e.g., Wild and Yee 1996). The distribution
and functional form (Eq. 12) is explicitly stated.

2) CGO provides estimates for the maxima, optima,
and tolerances of species, which are highly interpret-
able. Each ûj can be classified as an optimum, a min-
imum, or a saddle point. Maxima and contours are not
available in CCA. CGO diagrams can be highly intu-
itive and informative.

3) CGO bypasses the complications, heuristics, and
statistical inefficiencies of other methods such as
weighted-averaging and detrending. Gaussian ordina-
tion is built on a firm statistical bed of theory.

4) The model is arguably more flexible than CCA.
For example, CCA makes four assumptions (including
equal tolerances, equal maxima, homogeneously dis-
tributed optima) that cannot simultaneously hold. CGO
is not required to make any of these assumptions,
though an equal tolerances assumption makes the or-
dination diagram very interpretable.

5) Residual diagnostic plots are available.

Disadvantages of canonical Gaussian ordination in-
clude:

1) Often the statistical assumptions are too strong
and unrealistic in practice. For example, a limitation
of Eq. 12 is that skewed and multimodal responses are
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not handled. Furthermore, full specification of the sta-
tistical model may not be possible.

2) CGO is sensitive to departures from the model
assumptions, as well as to outliers, sparse data, high
leverage points, multicollinearity, etc. For example,
when the x2 includes highly correlated environmental
variables, the result is that C is unstable; however, this
problem occurs in other (unpenalized) regression meth-
ods.

3) The log-likelihood function often has multiple
maxima, and convergence to a local solution can never
be ruled out.

4) Good initial values can be difficult to obtain, and
this becomes more important as the number of param-
eters increases.

5) Statistically rigorous determination of the rank R
is difficult. See the discussion of Anderson (1984).

6) CGO is numerically very intensive. However, as
CPU power continues to increase exponentially ac-
cording to Moore’s law, the size of data sets that can
be practically handled will increase consequentially.

Like every statistical methodology, QRR-VGLMs
have both strengths and weaknesses. QRR-VGLMs
have the following advantages:

1) The framework of QRR-VGLM is large, so that
it can potentially perform CGO on many data types.
For example, in theory, distributions such as the zero-
inflated Poisson and the negative binomial and data
types such as compositional data could be handled.

2) The latent variables defined by n 5 CTx2 can ac-
commodate linear combinations of nonlinear functions
of the explanatory variables. For example (for purely
illustrative purposes),

cgo(ymatrix ; poly(x1, 2) 1 x2 1 x3
1 I(x2 ∗ x3), . . .)

will use nr 5 (x1, , x2, x3, x2x3)T. In particular, x2
T 2c x(r) 1

can include factors and basis functions such as or-
thogonal polynomials and B-splines. In contrast to the
natural capability of the QRR-VGLM algorithm to han-
dle such extensions, the proposal of Makarenkov and
Legendre (2002) for polynomial CCA is ad hoc and
empirical.

3) In principle, any rank R can be fitted, subject to
the model being estimable. This contrasts with previous
(non-canonical) solutions that were restricted to R 5
1 and R 5 2 only (e.g., Gauch et al. 1974, Kooijiman
1977, Goodall and Johnson 1982, ter Braak 1985).

4) The approximate statistical significance of the el-
ements of A, B1, and Dj can be tested with QRR-
VGLMs.

5) Statistical tests for certain hypotheses can be con-
ducted.

6) Overdispersion and underdispersion can be de-
tected in the data, a feature unavailable with CCA.

The major disadvantages of QRR-VGLMs include:

1) It requires considerable amounts of memory be-
cause IRLS constructs large model matrices to perform
the least squares fits. Although direct maximization of
the log-likelihood function could avoid this problem,
this would probably introduce other difficulties.

2) Specialist software is needed. This contrasts with
methods such as CCA, which can, in theory, be fitted
using a number of algorithms. Additionally, the overall
algorithm is sophisticated so that any implementation
would be a major undertaking.

3) Convergence problems may occur. The algorithm
is susceptible to numerical problems such as underflow
and overflow, and this is aggravated with dirty data.

4) Greater skill and knowledge is required to use
QRR-VGLMs successfully. The user needs to know
elements of statistical computing and numerical anal-
ysis for a complete understanding of QRR-VGLMs.

5) ‘‘Exact’’ standard errors for all estimated param-
eters is currently not possible. This may well be im-
proved in the future. The use of the bootstrap or sim-
ulation to provide standard errors is currently not prac-
tical, as it may be too computationally demanding—it
would require fitting multiple QRR-VGLM models.
Permutation testing (ter Braak and Šmilauer 1998) is
also a possibility.

Overall, it is recommended that QRR-VGLMs be
applied to clean (no outliers, multicollinearity, or in-
fluential observations; the variables are not heavily
skewed; etc.) data sets of moderate size that conform
reasonably closely to the Gaussian model, and that
CCA be applied to large and/or noisy/dirty data sets
due to its lower computational expense and robustness.
To give a rough idea of the practicability, with the
computer configuration described above, rank-1 un-
equal tolerance QRR-VGLMs have been fitted to ar-
tificial data sets of size n 5 500 sites, M 5 5 species,
and p 5 5 covariates, with median execution time of
around 70 s. This takes about the same time as a n 5
60, M 5 10, and p 5 10 configuration. Rank-2 equal
tolerance QRR-VGLMs have been fitted to size n 5
100, M 5 10, and p 5 5 data sets with median execution
time of around 130 s. The computational cost increases
very rapidly in both M and R.

There is considerable room for more work. First,
methods of relaxing the strong model assumptions
need to be developed. It may be possible to develop
methods similar to QRR-VGLMs which give a sim-
ilar answer for far less computation. Second, al-
though R is relatively fast, improvements in speed
would result if all the numerically intensive parts
were written in a compiled language such as C or
FORTRAN. (However, this may not be necessary be-
cause R may become a compiled language.) Third,
there is need for more experience with QRR-VGLMs
to be gained, e.g., simulation studies on its robust-
ness and sensitivity to departures from the model.
This could be along the lines of Minchin (1987a) and
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Palmer (1993) who used COMPAS Minchin (1987b)
to generate species abundances (see also Johnson and
Altman 1999). Fourth, compositional data has not
been considered in this article. For this, its relation-
ship with the stereotype model (Anderson 1984) and
RR-VGLMs will hopefully be given elsewhere. More
importantly, the relationships between latent vari-
able plots with QRR-VGLMs and biplots of RR-
VGLMs and CCA is deferred to elsewhere. Fifth, this
paper has been motivated by ecological theory to
follow a model-driven approach by fitting Eq. 12;
however, one important extension is to allow smooth-
ing to determine the species response to nr rather than
fitting the a priori quadratic functional form. This
data-driven approach is motivated by the observation
that there is substantial evidence for species respons-
es being more complex than the Gaussian response,
e.g., recent work by Bio et al. (1998) and Ejrnaes
(2000). Such a data-driven approach would auto-
matically allow the user to visualize each species’
response as a smooth data-driven function of nr, cf.
generalized additive models (Yee and Mitchell 1991)
relative to GLMs. The need for checking the ade-
quacy of the model by visual means has been dem-
onstrated recently by Johnson and Altman (1999),
who, for the rank-1 Poisson CCA model, proposed
(LOWESS) smoothing yij vs. nir in order to see wheth-
er a bell-shaped curve was justified.

ACKNOWLEDGMENTS

The author wishes to thank Dr. C. ter Braak for helpful
discussions and a copy of his books, and Brian McArdle for
comments on the original manuscript. Both referees and the
Corresponding Editor made many beneficial and perceptive
comments that led to major improvements in the manuscript.

LITERATURE CITED

Akaike, H. 1974. A new look at the statistical model inden-
tification. IEEE Transactions on Automatic Control 19:
716–723.

Anderson, J. A. 1984. Regression and ordered categorical
variables (with discussion). Journal of the Royal Statistical
Society, Series B, Methodological 46:1–30.

Austin, M. P. 1985. Continuum concept, ordination methods,
and niche theory. Annual Review of Ecological Systems
16:39–61.

Bio, A. M. F., R. Alkemade, and A. Barendregt. 1998. De-
termining alternative models for vegetation response anal-
ysis: a non-parametric approach. Journal of Vegetation Sci-
ence 9:5–16.

Chambers, J. M. 1998. Programming with data: a guide to
the S language. Springer-Verlag, New York, New York,
USA.

Chambers, J. M., and T. J. Hastie, editors. 1993. Statistical
models in S. Chapman and Hall, New York, New York,
USA.

Dalgaard, P. 2002. Introductory statistics with R. Springer-
Verlag, New York, New York, USA.

Ejrnaes, R. 2000. Can we trust gradients extracted by de-
trended correspondence analysis? Journal of Vegetation
Science 11:565–572.

Gauch, H. G. 1982. Multivariate analysis in community ecol-
ogy. Cambridge University Press, Cambridge, UK.

Gauch, H. G., G. B. Chase, and R. H. Whittaker. 1974. Or-
dinations of vegetation samples by Gaussian species dis-
tributions. Ecology 55:1382–1390.

Gauch, H. G., and R. H. Whittaker. 1972. Coenocline sim-
ulation. Ecology 53:446–451.

Goodall, D. W., and R. W. Johnson. 1982. Non-linear ordi-
nation in several dimensions. Vegetatio 48:197–208.

Green, P. J. 1984. Iteratively reweighted least squares for
maximum likelihood estimation, and some robust and re-
sistant alternatives. Journal of the Royal Statistical Society,
Series B, Methodological 46:149–192.

Guisan, A., S. B. Weiss, and A. D. Weiss. 1999. GLM versus
CCA spatial modelling of plant species distribution. Plant
Ecology 143:107–122.

Johnson, K. W., and N. S. Altman. 1999. Canonical corre-
spondence analysis as an approximation to Gaussian or-
dination. Environmetrics 10:39–52.

Kooijman, S. A. L. M. 1977. Inference about dispersal pat-
terns. Dissertation. University of Leiden, Leiden, The Neth-
erlands.

Makarenkov, V., and P. Legendre. 2002. Nonlinear redun-
dancy analysis and canonical correspondence analysis
based on polynomial regression. Ecology 83:1146–1161.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear
models. Second edition. Chapman and Hall, London, UK.

Minchin, P. R. 1987a. An evaluation of the relative robustness
of techniques for ecological ordination. Vegetation 69:89–
107.

Minchin, P. R. 1987b. Simulation of multidimensional com-
munity patterns: towards a comprehensive model. Vege-
tatio 71:145–156.

Nelder, J. A., and R. W. M. Wedderburn. 1972. Generalized
linear models. Journal of the Royal Statistical Society, Se-
ries A, General 135:370–384.

Palmer, M. 1993. Putting things in even better order: the
advantages of canonical correspondence analysis. Ecology
74:2215–2230.

Rousseeuw, P. J., and A. Christmann. 2003. Robustness
against separations and outliers in logistic regression. Com-
putational Statistics and Data Analysis 43:315–332.

ter Braak, C. J. F. 1985. Correspondence analysis of incidence
and abundance data: properties in terms of a unimodal re-
sponse model. Biometrics 41:859–873.

ter Braak, C. J. F. 1986. Canonical correspondence analysis:
a new eigenvector technique for multivariate direct gradient
analysis. Ecology 67:1167–1179.

ter Braak, C. J. F. 1987a. The analysis of vegetation–envi-
ronment relationships by canonical correspondence anal-
ysis. Vegetatio 69:69–77.

ter Braak, C. J. F. 1987b. Ordination. Pages 99–173 in R. H.
G. Jongman, C. J. F. ter Braak, and O. F. R. van Tongeren,
editors. 1987. Data analysis in community and landscape
ecology. Cambridge University Press, Cambridge, UK.

ter Braak, C. J. F. 1988. Partial canonical correspondence
analysis. Pages 551–558 in H. H. Bock, editor. Classifi-
cation and related methods of data analysis. North-Holland,
Amsterdam, The Netherlands.

ter Braak, C. J. F., and C. W. N. Looman. 1986. Weighted
averaging, logistic regression and the Gaussian response
model. Vegetatio 65:3–11.

ter Braak, C. J. F., and C. W. N. Looman. 1994. Biplots in
reduced-rank regression. Biometrical Journal 36:983–1003.

ter Braak, C. J. F., and I. C. Prentice. 1988. A theory of
gradient analysis. Pages 271–317 in Advances in ecological
research. Volume 18. Academic Press, London, UK.
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APPENDIX A

Estimation of quadratic reduced-rank vector generalized linear models (QRR-VGLMs) is explained in ESA’s Electronic
Data Archive: Ecological Archives M074-016-A1.

APPENDIX B

A discussion of constraints-on-the-functions and the scaling parameter is presented in ESA’s Electronic Data Archive:
Ecological Archives M074-016-A2.


