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Abstract. We provide a new technique for deriving optimal-sized polygonal schema 
for triangulated compact 2-manifolds without boundary in O(n) time, where n is 
the size of the given triangulation T. We first derive a polygonal schema P 
embedded in T using Seifert-Van Kampen's theorem. A reduced polygonal 
schema Q of optimal size is computed from P, where a surjective map from the 
vertices of P is retained to the vertices of Q. This helps detecting null-homotopic 
(contractible to a point) cycles. Given a cycle of length k, we determine if it is 
null-homotopic in O(n + k log g) time and in @(n + k) space, where g is the 
genus of the given 2-manifold. The actual contraction for a null-homotopic cycle 
can be computed in | time and space. This is a considerable improvement 
over the previous best-known algorithm for this problem. 

1. Introduction 

In recent years a new focus has developed in studying the algorithmic aspects of 
topology [1], [3], [4], [5], [6], [8], [9], a well-developed branch of mathematics. This 
emergent field has been called "computational  topology" [5], [9]. It is generally 
recognized that a vast repository of topological problems exists which have not been 
studied extensively from an algorithmic point of view. This paper  deals with the 
problem of computing polygonal schema, an efficient representation of 2-manifolds, 
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from their triangulations. An elegant solution to this problem provides an improved 
algorithm for detecting null-homotopic cycles on compact 2-manifolds. 

A 2-manifold ~" can be represented by a polygon P (polygonal schema) with an 
even number of edges such that when edges are appropriately identified, we get back 
atv. Given a triangulation T of ~v, Vegter and Yap [9] designed an algorithm that 
derives a polygonal schema (canonical) of optimal size whose edges belong to the 
edges of a refined triangulation of T. This method subdivides the edges of T into 
O(g) subedges and increases the size of the triangulation to O(gn). A lower bound 
of l~(gn) is known for deriving such a canonical polygonal schema for 2-manifolds. 
In that respect the algorithm of Vegter and Yap is optimal. However, in applications 
we may not need such polygonal schema. As shown in this paper, we can derive a 
polygonal schema of optimal size in O(n) time from T without refining it. This 
polygonal schema is not embedded in a refinement of T but retain a surjective 
mapping from the vertices of another polygonal schema embedded in T to its 
vertices. This fact is used to detect null-homotopic cycles on .~'. Our method of 
computing the polygonal schema is also simpler than Vegter and Yap's method. We 
believe that this method will find more applications in other algorithms. 

Given a cycle C on a 2-manifold, we say that C is null-homotopic if it can be 
contracted to a single point. Detecting the null-homotopy of a given cycle in a 
topological space is a century-old problem, known as the contractibility problem in 
topology [7]. A related problem involves determining if two given cycles can be 
continuously deformed to one another. It turns out that a solution to the con- 
tractibility problem also provides a solution to this problem. 

The contractibility problem for 2-manifolds was first solved from a mathematical 
point of view during the 1880s. It was established that a cycle is null-homotopic if 
and only if its corresponding curve on the universal covering space is closed. 
Universal covering space is a collection of polygons (polygonal schema) appropri- 
ately attached to give a tessellation of the plane. In [5] Schipper used this result to 
give an O(gZk + gn) time and space algorithm to detect the null-homotopy of a 
given cycle. Here k is the length of the given cycle. In his algorithm Schipper derives 
the canonical polygonal schema using the algorithm of Vegter and Yap [9]. Using 
our polygonal schema computation and a clever modification of Schipper's algo- 
rithm, we design an algorithm that runs in O(n + k log g) time and in O(n + k) 
space. If the given cycle is null-homotopic, the actual contraction can be computed 
in O(nk) time, which is worst-case optimal. This is a considerable improvement over 
Schipper's algorithm and is almost optimal. We should mention that Schipper's 
algorithm does not remain linear in k and takes O(n + k 2) time when g = 1 for 
torus (orientable) and g = 2 for klein bottles (nonorientable). We treat these cases 
separately and give | + k) optimal algorithms for them. 

We describe necessary concepts in homotopy and fundamental groups of topolog- 
ical spaces in Section 2. In the third section we explain the polygonal representation 
(polygonal schema) of 2-manifolds. In Section 4 we describe a technique to derive a 
reduced polygonal schema from the given triangulation of a 2-manifold using 
Seifert-Van Kampen's theorem. In the fifth section we detail the algorithm for 
null-homotopy detection, and we conclude in Section 6. 
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2. Homotopy and Fundamental Group 

Let f :  T 1 ~ T 2 and g: T a ~ T 2 be two maps between the two connected topological 
spaces T 1 and T 2. These two maps are called homotopic if there is a continuous 
function h: [0, 1] x T 1 ~ T 2 such that h(0, x) = f (x )  and h(1, x) = g(x). We can 
interpret h as a deformation process that transforms f to g in a continuous manner. 
We are interested in the case when T~ = S 1, the unit circle. Then f and g are closed 
curves, also called cycles. Let C~, C 2 be two cycles that begin at a common point, say 
p. The product operation, ".", is defined on them as C 3 = C 1 �9 C 2, where C 3 is the 
cycle beginning at p,  then going around C 1 followed by a traversal around C 2 which 
finishes at p. The inverse C-a  of a cycle C is the cycle lying on top of C, but with 
opposite orientation. 

Given a fixed origin p for the cycles on T 2, we call C, C' equivalent if there is a 
homotopy between them which keeps p fixed. The equivalence class of C is denoted 
by [C]. The product operation "." extends naturally to equivalence classes as 

[ C I ] '  [ C  2] : I f  I �9 C2]  . 
These equivalence classes form a group under the product operation. The 

identity element 1 is represented by the equivalence class of the point cycle p, and 
[C].  [C -1] = [C.  C -1] = 1 giving [C] -1 = [C-1]. This group, denoted 7ra(T2), is 
called the fundamentalgroup of the topological space T 2. It turns out that this group 
is independent  of the choice of the origin p and is an invariant property of the 
underlying space. 

Fact 2.1. A cycle C is contractible or null-homotopic if and only if [C] = 1 in Ir 1 [7]. 

We use the following concepts of group theory in the next sections. Let G be a 
group with the product operation ".". A set of elements X = {gl, g2 . . . .  } of G is 
called a generator set if any nonidentity g ~ G can be written as g = g'l "g~ "'" g~ 
for some k > 1 and g~ ~ {gl, g2 . . . .  }. In other words all elements of G are generated 
by X. A word is a concatenation of elements of G under  the product operation. For 
example w = gl "g2 "g3 = glgzg3 is a word. A relation r is a word which is set to 1. 
For example r = glg2g3 is a relation if glg2g3 = 1. Relations of the form gg-a, g-ag 
are called trivial relations. 

The structure 3 r =  (gl ,  g2 . . . .  : r l ,  r 2 . . . .  ) is called a group presentation of G if 
{gl, gz , . . . }  is a generator set that generates G with respect to the relations 
{r 1, r 2 . . . .  }. We also write G = ( g l ,  g2 . . . .  : rl, r 2 . . . .  ). Two relations are equivalent 
if one can be derived from the other. A group is freely generated by X = {gl, ga . . . .  } 
if there are no nontrivial relations. In that case the group has a presentation of the 
form (gl ,  gz . . . .  : - - ) -  

3. Polygonal Schema 

A 2-manifold is a connected topological space where each point has a neighborhood 
homeomorphic to an open disk. By this definition, we consider only 2-manifolds 
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Fig. 3.1. A polygonal schema for double torus. 

without boundary. A 2-manifold can be infinite or finite. Moreover, it can be closed 
or open depending on whether or not its closure coincides with itself. A closed and 
finite 2-manifold is also called a compact 2-manifold. A sphere and a klein bottle are 
two examples of compact 2-manifolds. A 2-manifold is called orientable if it has two 
distinct sides. Otherwise, it is nonorientable. For details see [7]. 

A 2-manifold is triangulable in the sense that it can be represented as the union 
of a set of triangles, edges, and vertices satisfying the following properties. Each pair 
of  triangles either share a single vertex or a single edge, or are completely disjoint. 
Also, the triangles incident on a vertex can be ordered circularly so that two 
triangles share a common edge if and only if they are adjacent in this ordering. In 
this paper we consider only compact 2-manifolds without boundary. 

Any orientable or nonorientable 2-manifold A can be represented by a simple 
polygon P with an even number of  edges on bd(P) 1 which is also called a polygonal 
schema of .K. Each edge of P has a signed label such that each unsigned label 
occurs twice. See [2] and [7] for details. Two edges with the same unsigned labels are 
called partnered edges. Partnered edges can have labels with the same or opposite 
signs. Two partnered edges with the labels +x  and - x  represent the same edge on 

but are oppositely directed on P. Figure 3.1 shows a polygonal schema for double 
torus (g = 2). We use x -  1 to denote the complement of  the label x. To reconstruct 
a surface homeomorphic to .~' from its polygonal representation, the oriented edges 
with the same labels are identified together in such a way that their orientations 
match. For simplicity, we say that .Jr is obtained from P by identifying partnered 
edges appropriately. 

An  orientable 2-manifold .K with genus g > 0 can be represented canonically 
using a 4g-gon where all 4g vertices represent the same vertex on .~. The size of 
this polygon is optimal since no k-gon with k < 4g can represent .J~'. The labels on 
the edges around the polygon are of the form 

XlYlX 11y 11x2Y2X 2 ly 21 ... Xgyg Xg lyg i 

Similarly, a nonorientable 2-manifold with genus g > 1 can be represented 
canonically using an optimal sized 2g-gon where the labels on the edges around the 

1 bd(P) represents the boundary of the polygon P. 
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polygon are of  the form 

X I X I X 2 X  2 "'" XgXg.  

For g = 0, the orientable 2-manifold is a sphere which can be represented 
canonically by two directed edges xx -1. Similarly for g = 1, the nonorientable 
2-manifold is the projective plane which can be represented by two directed edges 
xr. If  we identify the partnered edges of the canonical polygon appropriately, they 
form a set of curves glued at a single point on the 2-manifold. These curves are 
called canonical generators. 

Let T be a triangulation of a 2-manifold .av with n edges. Following the 
notations of [9], we assume that T is represented by its incidence graph D ( T ) .  Each 
face f (vertex, edge, or triangle) of T is represented by a node D ( f )  in this graph, 
where there is an arc from D ( f )  to D ( f ' )  if and only if f is incident on f ' .  The 
computational model is the pointer machine that manipulates such graphs. A path 
on T is a sequence of alternating vertices and edges, ule~u2e 2 ... e k_ lUk, where the 
edge e i has vertices vi, vi+ 1 as endpoints. A cycle is a path which is closed. 

The following lemma provides a method that flattens out T to a triangulation T '  
of a planar polygon. 

Lemma 3.1. A polygonal schema P with triangulation T '  can be constructed f rom T 
where there is a one-to-one correspondence between triangles o f  T '  and T. 

Proof. We construct a sequence of closed disks Ds, D 2 . . . . .  D n incrementally such 
that P = D n at the end. Initially, D 1 = trl', a triangle that corresponds to an 
arbitrarily chosen triangle tr I on T. Let D i = tr~ U cr~ U ... U ~i' after the ith step. 
At the (i + 1)th step we choose a triangle ~ri+ 1 on T which has the following 
properties: 

(i) No triangle corresponding to ~r i+1 has been included in D r 
(ii) A triangle o) adjacent to t~i+ 1 by an edge has a corresponding triangle 

in D i. 

These two conditions imply that there is an edge e = o ) A  cri+ 1 such that its 
corresponding edge e '  on D i appears on bd(Di).  We attach a triangle tri+ 1 to 
bd(D i) such that tri+ 1 A bd (D  i) = e'. This gives the new disk Di+ 1 = D i U ~+1- It 
is clear that if D i is a closed disk, so is Di+ 1. Finally, when we exhaust all triangles 
on .d ~, we have D n with the triangulation T '  that has the following properties: 

(i) Each triangle in T '  corresponds to a single triangle in T and vice versa. 
(ii) Each edge e '  on b d ( D  n) has a partnered edge e" such that they both 

correspond to a single edge e on T. This is because each edge e on T has 
two incident triangles and the edges on bd(Dn) have a single triangle 
incident on them. Further, when partnered edges of b d ( D , )  are identified, 
we get back T. This is because, by our construction, the two triangles in T '  
incident on partnered edges e' ,  e" correspond to the two triangles incident 
on e in T. 
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(iii) Incidence relations of all other edges inside T '  are isomorphic to their 
corresponding edges on T. So, D n = P,  a polygonal schema for r  with a 
one-to-one correspondence between triangles in T and T ' .  []  

4. Computing an Optimal Polygonal Schema 

The size (number  of edges on the boundary)  of  the polygonal schema as deduced in 
the last section can be l~(n), which is too large for our  purpose. Here, we show a 
technique to derive a polygonal schema Q of optimal size from P that retains 
enough information to preserve a surjective mapping from vertices of P to Q. Due 
to this mapping, we would be able to trace a path on Q that corresponds to a path 
on P and hence a path on T. Here  we must mention that our method does not 
produce the reduced polygonal schema in canonical form as was done by Vegter  and 
Yap in [9]. We  already observed that  the triangulation T '  to P becomes isomorphic 
to the triangulation T of .d" when par tnered edges are identified. From now on we 
do not  distinguish between the triangles, edges of T and T ' ;  we refer to them with 
the same name. With this set-up, two par tnered edges on bd(P)  have the same 
name. 

Let  the 1-complex (graph) formed by the identified edges of bd(P) be G. The 
space .~" - G is an open disk since P - bd(P)  is an open disk. Let  us attach a thin 
layer of  an open set on two sides of  the edges of  G to make it open, and denote  this 
space G ' .  Let  the at tached open set be thin enough so that the space D = / -  G '  is 
an open disk; see Fig. 4.1. We can express 7rl(.d') in terms of r r l (G ' )  and ~-I(D) 
using the following theorem: 

Seifer t -Van Kampen ' s  Theorem. Suppose S is a space which can be expressed as the 
union of  path-connected open sets A,  B such that A (~ B is path connected and such that 
~r I( A ) and rr I( B ) have respective representations 

,h-l(A ) = ( a l , a  2 . . . .  : r 1 . . . . .  rn), 

7rl(B) = ( b l ,  b 2 . . . .  : s 1 . . . . .  Sq), 

while ~rl(A (3 B)  is finitely generated. Then 7r1(S) = ( a l ,  a 2 . . . .  , bl,  b 2 . . . .  : 
r 1 . . . . .  rn, s I . . . . .  Sq, UlV { 1 . . . . .  umv~ 1 ) where ui, v i are the expressions for the same 
generator of  ~ I( A A B)  in terms o f  the generators o f  7rl(A) and 7r l( B ), respectively. 

Fig. 4.1. The spaces D, G, and G'. 
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Since any cycle (curve) on G '  can be continuously deformed to the edges of G, 
we have Zrl(G) = l r l (G ' ) .  Let a set of generators of zrl(G) be y with the set of 
relations Pl. The fundamental group of D is the trivial group {1} since D is an open 
disk. Let the set of relations obtained for the generators of ~-I(D n G ' )  in terms of  
the generators of "n'l(D) and 7rl(G') be P2. The spaces A', G ' ,  and D satisfy all 
conditions of Seifert-Vma Kampen's theorem. Then according to this theorem 
~-l(.~r) has a presentation (7 :  Pl ,  P2)" 

A presentation of 7rl(G) can be obtained as follows. Let Y be a spanning tree of 
G, and let p be a vertex of Y. Each edge e of G defines a cycle c ( e ) =  w e w '  
originating at p where w, w' are the paths from p to the endpoints of e along the 
edges of Y. To simplify notation we write e for the cycle c(e) .  Any cycle e where e is 
an edge of Y is contractible to p and hence belongs to the identity of zrl(G). Let 
B = {bl, b 2 . . . . .  b t} be the set of edges of G that do not belong to Y. A presentation 
of "n'x(G) is (bx, b 2 . . . . .  bl: - - )  implying PI = { }" Consider the sequence of edges 
around (clockwise) b d ( P ) .  Some of these edges belong to Y which are set to 1 in 
7rl(G). In terms of the generators of eft(G) , let the sequence of edges around b d ( P )  
form the word b'lll ... b~11 ... b~ll  --. b~tll ... 1, where the b~'s represent the edges 
in B or their inverses. This word is equivalent to r = b'lb' 2 ... b'2~. T h e  generator for 
the circle D N G '  is b'lb' 2 ... b'2t in terms of the generators of ~-I(G') and is 1 in 
terms of the generator of D. So we have P2 = b'ib'2 "'" b~t = 1. Hence a presenta- 
tion of 7rl(~t') is (bl,  b 2 . . . . .  bt: P2). 

Lemma 4.1. l = 2g i f  Jr" is orientable and  l = g i f  . g  is nonorientable.  

Proof.  Consider the polygon P with all edges in Y contracted to a single point. 
This results in a polygon Q with edges b'lb'2 "'" b'21 labeled clockwise around it (Fig. 
4.2). The polygon Q is a 2/-gon with partnered edges. Further, we can assume that 
all vertices of  Q have same label, i.e., when partnered edges are identified, all 

1 

1 

b 

b2 1 b3 1 1 

1 / ~ - - - - ~ b 4  b3 

1 b31 1 

Fig. 4.2. Reduced polygonal schema. 



100 T.K. Dey and H. Schipper 

vertices are identified to a single point. Then Q represents a polygonal schema for a 
manifold a t '  homeomorphic to at. This is because: 

(i) When partnered edges are identified Q forms a 2-manifold a t '  whose 
fundamental group is the same as 7rl(at) (apply Seifert-Van Kampen's 
theorem). 

(ii) Any two compact 2-manifolds are homeomorphic if and only if their funda- 
mental groups are isomorphic. 

Euler's characteristic of a t '  is 2 - l since we get one vertex, I edges, and one face 
when the edges of Q are identified. It is known that Euler's characteristic of a 
surface a t  of genus g is 2 - 2g if a t  is orientable and is 2 - g  if a t  is non- 
orientable. Since a t  and a t '  are homeomorphic, their Euler's characteristics must 
be equal, proving I = 2g if a t  is orientable and l = g if a t  is nonorientable. [] 

4.1. The Algorithm 

We construct the polygonal schema P as described in Lemma 3.1. This takes only 
O(n) time to traverse the incidence graph D(T) and simultaneously build up the 
graph D(T')  and hence P. 

While constructing P we maintain pointers from the edges and triangles of T to 
the edges and triangles of T'. We detect the edges of the 1-complex G through the 
edges of bd(P) in O(n) time. A spanning tree Y of G is computed in O(n) time by a 
simple depth-first search in G. The edges not in Y are detected and the correspond- 
ing edges on bd(P) are marked with the label other than 1. All other edges on 
bd(P) are marked 1. All these take O(n) time. 

The reduced polygon Q of size 21 is constructed from P as follows. Let the 
sequence of edges around bd(P) (clockwise) be b'lb'2 "'" b'zt ignoring the edges 
marked 1. We form the polygon Q to have 2l edges labeled b'lb'2 "'" b'zl around it. 
We maintain pointers from the vertices of P to the vertices of Q as follows. Let 
b~b~+ 1 be any two consecutive edges in the sequence (circular) b'lb' z ... b'2t and let 
vlv 2 ... v s be the vertices of bd(P) between b~ and b~+ 1 where v I is an endpoint of 
b~ and v s is an endpoint of b~+ 1. All these vertices point to the same vertex v 
between b~ and b~+ 1 in Q. See Fig. 4.2. The polygon Q can be thought of as the 
polygon P with all edges in the spanning tree Y shrunk to a single vertex. By 
Lemma 4.1 Q has optimal size. The pointers from P to Q realize a surjective 
mapping between their vertices. Combining all costs together Q can be constructed 
from T in O(n) time. 

Theorem 4.2. Let .4g be any compact 2-manifold of genus g with triangulation T of 
size n. A polygonal schema Q of optimal size can be constructed in O(n) time, where a 
surjective mapping is retained from the vertices of a polygonal schema embedded in T to 
the vertices of Q. 
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5. Detecting Null-Homotopy 

Traversing a cycle C on T is equivalent to traversing an ordered set of paths 
U = {u 1, u 2 . . . . .  u r} that have endpoints on b d ( P )  if C intersects G. Each of these 
paths u i is homotopic to a path u' i that has edges only on b d ( P )  and have the same 
endpoints as u i. Note that no such paths exist when C does not intersect G. In that 
case C is trivially null-homotopic. We consider the nontrivial case when C intersects 
the edges of G. 

When edges on b d ( P )  are identified, the sequence U'l, u' 2 . . . . .  u', form a cycle C '  
on T, which is homotopic to C. Each path u'i can be expressed as a word wg in terms 
of the generators b l ,  b 2 , . . .  , b t by listing the sequence of edges on it that are not 
marked 1 on b d ( P ) .  This is actually done on b d ( Q )  to avoid unnecessary visits of 
edges that are marked 1 on b d ( P ) .  We also write w i ~ u i if the word w i corresponds 
to the path u~. The word w = wi, w 2 . . . . .  wr represents the cycle C in 7rl(.K). We 
determine if w = 1 to detect if C is null-homotopic (Fact 2.1). 

The sequence of paths {UlU 2 ... u r} with endpoints on b d ( P )  are detected 
through pointers as we traverse C on T. The homotopic path u" of u i is identified by 
the endpoints u1, u 2 of u~. We do not traverse the path u'  i on b d ( P )  which can have 
l l (n)  length. To form the word w i ~ ui we detect the corresponding vertices of 
v 1, v 2 on b d ( Q )  through pointers from P to Q. We can consider the labeled edges 
between these vertices around b d ( Q )  in any direction (clockwise or counterclock- 
wise) to form the word w i. T h e  length of w can be l ~ ( g k )  since each word w i can 
have II ( l )  = l ) (g)  length and there can be r = 12(k) such words in the worst case, 
where k is the length of the given cycle. If we construct the word w explicitly, we 
may have to spend l l ( g k )  time which is worse than our goal of O ( k  log g)  time. For 
this we only concentrate on the f i rs t  and last  edges of each w i, and process them in a 
partially built universal covering space as described below. 

5.1. T h e  Universa l  Cover ing  Space  

Informally, a topological space ~ ( X )  is a covering space of another topological 
space X if each point in g/(X) has a neighborhood similar to a point in X. More 
precisely, a continuous surjective map f :  ~ ' ( X ) ~  X exists such that, for an 
e-neighborhood N of any point in X, the inverse image f-l(N) is a union Ui N / o f  
e-neighborhoods in ~ ( X )  where each N/ is homeomorphic to N, which is realized 
by the restriction fiN,. If  ~ ' (X)  is simply connected, it is called the universal 
covering space of  X. 

We can construct a universal covering space ~'(ar of  .K as follows: Let P.,e be a 
4g-gon (if .av is orientable) or a 2g-gon (if ar is nonorientable) such that when its 
edges are identified we get a set of generators for A '  meeting at a single point. By 
taking infinitely many copies of PA and gluing them together along the identified 
edges, a tessellation of  the plane with either 4g-gons or 2g-gons, depending on 
whether .~' is orientable or not, is obtained. The polygon Q is a polygonal schema 
for ~ where all 21 vertices represent the same point on .a v. Hence we can take 
P.,t ---- Q to construct ~(.av). A general strategy to construct ~'(atv) is by starting with 
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i r  ~ 
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(a) 

Fig. 5.1. 
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(b) 

Universal covering space of the double torus (a) and a typical structure (b). 

a single copy of  P~, (base polygon) whose vertices lie on a circle C 0. Now there is a 
unique topological way to complete the neighborhood of each vertex of the base 
polygon with copies of Px since copies are glued along identified edges. The newly 
created vertices lie on a circle C 1. This process can be repeated a d  i n f i n i t u m .  A part 
of the universal covering space of the double torus is illustrated in Fig. 5.1(a). In this 
figure the triangles that fan out from a vertex on C i represent a set of squeezed 
copies of Px with all other vertices on Ci+ 1. T h e  following fact is well known. See [7] 
for details. 

Fact 5.1. Any curve C on • can be mapped to a unique path u (lifted path) in 
�9 ' ( ~ ' )  such that C is null-homotopic if and only if u is closed. 

Let the first vertex v 0 on w be mapped to a point P0 on ~ ( A ' ) .  The lifted path u 
of w starting from P0 can be constructed incrementally as follows. Let the path u be 
traced to the edge e' i, which corresponds to the edge e i of w. The next edge el+ 1 is 
mapped to a unique edge e'e+ 1 on g ( A ' ) .  To augment the lifted path to the edge 
ei+ 1, we traverse the unique edge e'i+ 1 connected to e' i on ~'(A') .  To check if the 
lifted path u of  w is dosed, it is sufficient to process the edges through which we 
enter or leave a polygon in ~'(M'). We do not  need to process explicitly other edges 
as they are traversed on the same polygon. In terms of a single component  w i, it 
means that it is sufficient to process the first and last edges of w i since all edges of  
wi are traversed on the same polygon. Let w '  denote the sequence of first and last 
edges of w i, i = 1 , . . . ,  r. Certainly, Iw'l -< 2r  = O ( k ) .  T h e  edges of  w'  are processed 
in a partially built structure of ~'(.~r that is augmented as and when necessary. 

We use the notation as introduced in [5]. A vertex v has distance k from the base 
polygon if it lies on the circle C k. A polygon has distance k if the maximum of the 
distances of  its vertices is k. Edges between vertices o f  different distances are called 
sp o kes ,  other edges are called arcs.  Polygons at distance k incident with two vertices 
at distance k - 1 are called bridges .  T h e  f a n  of a vertex v at distance k are the 
polygons incident on v at distance k + 1 which are not  bridges. 
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5.2. The Structure 

The algorithm maintains a part of  the universal covering space, which we call the 
structure. In this structure the polygons represent copies of Q. However, not all 
polygons in the structure are real copies. Most polygons will be under construction; 
that is, chains of edges separated by vertices may be represented by a single edge 
(unfinished edge). The fans will also be under  construction. Initially a fan at a vertex 
is realized by a single triangle which is expanded as and when necessary. If a polygon 
or a fan is not under  construction, we call it finished. Edges of the structure have 
one of the following colors (Fig. 5.1(b)): 

�9 White, if it is an edge between two finished polygons. 
�9 Black, if it is an edge between two polygons in the structure, at least one of 

which is not finished. 
�9 Red, if it is both a spoke and a boundary edge of the structure. 
�9 Blue, if it is an arc and boundary edge of the structure. 
�9 Green,  if it is an arc, bounding the structure, and a so-called unfinished edge. It 

connects two vertices which are not connected by an edge of Q. 

5.Z1. Enlarging the Structure. We enlarge the structure by one of the following 
operations. 

�9 Add  a polygon P to the structure. Initially P is a triangle or a rectangle. If P is 
a member  of a fan, it will be a triangle. If P is a bridge, it will be a rectangle 
with two spokes, one arc at a smaller distance and an unfinished edge (green) at 
a larger distance. 

�9 Continue constructing a polygon. This means we add at most two blue edges to 
a polygon. Adding blue edges means that a green edge e of a polygon is 
subdivided in a b lue -b lue  sequence or a b lue -g reen  sequence depending on 
whether  e clumps two or more edges in it. 

�9 Add  a fan to a vertex. If we do that, the fan will be under construction, that is, 
we add a triangle consisting of two extreme spokes of the fan and an unfinished 
green edge between them. 

5.2.2 Invariants. During the algorithm we maintain the following invariants: 

�9 The structure represents a part  of the universal covering space and is homeo- 
morphic to a disk. 

�9 All  the first and last edges of the lifted curve that have been processed are 
contained in the structure. 

5.3. Algorithm 

5.3.1. Data Structures. The polygons and the fans are maintained with data 
structures that allow fast search and insert operations. Each polygon is given a 
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clockwise orientat ion which orients its edges. Thus each edge has two directed edges 
associated with it corresponding to the two polygons incident on it. Each directed 
edge, in turn, has the edge associated with it. A polygon is maintained as a linked list 
of directed edges which enlarges as the polygon expands. On top of this linked list, 
the data  structure for ' fast  search and insert operat ion is maintained. A similar fast 
data structure is also maintained for the spokes of each fan. 

We use a balanced binary search tree that allows search and insert operat ion in 
O(log g)  time. For  this, the vertices around bd(Q) are indexed by integers 1, 2 . . . . .  4g 
(2g if M" is nonorientable) ,  which in turn render  the edges of w'  as tuples of 
integers. Each copy of polygon Q maintains a balanced binary search tree D(Q) on 
top of  its linked list, where the indices of the vertices are used as search keys. Each 
vertex v maintains a similar binary search tree F(v)  for its fan, and a list L(v)  of at 
most five edges of  bridges that are incident on v. If v is at a distance k, these five 
edges include four edges of  two bridges at distance k and a spoke of a bridge at 
distance k - 1. See the vertex v in Fig. 5.1(a). 

5.3.2. Processing the Edges. We process w in terms of  the first and last edges of 
the wi's. For  each wi, as well as its first and last edges we also need the edge after 
the first edge. Let  e be any generic edge which we are visiting. We call the polygon 
current on which e is visited. Our  strategy of moving through the structure is as 
follows. 

For  a first edge e of wi we determine the current polygon Qc with the help of e ' ,  
where e '  is the next edge after e on w i. Then we search for the last edge of  w i in 
D(Qc). If it is not present,  we insert it in D(Qc). If v is the vertex through which we 
exit Qc, we search for the first edge of wi+ 1 in F(v)  and L(v)  after initializing them 
if necessary. Depending on the color and type of  e we take appropria te  actions as 
follows. 

1. e is a first edge of wi: e can only be black or white. This is guaranteed by the 
fact that when we exit a polygon through a vertex v, all necessary fans and 
bridges are at tached to v. Of  course, this is not true when e is the first edge of 
w 1. This initial condit ion can be handled as a special case without any 
difficulty. Let  e '  be the next edge after e on w i. If  IWil = 1, we take e '  = e and 
visit e as a last edge. 

�9 e is white. Out of  the two polygons incident with e, only one has e' after e. 
Detect  that  polygon and make it current. This is possible since each edge is 
uniquely determined by its endpoints.  

�9 e is black. If necessary, insert the two polygons (under construction) incident 
on e. If  e is a spoke, this involves inserting at most two edges in the fan of 
which e is a member .  If e is an arc, the two polygons incident on e are 
already present. In both cases let Q1, Q2 be two polygons incident on e. Let  
v = e n e ' .  If any of  the edges of QI, Q2 incident on v is green, break it to 
have a blue edge incident on v. Detect  the polygon Qc ~ {QI, Q2} on which 
e '  will be  traversed. Make Qc current. See Fig. 5.2 for an illustration. 
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greenedge ~ ~ b t u e  edge 

~green edge 

Fig. 5.2. Processing a black arc. 

2. e is a last edge: Let the next edge e ' ,  a first edge on Wi+l, be incident on the 
vertex v of e. 
�9 e is red. Let v '  be the vertex of e at the smaller distance. If v '  is incident on 

a blue edge, add the missing fan and bridge (under construction) incident 
with v ' .  The edge e is now incident on two polygons. If v '  is incident on a 
green edge, then replace the green edge by a b lue -g reen  sequence so that 
the blue edge is incident on v '. Treat this case by assuming v '  to be incident 
on a blue edge. See Fig. 5.3 for an illustration. If  v' is incident on another 
red edge e", call the procedure recursively on e". See Fig. 5.4. This will 
cause v '  to be incident on a blue or green edge. Now apply the procedure 
described above. 

After  this processing, proceed as follows. There are two cases: (i) v is the 
vertex at the smaller distance. The fan and the bridges incident on v are in 
the structure now. Select e '  after the appropriate  search. See Fig. 5.4(c). 
(ii) v is the vertex of e at the larger distance. Break the green edges (at 
most two) incident on v and then attach the fan and bridges to v (all 
under construction). Now select e'. 

�9 e is white. We have two cases. (i) e is a spoke. Both polygons incident on e 
are finished. Attach the fan at v and two bridges if they are not there (all 
under construction). If e '  belongs to any of the two arcs incident on v, then 
visit e ' .  Otherwise, e '  belongs to one of the edges of the fan at v. Search e '  
in F(v). If  it is not in F(v) ,  insert it with the necessary polygon(s) (under 
construction) incident on e ' .  Visit e ' .  (ii) e is an arc. If v is incident on any 
red edge, there must be one red edge with v at the smaller distance. Process 
the red edge as if it is visited as a last edge. This will put necessary fans and 
bridges incident on v. If v is not incident on any red edge, the necessary 
fans and bridges are already present. Select the edge e '  from the fan and 
bridges incident on v as described above. See Fig. 5.5. 

bridge 
/ 4  o ..,. blue edge 

", _ . . . ~b r idge  , ~ r i d g e  
\.r edge ~ ~ fan 

v I e e 

�9 a 

t 

Fig. 5.3. Processing a red edge where v' is incident on a green edge. 
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t . ~ 1 ~ \  fan 

(b) 

,•ridge 

_ 

, ~  charged edge 

i 
(c) 

Fig. 5.4. Processing a red edge recursively. 

�9 e is black. If necessary add new spokes with appropriate polygons to the fan 
under construction. Attach the necessary fan and bridges to v and select the 
edge e '  as in the previous case. 

�9 e is blue. (i) v is not incident on any spoke. Attach the fan and bridges to v 
and then select e ' .  (ii) v is incident on a spoke which is red. Process the red 
edge as if it is visited as a last edge. This attaches the fan and bridges to v. 
Select e '  from them. (iii) v is incident on a spoke, which is not red. Attach 
the fan and bridges to v and select e ' .  

Time Complexity. Except for red edges, processing all other edges involves enlarging 
the structure by O(1) size. This implies that processing each nonred edge increases 
space by a constant amount. Processing edges involves search and insert operations 
in the data structure for fans and polygons. Hence each nonred edge takes O(log g)  
time. 

A red edge can incur an I~(k) cost since it may involve f~(k) other red edges in a 
recursive call. However, we can charge this cost to some other edges processed in 
the past. Each red edge r involved in a recursive call takes O(1) time. This includes 
the time to attach an O(1) size fan and bridge to the vertex v between r and the 
next red edge. Also only O(1) time is needed to check if any of  the edges in L(v) 
other than r is a red edge. Each red edge r in a recursive call is incident on a bridge 
because every time we attach a fan, we also attach the adjacent bridges. The O(1) 
time spent for it can be charged to the black or white edge incident on t~ between 
the two bridges. See Fig. 5.4(c). Observe that a red edge can participate in a 
recursive call only once since it is turned white or black by the recursive call. Also a 

V ~ ~ e '  

Fig. 5.5. Processing a white edge. 
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crucial observation is that the black or white edges created by the recursive calls are 
never charged in the future. This implies that any black or white edge that is charged 
must be created by an edge that is not involved in a recursive call. All these imply 
that we spend O(1) amortized time per red edge for recursive calls. Including the 
possible search and insert time for the first red edge we conclude that each red edge 
processing takes O(log g) amortized time. The same argument shows that each red 
edge adds O(1) amortized space. 

So, processing each first and last edge takes O(log g)  amortized time and O(1) 
amortized space. Since there are k such edges, we have O(k  log g) total time and 
O(k)  total space. However, when g < 1 (g < 2 if ~ is nonorientable), the above 
charging scheme fails since there is no white or black edge that is guaranteed to be 
created by a nonrecursive step, which can be charged for red edges involved in 
recursive calls. Indeed, for g = 1 (g = 2 if .~" is nonorientable), the above procedure 
takes 12(k 2) time in total. We consider these cases separately. 

Combining the costs of all steps we obtain the following theorem. 

Theorem 5.1. Let ~ be any compact orientable (nonorientable) 2-manifoM o f  genus 

g > 1 (g > 2) with a triangulation T o f s i z e  n. We can detect ira given cycle C o f  length 
k is null-homotopic in O(n + k log g) time and in O(n + k)  space. 

5.3.3. Special Cases. Any cycle on a sphere (g = 0) is contractible to a single 
point. So, the contractability problem is trivial for spheres. The fundamental group 
of any torus (g = 1) has the presentation (a,  b: aba - lb  -1)  which means ab = ha. 

Thus any word w on the canonical generators can be expressed as w = arab n. This 
implies w = 1 if and only if m = 0 and n = 0. Let an edge e on Q (a rectangle) be 
traversed c I times in the clockwise direction and c 2 times in the counterclockwise 
direction on the paths/words w 1, w 2 . . . . .  w r. Let  c e = c I - c 2. We have m = 0 and 
n = 0 if and only if c e + c e' = 0 for each pair of partnered edges e, e ' .  Detecting 
this fact takes o(Er= l lwil) = O(gk)  = O(k )  time. With the O(n) preprocessing time 
we have a O(n + k) time optimal algorithm for the torus. 

Similar to the orientable 2-manifolds, the cases when g = 1 (projective planes) 
and g = 2 (klein bottle) for nonorientable 2-manifolds are treated separately. 
Although the case for g = 1 can be solved trivially, the case for g = 2 (polygon Q is 
a rectangle) cannot be solved by the method used for the torus. Instead we use a 
different method for klein bottles. 

For klein bottles, the polygon Q is a rectangle and the sequence of edges around 
bd(Q) reads either abab-1 or aabb; see Fig. 5.6. The universal coveting space with 
these two patterns are shown in Fig. 5.6. We observe that vertices in the universal 
coveting space have two different configurations in both cases. We can. determine in 
an O(1) step the edges that take us left, right, up, and down for each configuration. 
For example, from configuration F 1 (Fig. 5.6) we go left, right, up, and down by the 
edges b -1, b, a -1, and a, respectively. We can also decide in O(1) time which 
configuration we end up with when we move from a particular configuration through 
a particular edge. For example, we go to F~ from F~ through the edge b -  1 (Fig. 5.6). 



108 T.K. Dcy and tl. Schippcr 

b 

n an b b 

b b b 

a a 

Fig. 5.6. Universal covering spaces for klein bottles. 

Once we have this information available through a preprocessing step, we can visit 
the edges of w on bd(Q) and for each such edge we know the direction of our 
movement  in the universal covering space without constructing it explicitly. The path 
on the universal covering space will be closed if and only if we move an equal 
number  of times left and right and an equal number  of times up and down. This 
procedure  takes O(]w[) = O(gk) = O(k) time. With preprocessing times added,  we 
have a @(n + k)  time and space algorithm. 

5. 3.4. Related Problems. 

Detecting Homotopic Cycles. Two cycles C1, C 2 of lengths kl,  k 2 respectively are 
homotopic  if and only if [C a ] = [ C  2] giving [C~] . [C  2] l = [ C j . C 2 1 ] =  1. Let 
wl, w 2 be the words constructed corresponding to C 1 and C 21, respectively. We have 
[C 1 - C2 l] = 1 if and only if wj �9 w21 = 1. This can be detected in O(g(k I + k2)) 
time giving an O(n + g(k I + k2)) time algorithm for this problem. 

Computing Actual Contractions. The path u corresponding to w on ~/(off) is closed 
if and only if the original cycle C is null-homotopic.  In case u is closed we can 
compute  the actual contract ion as follows. First, we finish all unfinished polygons in 
the partial  structure. This takes O(gk) t ime since there are at most O(k) copies of 
Q (finished or unfinished) which are expanded by O(g) edges. The path u is 

recovered by concatenat ing w~, w2, . . . ,  w r, where the first and last edges of each w i 
are available in the structure. This also takes O(gk) time. Next, each polygon Q is 
expanded to the polygon P with a subdivision of its edges. The tr iangulation T '  of P 
is super imposed on these expanded polygons. The edges of the closed curve u also 
get subdivided by this process. This refined cycle represents  the cycle C '  = u'~u' 2 ..- u' r 
on bd(P). A contract ion of the refined cycle C '  over the expanded polygons gives a 

contraction of C ' .  Also the deformat ions  of the paths u 1, u 2 . . . . .  u r to u' 1, u~ . . . . .  u'~ 
constitute the deformat ion of C to C ' .  Since each edge of C can be deformed over 
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O(n) triangles, deformation of C to C '  takes O(nk) time and space. Since there are 
O(k) polygons, C '  can be contracted over O(k) triangulations of size O(n) each. 
This gives an O(nk + gk) = O(nk) time and space actual contraction for C. This is 
worst-case optimal since there is an example, where actual contraction necessarily 
takes l l (nk)  time and space [5]. 

Theorem 5.2. The actual contraction of  a given cycle on a triangulated compact 
2-manifold can be computed in O(nk ) time and space. 

6. Conclusions 

We have presented a new technique to derive a reduced polygonal schema from a 
triangulation of a given 2-manifold. This has produced an improved algorithm for 
detecting null-homotopic cycles on compact 2-manifolds. We believe that this 
technique will find further applications in other algorithms on 2-manifolds. The 
method can be adapted to solve the contractibility problem on compact 2-manifolds 
with boundary. An open question is: can the time bound O(n + k log g)  achieved 
for the null-homotopy problem be improved to O(n + k)? 

An extension of  the null-homotopy problem is to consider it on arbitrary com- 
plexes. The fundamental group of any (d > 1)-dimensional complex is determined 
only by its two-dimensional subcomplex. So, to solve the contractibility problem we 
need to consider only the 2-skeleton of  any complex. However, it is known that the 
contractibility problem is unsolvable for arbitrary 2-complexes [7]. For any arbitrary 
2-complex a 4-manifold that contains it as a subcomplex exists. Hence the con- 
tractibility problem for four- and higher-dimensional manifolds is unsolvable. The 
case for 3-manifolds remains to be answered. 
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