
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

1Abstract—The emergence of mobile cloud computing

(MCC) brings benefits to mobile users and cloud providers.

However, due to the inherent limitations of the device such as

battery life time, CPU and memory capacity, a mobile thin

client device (e.g. smart phones, tablets, iWatch, Google Glass,

etc) cannot meet the requirements of some demanding

applications. To alleviate this limitation, the mobile device

should cooperate with external resources to increase its

performance. Recently, current research approaches have been

unable to offer an efficient, seamless computing experience. In

this paper, we present a comprehensive thin-thick client

collaboration that involves conventional desktop or laptop

computers, known as thick clients, by allowing the thin client to

borrow resources from thick clients, particularly for optimizing

data distribution and utilizing MCC resources to meet Service-

Level Agreements, Quality-of-Service requirements and cloud

service customers’ budget. Our work uses both numerical

analysis and simulation to prove that our proposed architecture

can improve resource allocation efficiency and achieve better

performance than other existing approaches in some cases.

Index Terms—Cloud computing, data distribution, thin

thick client, resource allocation.

I. INTRODUCTION

According to Gartner Inc., there were approximately 2.4

billion units of cellular phones and tablets shipped in 2013,

outstripping PC sales in the same period, which were less

than 315 million shipments [1]. As smart phones become

more sophisticated with better hardware capability and a

wider variety of software, devices running lightweight

mobile operation systems (Apple’s iOS, Google’s Android

and Microsoft’s Windows Phone) will gradually supplant

traditional laptop and desktop computers [2]. This “fixed-to-

mobile” shift has resulted in an enormous amount of data

generated by mobile devices in recent years. In a report by

Cisco [3], global mobile data traffic, on a monthly basis,

grew 81 percent in 2013, reaching 820 petabytes per month

at the end of 2012. This number is predicted to surpass 15

exabytes by 2018. However, smart phones and tablets still

Manuscript received 29 April, 2015; accepted 23 October, 2015.

do not, and probably will not soon, have power equivalent to

a conventional desktop or laptop computer. They will

continue to be unable to perform tasks that require heavy

processing and/or large amounts of data storage. With

resource inefficiency such as limited processing capability,

small memory, and short battery life, mobile devices are

considered as only a complement to fixed stations and not as

an alternative.

Fortunately, cloud computing, with virtually unlimited

resource and service provision, has arrived and is anticipated

to boost the power of mobile devices. The applications of

cloud computing (CC) in a mobile environment include a

new computing paradigm named mobile cloud computing

(MCC). MCC allows the shift, also known as offloading, of

local computing-intensive tasks and data storage from

mobile devices to the Internet, i.e. to an array of virtualized

servers running on cloud provider networks. The

involvement of CC in a mobile environment accommodates

constraints related to performance (e.g., battery life, storage,

and bandwidth), environment (e.g., heterogeneity,

scalability, and availability), and security (e.g., reliability

and privacy) [4].

While cloud computing has existed for a while, its

application in the mobile world is still at an early stage.

Recent research has addressed MCC’s drawbacks, especially

those related to feasibility and performance, which has

focused on allowing mobile clients to access the cloud. In

[5], for example, Frank Siegemund et al. argue that smart

objects (i.e. smart phones) can leverage resources and

computing capabilities from nearby nodes to gain access to

the cloud network instead of using a direct connection (i.e.

through cellular network, 3G). Similarly, the authors in [6]

discuss a reliable MCC architecture that emphasizes services

and resource exchange among peer nodes, which simplifies

the querying process of peer nodes. In [7], a guideline to

create a virtual mobile cloud computing provider is

proposed, based on the peer network created between nearby

thin clients, to avoid the need to connect to infrastructure-

based clouds. Since the network condition plays a crucial

A New Technique for Optimizing Resource
Allocation and Data Distribution in Mobile

Cloud Computing

Pham Phuoc Hung 1, Tuan-Anh Bui2, Kwon Soonil3, Eui-Nam Huh1

1Department of Computer Engineering, Kyung Hee University,

Yongin, South Korea,
2Department of Information Technology, The Catholic University of Lovain,

Louvain-la-Neuve, Belgium,
3Department of Digital Contents, Sejong University,

Seoul, South Korea

hungpham@khu.ac.kr

http://dx.doi.org/10.5755/j01.eee.22.1.14113

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

role in guaranteeing the Quality-of-Services (QoS) of

resource provisioning (i.e. the greater the network

bandwidth, the better the QoS that can be achieved [8],

[13]), thin clients should be coupled with thick clients,

which come with more generous hardware resources and

high speed Internet connection (DSL, Fibre, etc.), in order to

obtain desirable cloud access [9]. However, one of the main

issues in [9] is that it does not consider the budget for CC.

With that in mind, in this paper, we discuss a

comprehensive thin-thick client collaboration to perform

efficient data distribution along with detailed solution to

perform efficient data distribution by splitting the big data

into chunks according to bandwidth of Internet connection.

Besides, the paper introduces a selection procedure of

suitable algorithms that optimally utilize resource allocation

in order to not only meet expected Service-Level Agreement

(SLA) and QoS requirements but also the CC budget in

order to improve users’ cloud computing experience. In these

algorithms, we use a multi-user multi-task technique on each

virtual machine (VM) and create a group of service images

(SIs) from thin clients, then integrate them into a multi-user

multi-task VM. It is noteworthy that each SI now

corresponds to a user on this multi-user multi-task VM. A

group of service images has a location-based relation in

which the thin clients are close to each other. Our objective

is to calculate the number of VMs allocated for SIs to satisfy

SLA as well as cloud cost for using a cloud service. In order

to evaluate the eligibility and effectiveness of our work, a

number of simulations were conducted and their results

show that the proposed framework can significantly improve

efficiency of resource allocation in the cloud, and the

strategies discussed are effective enough to improve

performance compared with existing approaches.

We divide our paper into the following sections: Section

II is a review of the existing literature; Section III describes

a motivational scenario in which the role of thin-thick client

collaboration becomes crucial; Section IV specifies the

framework architecture and algorithms; Section V details

problem formulation. Section VI illustrates the

implementation of our ideas along with a performance

evaluation. The last section concludes the paper and

suggests future work.

II. RELATED WORK

There have been numerous studies that attempt to solve

some parts of the above problems. In [10], the authors

propose a new approach for efficient cloud-based

synchronization of a number of distributed file system

hierarchies. They use a master-slave architecture for

propagation of data to reduce traffic. In [11], researchers

demonstrate that some resource scheduling techniques can

be effective in mitigating the impacts that negatively

influence application response time and system utilization.

Andreolini et al. [16] and Fan et al. [12] study the impact of

data transfer delay on the performance but they do not

evaluate bandwidth efficiency. Gueyoung Jung et al. [14]

present a method to parallelize a process with big data in

order to increase performance in federated clouds; however,

they do not consider how many resources should be used.

For resource allocation, Ye Hu [15] shows that shared

allocation is superior to dedicated allocation but the author

does not conduct experiments with an arbitrary number of

SLAs, nor does he determine how fast a server is to

guarantee Quality of Service. In [17], A. Lenk et al. provide

services to a large number of SLAs but the performance

difference between shared allocation and reserved allocation

is difficult to determine.

Similar to our approach, other research efforts have been

made to integrate mobile devices and cloud computing. In

[18], X. Luo suggests using the cloud to improve a mobile

device’s capability. Marinelly [19] innovates Hyrax, which

allows mobile devices to use cloud computing platforms.

The researcher introduces the idea of using mobile devices

as resource providers, but the experiment is not integrated.

Also, Zhong and Longzhao [20] discuss the integration of

CC into mobile internet and are able to exemplify their

arguments with typical successful business models in the

market yet without particular performance benchmarking. In

[21], the authors propose an autonomic resource manager to

control the virtualized environment by recoupling the

resource provision in order to optimize a function which

integrates both SLA and the operating cost. However, the

QoS is not considered in this system. For ease of

understanding, we present an overview of common resource

allocation approaches along with ours in Table I.

TABLE I. COMPARISON BETWEEN APPROACHES.

Algorithm
Target

System

Satisfy

SLA

Satisfy

QoS

Satisfy

Budget

Gonzalo H. et al.
[7]

Cloud
computing

No Yes No

Ye Hu et al.[15] Heterogeneous Yes No No

E. Marinelli et al.
[19]

Mobile
computing

No No No

Hien N.V et al.
[21]

Cloud
computing

Yes No Yes

Weiwei Lin et al.
[22]

Cloud
computing

Yes Yes No

Mathias B. et al.
[23]

Cloud
computing

Yes Yes No

Our approach
Mobile cloud

computing
Yes Yes Yes

As shown in Table I, a desired approach should meet all

three factors including SLA, QoS of the system and the

budget of users in order to increase the reliability reputation

of the service provider as well as satisfy Cloud Service

Customers (CSCs). Therefore, in this paper, we introduce an

extensive thin-thick client collaboration which takes into

account these three factors.

III. MOTIVATING SCENARIO

As cloud computing becomes more popular, we can

predict situations where mobile users can take advantage of

cloud resources to solve their problems, especially when

they are in public places. We use the following scenario

(Fig. 1) to explain how the thin-thick client collaboration can

benefit a user. A student wants to use video call and play

games at the same time with her smartphone while she is

walking on her university campus. Unfortunately, her 3G

account, which comes with a limited monthly data package,

has run out of capacity for high-speed Internet and the phone

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

begins to load Internet data very slowly. Alternatively, the

student switches on the phone’s Wi-Fi and attempts to

connect to the university’s wireless network (via nearest

access points). Suppose that the student has a legitimate

account. Once connected, she can continue using her cloud

service as she moves around the university campus.

Fig. 1. Scenario for requesting a cloud service.

Let us consider this scenario more closely. After getting

connected to the wireless network, the student begins to send

requests for the cloud services. These requests will be

handled by a group of computers that consists of a broker

computer and several other computers, or thick clients, each

of which can access different cloud providers. The broker

first receives user requests before establishing connections

with the associated cloud providers to deliver users’ requests

up to the cloud. Results of the fulfilled requests (i.e. video or

music stream) are returned to the thick clients via the chosen

paths. In this scenario, which is potentially backed by high-

speed broadband connections (DSL, cable, WiMAX),

service paths between thick clients and cloud networks can

have considerably higher bandwidth than the one between

the thin client and cloud networks which use a mobile

network like 3G. Consequently the former can be expected

to offer much higher service quality than the latter, which

means returned data can be delivered to thick clients in a

relatively short time. The broker now collects the returned

data from involved thick clients, combines the data and

delivers the aggregate data to the request sender. Thereby,

the thin client takes advantage of multiple thick clients’ relay

to enhance the data distribution from cloud networks, which

enhance its computing capability. When there are multiple

thin clients requesting cloud services, the request-response

procedure should work the same way as described above,

except that the broker has to remember different request

initiators so that later it can dispatch the returned data to the

correct recipient.

The above scenario shows the potential benefit of utilizing

joint work between thin clients and thick clients in a typical

mobile cloud computing environment. Such collaboration

increases the opportunity for using resources efficiently and

optimizing data distribution between the mobile thin client

and cloud network. With that in mind and with the CC

platform staying ready and emerging on the market, our

paper describes how to create a network design based on

thin-thick client collaboration. We attempt to address the

following problems:

 Performing the resource allocation, i.e., grouping some

location-based Service Images to co-use the VMs in the

cloud and calculating the number of VMs to satisfy SLAs

and CSCs’ budget.

 Determining the strategy in order to distribute data to

thin clients to meet QoS requirements.

IV. SYSTEM ARCHITECTURE

The following section describes our system architecture to

address the above issues.

Fig. 2. Layering architecture of the proposal.

Unlike many other designs in the research literature that

follows the 1/m/1 model, that is, there is a cloud server at

one end of the transmission, a client at the other end and

multiple paths between the two ends. Our proposed method

implies a 1/m/m/1 model, where cloud service providers (1)

send chunks of data through multiple paths (m) to multiple

thick clients (m) that transfer this data to a broker in the

scenario. The broker combines the received data then

delivers it to the intended end user (1). As illustrated in

Fig. 2, our architecture has two layers. It includes (1) a

Cloud Provider layer, which contains Virtual Machines

(VMs), and (2) a Cloud Service Customer layer, where thin

clients and thick clients reside. In the second layer, there is a

thick client functioning as a centralized management node,

also known as a broker, which receives all computation

requests from users and manages the processor’s profiles

(processing capacity, network bandwidth) as well as the

results of the data query returned from VMs. In particular, it

sends data to clouds in a single connection but when VMs

send data to a cloud service customer layer, the data will be

divided into different parts with different sizes before being

delivered to thick clients in multiple connections. Next, the

broker combines and sends the data to corresponding users.

V. PROBLEM FORMULATION

A. Cloud Provider Layer

To make data processing more efficient, we also perform

data training to classify and assign SIs. The one that has a

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

higher priority can be transferred first and vice versa. In

addition to that, data are divided into different chunks of

different sizes, according to VM capacities, then assigned to

VMs. The larger data chunks are assigned to VMs with

higher capacity. The best VMs are selected based on their

capabilities using the Greedy algorithm. The issue here is

how to determine the minimum number of VMs in order to

meet expected SLAs and budgets of CSCs for running a

service s.

By utilizing the cumulative distribution function (CDF) of

the response time, denoted by F(x) [16], we can measure

achievable QoS, represented by the Probability in which

response time RT remains below a threshold x, when the

number of serving VMs is changed. That is to say, the

minimum number m of VMs can be obtained by gradually

increasing m until F(x) reaches the target probability and

CC’s budget. As a result, this m is supposed to be satisfied

for SLAs and the CSCs’ finance. The CDF of response time

can be described as follows

(1)
()

1 , for 1,

1
1 [], for 1,

1

Probability() ()
x x

x m
x x m

RT x

e k e x m

e
e k e m

m

F x
µ µ

µ σ
µ µ σ

µ σ

µ σ
σ

(1)

where / ,σ λ µ (0) ,
! ()

m
m

k P
m m

σ
σ

1
1

0

(0) ,
! !()

n mm

n

m
P

n m m

σ σ
σ

 λ is arrival rate of SLA

job processed at VMs with queue model M/M1 and µ is a

service rate.

With regard to resource allocation methods, available

VMs can be categorized into two types: Shared Allocation

(SA) and Reserved Allocation (RA). In SA, the number of

VMs in SA is denoted mShared and the arrival jobs (SLAs) are

combined into a single stream while in RA whose the

number of VMs is denoted mReserved, each arrival job has its

own dedicated VMs. These allocations can be illustrated in

Fig. 3. In the first type, Shared Allocation, all SLAs have the

same CDF for the response time and arrival rate

1
k

iiλ . Therefore, the minimum number of VMs

mShared to meet k SLAs is given by

Shared 1 2max(, ,..., ,...),i km m m m m (2)

where mi is the number of VMs required for SLAi of the ith

thin client. Let mReserved be the smallest number of VMs

required to meet k SLAs in Reserved Allocation. So mReserved

is calculated as follows

Reserved
1

,
k

i
i

m m

 (3)

In addition, the algorithm also considers the resource cost

paid by cloud service customers for using cloud resources

that are used to execute requested services. The cost is

charged according to the utilized resources.

Fig. 3. Resource allocation strategy.

Let
j

s
VM

C be the cost of running service s on the VM

which belongs to type j for a time unit. The type j here is RA

or SA. In so doing, we can determine the cost C(s) for using

the VMs as follows

{ , }

() ,
j

s
j VM

j RA SA

C s m C

 (4)

where mj is the number of VMs which belongs to type j.

Using the cost in (4) and CDF F(x), we can calculate the

minimum number of VMs which satisfy both SLA and the

CC’s budget by applying Algorithm 1.

Algorithm 1 Determine the minimum number of VMs

Input: λ // arrival rate;

µ // service rate

SLA(x, z) // x : response time (threshold);

// z : target probability

φ // budget

Output: m // minimum number of VMs required

float σ = λ / µ
function determineMinVM (,σ ,µ x, z, φ) {

if (σ == (int) σ) m = (int) σ ;

else m = (int)Math.floor(σ) + 1 ;

end if

while (F(x) <=z && C(s) φ) m++ ;

end while

return m;

}

Furthermore, when 2 requesters have the same SLAs,

Shared Allocation obviously has the same or better

performance than Reserved Allocation (mShared mReserved).

However, if SLA1 and SLA2 are different for SA and RA, it is

not easy to determine whether SA or RA is better. An

example is shown in Table II in term of SLA. In the first

case, mReserved is better than mShared but the reverse is true in

the second case.

TABLE II. EXAMPLE OF TWO CASES.

Case 1λ x1, y1 2λ x1, y1 mReserved mShared

1 3.9 3, 0.7 3 6, 0.85 10 11

2 3.9 3, 0.85 2.9 5, 0.6 12 10

Because of this performance-related difference in various

circumstances, it is important to select a suitable strategy,

either Shared or Reserved Allocation, to satisfy SLA1, SLA2.

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

Moreover, the provisioned VM resource is also supposed to

guarantee QoS requirements. Let E(SLA) be the average

number of VMs required to meet k the given SLAs over the

range of considered arrival rates

0

1
() (, ,).

k

E SLA f k x y
k

 (5)

Then we set the SLA difference D between SLA1 and

SLA2. D is given by

1 2() () .D E SLA E SLA (6)

Our Algorithm 2 below specifies a preferred allocation

strategy to satisfy SLAs and QoS requirements as well as

budget. It uses the SLA difference table (Table III) to

present the relationship of D and angle α. In the table, each

range of D is predetermined by changing the arrival rate λ1,

λ2 in (0, 30) and the angle is the corresponding average angle

of the SLA difference in each range. The angle α is defined

by sin α = λ2 /sqrt(λ1.λ1 + λ2.λ2).

TABLE III. SLA DIFFERENCE.

D α
[0, 20) 0

[20, 40) 20

[40, 66) 50

[66, 88) 70

In order to guarantee QoS, we have to know how fast a

VM should be. Hence, we should apply a rule [8] as follows

[] = ,
(1)

E N
ρ

ρ
(7)

where ,
λρ
µ

 variable E[N] denotes the expectation of the

number of jobs in the system. Therefore, the expectation of

processing time is

[] 1
[] = .

(1)

E N
E T

ρ
λ λ ρ µ λ

(8)

Finally, to satisfy QoS, it is required that

1
.

[]E T
µ λ (9)

In agreement with this formula, we can determine the

service rate of the VM. For example, suppose we want E[T]

≤15s, λ = 1 job/sec. The rate of VM we need is greater than

16/10.

Algorithm 2 Determine the allocation strategy

Input: λ1 ,λ2 //arrival rate,

µ // service rate

SLA1, SLA2

E // expectation of processing time

φ // budget

Output: SA, RA // Allocation Strategy

Function determineAllocStrategy(λ1, λ2, SLA1, SLA2,E,µ, φ) {

Calculate SLA difference D

Get the corresponding angle α from the SLA difference table

if (µ>=(1/E[T] + λ1)&&µ>= (1/E[T] + λ2) && (C(s) φ))

if (Math.asin (λ2 /sqrt(λ1.λ1 + λ2.λ2)) <= α)

return RA

else

return SA

end if

}

B. Cloud Service Customer Layer

1) Distributing data from the cloud server to thick

clients

After resource allocation, we consider the distribution of

source data from the cloud server to thick clients. For clarity,

we give important definitions and assumptions for our

system. The data distribution process happens as follows:

First, each block of data is split into chunks {ch1, ch2,…,

chn} with different sizes depending on bandwidth. Let w(chi)

be the size of a chunk chi ; bi be the bandwidth from a VM to

a thick client. Therefore, time spent transferring a chunk chi

from VMs to a thick client is w(chi)/bi.. For parallelization,

the time to transfer chunks to thick clients should be equal,

as illustrated in (10):

1 2

1 2

()() ()
.i

i

w chw ch w ch
t

b b b
 (10)

Set

0 0 = ()= () .n n
i ii iS w data w ch t b (11)

Thus

0

() .i i in
ii

S
w ch t b b

b

(12)

According to this value, we can determine the size of each

chunk to adapt to the bandwidth of each connection.

2) Combining the data then transfer it to a thin client

After data from cloud service has been received, instead

of using peer-to-pear synchronization between all thick

clients, which might make communications more complex,

the broker thick client receives data from others thick clients

to decrease the complexity due to firewall between thick

clients, before transferring it to corresponding thin client.

VI. IMPLEMENTATION AND DISCUSSION

In this section, the results of numerical experiments are

presented to evaluate the efficiency of SA and RA and

compare our approach’s performance with other approaches

in terms of processing time. The comparison method is the

one which has one processor receiving data from the cloud

provider.

A. Experimental Settings

In this experiment, characteristics of our target system are

presented. We use a PC which has one Intel Core TM i7 965

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

and 8 GB of RAM. The OS is Windows 7 Professional. The

algorithm is simulated on the CloudSim [24], which is a

framework for modelling and simulation of cloud computing

infrastructures and services, in Java with jdk-7u7-i586 and

Netbeans-7.2. After setting the CloudSim library and

building a data center, we virtualized 25 VMs in the

platform, 10 thin clients and 7 thick clients. The available

bandwidths between processors are from 10 Mbps to 512

Mbps so as to make different connection capacities between

processors. In the bandwidth range, 512 Mbps is used for

processors which have the strongest connection capacity,

and 10 Mbps is used for processors which have the weakest

one. The topology of all processors is fully connected.

All the parameters in the simulations have different arrival

rates λ, response times, target probabilities y and some big

files for the above algorithms to estimate the required

minimum number of VMs for two types of resource

allocation, and data distribution time. With regards to SLA

settings, we set values for parameters of response time and

target probability as 1 to 10, and 0.1 to 0.99, respectively.

Meanwhile, speed values of requests and response services

include 0.2–3.9 range for arrival rate and 1–4 range for

service rate.

B. Experimental Results

The following figures show the simulation results of our

experiment. The results prove SA and RA have almost the

same impacts when they meet the same SLA with a different

arrival rate λ or response time RT or target probability y. As

illustrated in Fig. 4 and Fig. 5, when the arrival rate or target

probability increases, the minimum number of VMs also

increases.

Fig. 4. SA and RA with different arrival rate.

Fig. 6. SA and RA with different response time.

On the other hand, Fig. 6 show that the minimum number

of VMs required to meet an SLA decreases when the

response time increases. It is noteworthy that the reserved

allocation is more expensive than shared allocation.

Therefore, when the response time required is very small,

although the number of VMs mReserved is high, it is still less

than the number of VMs mShared because of the budget

limitation.

Regarding the probability that satisfies SLA (as illustrated

in Fig. 7 and Fig. 8), it has been observed that when the

78

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

arrival rate of the requests increases, the probability

decreases. Nonetheless, the probability is proportional to the

response time required.

Fig. 7. Probability with different arrival rate.

Fig. 8. Probability with different response time.

We next calculated the effect of the case where SA and

RA have to meet multiple SLAs rather than a single one. It is

obvious to see that with a proper budget, the strategy with

SA is more resource efficient than with RA, as illustrated in

Fig. 9, where SA uses fewer VMs than RA as the number of

SLAs increases.

Fig. 9. SA and RA with different numbers of SLA.

Fig. 10. Comparison of our approach with other.

This is because while the former strategy may cause the

expectation of processing time to get worse if merging

arrival jobs increases variability, it in fact uses shared

processing resources and so requires fewer VMs than the

latter. RA, to the contrary, sacrifices more resources and

79

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

thus can provide a guaranteed rate.

In addition, we further compare the processing time to

transfer big data from a source to a destination of our system

and one other approach, which has one processor receiving

data. Based on the experimental results in Fig. 10, it is

obvious that our approach produces better performance.

VII. CONCLUSIONS

This paper proposes a novel network architecture and

algorithms to optimize data distribution and computing

resources on the mobile cloud platform. Specifically, our

approach combines resource-rich devices, or thick clients,

and resource-limited ones, or thin clients, to form a

collaborative network on the client slide. This collaboration,

mainly leveraging the power of thick clients, can calculate

and select sufficient cloud resources (measured by the

number of VMs) and optimally deliver data between cloud

networks and mobile clients. In so doing, the expected

quality of service requirements can be satisfied.

Additionally, from the multiple network resource allocation

strategies being discussed, we develop an algorithm that

selects the most suitable strategy so that required SLAs and

CSCs’ budget can be met. By carefully measuring and

comparing our method with other existing ones, we have

shown the novel algorithmic technique in our proposal can

increase the efficiency of resource allocation and utilization

with a suitable strategy. These particular advantages are

visually illustrated by the minimised number of VMs used,

and shorter execution time for data distribution.

Future work includes advancing the research proposal into

a real-world implementation, for example, an in-campus or

inter-campus cloud streaming and processing service for

students and professors at universities and educational

institutions. Successful experiment can be expanded into

larger-scale deployment into considered public places where

heavy processing needs are high. With the planned

implementation, we can thoroughly observe real-world

operation, performance and work out any resulting problems

or shortcomings. Moreover, we will focus on improving the

quality of service in order to improve the cloud service

experience. Our approach may be used to deploy successful

cloud-based business models to mobile users. Furthermore,

we are implementing the proposed architecture using Google

Glass based augmented reality and context aware services.

REFERENCES

[1] Gartner, Inc., 2013. [Online]. Available: http://www.gartner.com
/newsroom/id/2408515

[2] Gartner, Inc, “Gartner says worldwide enterprise IT spending to reach
$2.7 trillion in 2012”. [Online]. Available: http://www.gartner.com/
newsroom/id/1824919

[3] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014–2019. [Online]. Available: http://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white_paper_c11-520862.html

[4] H. T. Dinh, C. Lee, D. Niyato, P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches”, Wirel.

Commun. Mob. Comput., 2011. [Online]. Available: http://dx.doi.
org/10.1002/wcm.1203

[5] F. Siegemund, C. Floerkemeier, H. Vogt, “The value of handhelds in
smart environments”, in Personal and Ubiquitous Computing, vol. 9,

no. 2, pp. 69–80, 2005. [Online]. Available: http://link.springer.com/
chapter/10.1007%2F978-3-540-24714-2_22

[6] P. Zhang, Peng, “A QoS-aware system for mobile cloud computing”,
in IEEE Int. Conf. Cloud Computing and Intelligence Systems

(CCIS), 2011. [Online]. Available:
http://dx.doi.org/10.1109/CCIS.2011. 6045122

[7] G. Huerta-Canepa, D. Lee, “A virtual cloud computing provider for
mobile devices”, in (MCS 2010), USA, 2010. [Online]. Available:
http://dx.doi.org/10.1145/1810931.1810937

[8] N. Tien-Dung, V. N. Mui, Huh Eui-Nam, “Service image placement
for thin client in mobile cloud computing”, in Int. Conf. Cloud

Computing (CLOUD), USA, 2012. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2012.39

[9] Pham Phuoc Hung, Eui-Nam Huh, “Collaboration of thin-thick
clients for optimizing data distribution and resource allocation in
cloud computing”, in IT Convergence and Security, Korea, 2013,
pp. 685–693. [Online]. Available:
http://link.springer.com/chapter/10. 1007%2F978-94-007-5860-5_81

[10] S. Uppoor, M. D. Flouris, A. Bilas, “Cloud-based synchronization of
distributed file system hierarchies”, in IEEE Int. Conf. Cluster

Computing Workshops and Posters, 2010, pp. 1–4. [Online].
Available: http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613087

[11] J. Delgado, L. Fong, “Efficiency assessment of parallel workloads on
virtualized resources”, in Fourth IEEE Int. Conf., 2011. [Online].
Available: http://dx.doi.org/10.1109/UCC.2011.22

[12] Pei Fan, Ji Wang, “Toward optimal deployment of communication-
intensive cloud applications”, in IEEE Int. Conf. Int. Conf. Cloud

Computing (CLOUD), 2011, pp. 460–467. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2011.54

[13] M. Kwok, “Performance analysis of distributed virtual
environments”, Ph.D. dissertation, University of Waterloo, Ontario,
Canada, 2006. [Online]. Available:
https://uwspace.uwaterloo.ca/handle/10012/2928

[14] N. Gueyoung Jung, “Synchronous parallel processing of big-data
analytics services to optimize performance in federated clouds”, in
IEEE 5th Int. Conf. Cloud Computing, USA, 2012, pp. 811–818.
[Online]. Available: http://dx.doi.org/10.1109/CLOUD.2012.108

[15] Ye Hu, Johnny Wong, “Resource provisioning for cloud computing”,
in Conf. Center for Advanced Studies on Collaborative Research,
2009, pp. 101–111. [Online]. Available:
http://dx.doi.org/10.1145/1723028.1723041

[16] M. Andreolini, S. Casolari, M. Colajanni, “Autonomic request
management algorithms for geographically distributed internet-based
systems”, in Second IEEE Int. Conf. Self-Adaptive and Self-

Organizing Systems, (SASO 2008), 2008, pp. 171–180. [Online].
Available: http://dx.doi.org/10.1109/SASO.2008.32

[17] A. Lenk, M. Klems, “What’s Inside the Cloud? An Architectural Map
of Cloud Landscape”, ACM/IEEE Symposium on Cloud Computing

Challenges, pp. 23-31, Vancouver, 2009. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2009.5071529

[18] X. Luo, “From augmented reality to augmented computing: a look at
cloud-mobile convergence”, in Int. Symposium on Ubiquitous Virtual

Reality, 2009, pp. 29–32. [Online]. Available:
http://dx.doi.org/10.1109/ISUVR.2009.13

[19] E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce”, Master thesis Draft, Computer Science Dept., CMU,
2009.[Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA512601

[20] L. Zhong, “Cloud computing applied in the mobile internet”, in 7th

Int. Conf. computer science and education (ICCSE), 2012. [Online].
Available: http://dx.doi.org/10.1109/ICCSE.2012.6295061

[21] Hien Nguyen Van, “SLA aware virtual resource management for
cloud infrastructures”, in IEEE Int. Conf. Computer and Information

Technology, vol. 1, pp. 357–362, 2009. [Online]. Available:
http://dx.doi.org/10.1109/CIT.2009.109

[22] Lin Weiwei, Peng Baoyun, “Novel resource allocation model and
algorithms for cloud computing”, in Int. Conf. Emerging Intelligent

Data and Web Technologies, 2013. [Online]. Available:
http://dx.doi.org/10.1109/EIDWT.2013.18

[23] B. Mathias, L. Y. Chen, “Opportunistic service provisioning in the
cloud”, in IEEE Fifth Int. Conf. Cloud Computing, 2012. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2012.85

[24] Cloudsim, “A framework for modeling and simulation of cloud
computing infrastructures and services”. [Online]. Available:
https://code.google.com/p/cloudsim/downloads/list

80

