

A New Technique to Generate Test Sequences for
Reconfigurable Scan Networks

Riccardo Cantoro∗, Aleksa Damljanovic†, Matteo Sonza Reorda‡, Giovanni Squillero§
Politecnico di Torino,

Torino, Italy
{ ∗riccardo.cantoro, †aleksa.damljanovic, ‡matteo.sonzareorda, §giovanni.squillero } @polito.it

Abstract—Nowadays, industries require reliable methods for
accessing the instrumentations embedded within semiconductor
devices. The situation led to the definition of standards, such
as the IEEE 1687, for designing the required infrastructures,
and the proposal of techniques to test them. So far, most of
the test-generation approaches are either too computationally
demanding to be applied in complex cases, or too approximate
to yield high-quality tests. This paper exploits a recent idea: the
state of a generic reconfigurable scan chain is modeled as a finite
state automaton and a low-level fault, as an incorrect transition;
it then proposes a new algorithm for generating a functional
test sequence able to detect all incorrect transitions far more
efficiently than previous ones. Such an algorithm is based on
a greedy search, and it is able to postpone costly operations
and eventually minimize their number. Experimental results on
ITC’16 benchmarks demonstrate that the proposed approach is
broadly applicable; has limited computational requirements; and
the test sequences are order of magnitudes shorter than the ones
previously generated by approximate methodologies.

I. INTRODUCTION

In many of the latest Integrated Circuits (ICs) designers
introduced resources whose purpose is not to support the
circuit functionality, but rather to support ancillary features
such as test, calibration, debug and monitoring. In particular,
current ICs often integrate a plethora of sensors and actuators,
each associated to a register to be read and/or written from the
outside, sometimes at the end of the manufacturing process,
sometimes during the operational phase. Many test solutions,
such as BIST, also require registers to activate/initialize the
test and retrieve results. In order to effectively access all these
registers (also called instruments, or TDRs), companies used to
include them into a single chain, often accessed through the
standard IEEE 1149.1 interface. With the significant rise in
complexity and the number of devices, exisiting infrastructure
became inefficient. One of the limitations originated from the
length of a single scan chain which was constantly increasing;
performing an access to communicate with a single device
resulted in large time overhead. Moreover, the reliability
of such structure became an issue, since a problem on a
single bit would lead to a catastophic breakdown. Another
possibility involving architecture for accessing each instrument
individaully, apart from limited flexibility it provides, requires
infeasible number of instructions to be implemented. To tackle
these issues, solutions based on so called Reconfigurable Scan
Networks (RSNs) were introduced. They allow to dynamically
split a single chain into segments, each including one or more

registers and include/exclude them selectively depending on
the need [1].

Following this trend, IEEE published the IEEE 1687 stan-
dard [2], which in some way extends the popular IEEE 1149.1.
The IEEE 1687 standard allows to split the scan chains
accessible through the JTAG’s Test Access Port (TAP), and
to program their configuration; in this way, the designer can
flexibly choose the best trade-off between different parameters,
such as area or access time. The newest version of the IEEE
1149.1 standard [3] also describes ways to design RSNs within
a circuit.

Typical RSNs are composed of chains of flip flops inter-
leaved with special modules (called Segment Insertion Bits
(SIBs) and ScanMuxes (SMs) by the IEEE 1687 standard),
allowing to dynamically split the whole chain into segments
that may be connected in series or in parallel, and to support a
faster and more efficient access to the resources; the user first
configures the network, selecting the subset of instruments
to be accessed and shifting-in a proper sequence of bits to
program the SIBs and SMs, then uses the network to serially
read and write the flip-flops belonging to the currently active
segments. CAD tools already exist, automating the introduc-
tion and the usage of RSNs [4]. When a circuit includes a
RSN, the issue of testing the related hardware must clearly be
considered, checking for possible defects affecting it. Failing
to effectively solve this issue may lead to completely false
results when using the RSN itself.

Some works faced the issue of testing the test circuitry
mandated by the IEEE 1149.1 standard [5], while other works
focused on the test of possible permanent faults affecting a
standard scan chain, e.g., by shifting into the chain a sequence
of alternated 0s and 1s, and checking that the same sequence
appears at the other extreme of the chain [6]–[8].

However, to test an RSN is a more complex task with
respect to the standard scan chain test, since examining the
ability of flip-flops comprising the scan chain to shift is
not sufficient to guarantee correct functionality and expected
performance. In addition, testing should check whether the
network can be moved from one configuration to another
and if it operates correctly after enforcing whichever legal
configuration. Although testing an RSN clearly shares some
similarities with the task of design validation [9], time required
to perform test, i.e. test stimuli duration is considered to be
more important with more strict limitations.

The authors in [10] proposed a DfT modification to increase
observability of TDR update cells. Different methods to per-
form structure-oriented test on RSNs are presented targeting
specifically stuck-at and flip-flop internal and bridge faults.

In [11] we proposed a general approach to automatically
generate a test sequence for an IEEE 1687 network with
respect to permanent faults. For each type of programmable
module we first introduced a high-level fault model, and
then provided techniques for their test, and finally described
how to combine them into a single comprehensive test. No
modification of the hardware implementing the network is
necessary to use this technique. Moreover, the test is applicable
regardless of the specific implementation of the network
modules. Test generation can start directly from the network
structure (as described by the ICL file mandated by the IEEE
1687 standard). The test generation algorithms proposed in
[11] are based on heuristics that can easily run even on
relatively large RSNs.

In [12] we refined that approach to minimize the duration
of the resulting test sequence: the faced problem was properly
modeled according to the graph theory, and an optimal al-
gorithm able to generate the minimum-duration test sequence
was described. Unfortunately, such an approach can only work
on relatively small RSNs, and sub-optimal solutions must be
adopted when dealing with real cases.

Since the design of large and complex SoCs may cause the
appearance of very complex RSNs, generating an effective
test even for large RSNs may turn into a computationally
complex problem, and methods able to effectively scale are
increasingly important. In [13] we proposed a new method
facing this problem, based on evolutionary computation. Its
main advantage lies in its ability to always produce a solution,
no matter the RSN complexity, while the quality of the
produced result (i.e., the duration of the resulting test) is never
too far from the optimum, when the latter can be computed,
and it is often lower than the one produced by the method
described in [11]. In [14] we first modeled the RSN as a Finite
State Automaton (FSA), and then we proposed a semi-formal
method able to deal with larger and more complex circuits
producing a test sequence able to detect any permanent fault
affecting the reconfigurable modules, but whose duration is
lower than the one of the test sequences previously generated
by the heuristic solutions.

In this paper we further extended the approach of [14] by
rewriting the test generator. The new algorithm minimizes the
number of costly operations, postponing and compacting them,
while it still guarantees to reach complete fault coverage. At
the same time, the new algorithm is almost always faster than
its predecessor. Experimental results on a set of benchmarks
[15] demonstrate that the approach is able to generate test
sequences orders of magnitude shorter than those reported in
[14], [11] and [13], while always keeping the computational
cost under control.

The paper is organized as follows. In Section II we sum-
marize the key characteristics of the IEEE 1687 networks. In
Section III we propose the proposed technique for generating

an optimized test sequence for a RSN. Section IV reports some
experimental results gathered on the standard set of IEEE 1687
networks, and Section V finally draws some conclusions.

II. BACKGROUND

In this Section we will first briefly overview the key
characteristics of an IEEE 1687 network, then explain how
their test can be performed according to the approach first
introduced in [11], and finally summarize why minimizing the
test duration may turn into a computationally complex task.

A. Overview of Reconfigurable Scan Networks

As was mentioned in Section I, a key feature of RSNs is the
possibility to partition the set of instruments into segments,
and then dynamically decide which segments are currently
accessible and which are bypassed.

Communicating with the instruments is performed through
TDRs. A TDR is composed out of one or multiple Shift-
Capture-Update (SCU) scan cells, depending on the need.
Based on the type of required access, these registers may be
used as Read-Only or with an additional update stage as Write-
Only and Read-Write. IEEE 1687 introduced reconfigurable
module controlled by a Segment Insertion Bit (SIB). SIB is a
single bit register with an update stage on a scan chain that
allows bypassable segment to be included into, or excluded
from the active path. Active path is represented by serially
connected shift cells between TDI and TDO. A segment is
composed out of one or multiple TDRs or out of various sub-
network constructs with TDRs and other programmable com-
ponents. By using SIBs, it is possible to create a hierarchical
structure of the network.

0 1

U
S so

si

fsotsi

SIB sosi

fsotsi

Fig. 1. Segment Insertion Bit (SIB) module: Simplified schematic (left) and
symbol (right)

Fig. 1(left) shows the simplified schematic of a possible
implementation of a SIB, which is based on a two-input
multiplexer and a one-bit shift-update register. SIBs can be
programmed by shifting a bit into their S flip-flop and latching
that bit into the parallel U latch. If the latched bit is 0,
the SIB is de-asserted, and the scan-path is from the si
terminal, to the so terminal via the S flip-flop, bypassing
the segment between the tsi and fso terminals. If, on the
other hand, the latched bit is a 1, the SIB is asserted, and
the scan-path includes the segment connected between the
tsi and fso terminals of the SIB. In this paper, the symbol
shown in Fig. 1(right) is used to represent a SIB. When de-
asserted, shortened length corresponds to one bit, while when

asserted expands adding the length of the associated segment.
Moreover, a design guidance supports different SIB module
implementations. Depending on the position of the control bit
with respect to the multiplexer from Fig. 1(left), a SIB can be
either post- or pre-. If the control bit is located in the same
segment as the multiplexer, the SIB is considered to be in-line
(adjacent or distant); otherwise it is remotely controlled.

0
0
 0

1
 10

 11

U

S

TDR1

TDR2

TDR3

TDR4

U

S S

Fig. 2. ScanMux (SM) module: Simplified schematic (left) and symbol (right)

Other ad hoc RSNs can be constructed by the use of
SMs and shift-update registers. As an example, consider the
network shown in Fig. 2(left) in which a two-bit shift-update
register is used to select among four inputs of a 4-to-1
SM. Here again, the configuration of the ScanMux can be
performed by shifting the required values into the S shift
flip-flops of the control register and then latching the shifted
bits into the U latches. In the rest of this paper, the symbol
shown in Fig. 2(right) will be used to represent the shift-update
register that controls an SM.

The IEEE 1687 standard does not specify a type of external
interface that has to be used to access the network. However,
the one that is most widely used is IEEE 1149.1 TAP. The
TAP finite state machine is responsible for asserting control
signals to configure the IEEE 1687 network and access the
instruments through it.

An example of a simple RSN is given in Fig. 3, representing
a circuit that includes 5 instruments. A Test Data Register
(from TDR1 to TDR5) is asocciated to each of the instruments,
which can be accessed by performing read or write operations
through the TAP port. Although all TDRs may be connected
into a single scan-chain like in IEEE 1149.1-compliant cir-
cuits, the designer may adopt a different strategy in order to
reduce instrument access time: an IEEE 1687 network with
three SIBs and one SM, as shown in the Fig. 3; depending on
the status of the 4 configurable modules, a different subset of
TDRs (and the corresponding instruments) is included in the
active path i.e., the path connected between the scan input and
scan output pins of the reconfigurable scan chain at a given
time [16]. A list of 16 possible configurations, i.e. 8 different
active paths supported by this network is provided in Table I.
In the same table, “A” means asserted, “D” means de-asserted,
while 0 and 1 correspond to the two possible positions of the
SM.

B. Test of Reconfigurable Scan Networks
Testing a standard (non-reconfigurable) scan chain for per-

manent faults can be performed by shifting a suitable sequence
of 0s and 1s through the scan chain. RSNs are however,
far more complicated to test. Flip-flops composing the TDRs
have to be tested to check if they can correctly shift values.
Additionally, reconfigurable modules have to be tested to
check whether they are able to move the network to the
corresponding configurations.

In this work we use the high-level fault model introduced
in [11]. The faults affecting the reconfigurable modules, such
as SMs, are modeled such that a different configuration is
selected rather than the expected one, and this could lead
to a path with different length. For example, in Fig. 3 the
multiplexer (MUX) may be affected by a permanent fault
whose effect is that the segment connected to the input 0 is
always selected, no matter the value in the selection cell. The
same may arise for the generic SIBi, which can be affected
by faults, which are named stuck-at asserted/de-asserted, or
SIBi-s@A, SIBi-s@D. The stuck-at faults in the scan bits of
the selection cells are considered as detected by implication
by testing such high-level faults, which cover also the faults
affecting the update logic of the reconfigurable modules.
Moreover, such faults cover some faults affecting the reset
logic, whose effect is that the module is stuck at the reset
value. The other reset faults (i.e., those that make the reset
ineffective) are not considered but can be targeted by resorting
to the techniques described in [17].

TAP port

SIB3SIB1

TDR1 TDR5

TDI TDO

SIB2

TDR2

M
U

X S

TDR3

TDR4

0

1

length=6

length=9

length=3

length=4

length=6

Fig. 3. Example of an IEEE 1687 RSN.

Considering this high-level fault model, a test of an RSN
can be performed by first configuring the RSN to excite the
target fault, and then comparing the length of the activated
path against the length of the expected path. As an example,
the high-level fault affecting the SM of Fig. 3, which always
selects the segment connected to the input 1, can be excited by
a configuration which selects the input 0; configurations C12

and C14 fulfill this requirement. Once one of them is activated,
one can measure the length of the active path by shifting a
given sequence (called test vector) in TDI and checking when

TABLE I
SET OF POSSIBLE CONFIGURATIONS OF THE RSN IN FIG. 3.

Config. SIB1 SIB2 SIB3 SM Active path Len.
C0

D
D

D

0

- 2C1 1
C4 A 0
C5 1
C2

D
D

A

0

TDR5 8C3 1
C6 A 0
C7 1
C8 A D D 0 TDR1 9C9 1
C10 A D A 0 TDR1, TDR5 15C11 1
C12 A A D 0 TDR1, TDR2, TDR3 22
C13 A A D 1 TDR1, TDR2, TDR4 23
C14 A A A 0 TDR1, TDR2, TDR3, TDR5 28
C15 A A A 1 TDR1, TDR2, TDR4, TDR5 29

it will appear on TDO. Any fault modifying the length of the
active path can be detected in this way.

A proper test sequence consists of an alternating bits se-
quence 0101..., as long as the active path length followed by
a sequence terminator, such as two consecutive 0s or 1s. For
example, if the network in Fig. 3 is configured to C8 (see
Table I), a proper test vector is 01010101011, that is, 9 bits
of alternated 0s and 1s followed by the sequence terminator.
Faults affecting the network may corrupt the network by
changing the active path, which will cause the sequence termi-
nator to be observed on the scan output in an unexpected clock
cycle. For example, if a stuck-at fault affects the selection of
the module SIB1 (which is supposed to be asserted in the
fault-free scenario), then the network may exclude the SIB1’s
controlled segment, as in the SIB1’s de-asserted case. Thus,
the active path selected in such a faulty scenario would be the
same of the configuration C0 of Table I. In the faulty scenario,
the path length is 2, meaning that the sequence terminator is
observed earlier than expected on the scan output pin.

In order to test all configurable modules in an RSN, a test
sequence can be organized as a set of sessions: in each session
we first configure the network via one or more configuration
vectors (so that each SIB and each SM is switched into a
given position), and then check whether the expected path has
been inserted between TDI and TDO via a test vector, i.e.,
whether the right segments can be accessed. Since the number
of possible configurations of a network grows exponentially
with the number of configurable modules, the problem of
identifying a sequence of sessions which guarantees that 1)
all the configurations modules are fully tested, and 2) the total
test duration is minimized, is not trivial.

III. PROPOSED APPROACH

In the proposed approach, the RSN of IEEE 1687 is
modeled as a finite state automaton as in [14]. Each state
corresponds to a configuration, that is, a determinate state of
SIBs and SMs in the network; the input alphabet corresponds
to reconfiguration operations; the output symbols are the
lengths of the active paths, as this is an easily observable
characteristic [11]. The high-level model is deliberately not

complete, that is, the FSA’s states encode only a subset of the
possible configurations. As not all transitions are possible in
all states, either due to the physical configuration of the RSN
or to missing states in the FSA, whether an input does not
correspond to a transition, the FSA is brought to a special
sink state (Ω) with no output transitions and a null output
symbol.

Faults taken into consideration are high-level stuck-at faults
affecting SIBs and SMs. Such faults are mapped to multiple
transition faults on the high-level automaton, as the same
configuration operations may result in different network sta-
tuses on faulty circuits, and the goal of the automatic test
program generation is to devise a sequence of inputs able to
discriminate between the faulty automata and the good one.

The proposed algorithm is based on a greedy search. While
the simulation of the automaton is exact, the method is
approximate because it does not consider all possible states nor
all possible input symbols, and, consequently, not all possible
transitions. Nevertheless, the approximation is conservative
with respect to testability, as any missing state or transition
will cause the automaton to reach the sink state, that by
construction cannot be further distinguished from any other
state.

The complexity of the proposed approach is linear on the
number of states ns times the size of the input alphabet Ain,
that is O(ns · |Ain|). In most circuits, both terms depend lin-
early on the number of configuration bits ncb; when states with
a hamming distance of 2 are also required, then ns = O(n2

cb).
In all cases, however, the complexity is definitely smaller than
the A* algorithm presented in [12], where the search space was
O(2ncb).

A. Finite State Automaton

The FSA is built incrementally. The FSA is initially com-
posed of only of a state with no output transition and a null
output symbol. Such sink state can not be distinguished from
any other state, and, once entered, the FSA is not able to
leave it. It is used to denote a pathological condition, where
the algorithm is not able to provide reliable results due to
the approximation of the model. Next, the reset state, when
all configuration bits are set to the initial value, is added to
the automaton. Then, for each SIBi, two states are created:
one with the SIB asserted and one with the SIB de-asserted.
For each SM, one state is created for each possible output
configuration. Such a straightforward approach, however, is
not always sufficient. Scan segments may be nested, and a
resource accessible only when its parent SIB is asserted. The
procedure for building the FSA detects such situations, and
creates the necessary states to handle them. The transitions
from the reset state to all these states are eventually added.

For instance, SIB2 in Fig. 4 is only accessible when SIB1

is asserted. Therefore, the FSA would include the reset state
(SIB1,SIB2,SIB3); then the three states with only one SIB
asserted { (SIB1, SIB2, SIB3), (SIB1, SIB2, SIB3), (SIB1,
SIB2, SIB3) }; finally, the state (SIB1, SIB2, SIB3), as
asserting SIB1 is necessary to test SIB2.

Fig. 4. Example of generating input symbols for SIB RSN.

Then, for each transition in the good automaton, the possible
faulty transitions are added, and whether the faulty transition
would bring the automaton in a configuration not already
encoded as a state, that specific state is added to the FSA.
All missing transitions between existing states are also added
to the automaton. Eventually, all possible faulty transitions
from all existing states are also added, but if one would bring
the automaton in a configuration not encoded as a state, its
destination is set to the sink state, meaning that the FSA is
unable to model such situation.

As almost only the states with a hamming distance of 1 from
the reset state are added to the FSA, the size of the automaton
is linear in the number of configuration bits. It is possible to
define an automaton with more states: for instance, at some
point of the creation, all complementary states may be added
as well; or all states at a hamming distance of 2 from the reset
state can be considered. It is important to remember that the
size of the automaton influences both the quality of the results
and the performance of the algorithm.

Some heuristics are considered in order to match con-
figurations which may reduce the cost. For example, states
representing configurations in which accessible SIBs that
provide access to the deepest hierarchical level are not asserted
may increase the number of required sessions and therefore
the cost. Additionally, configurations in which a SIB is still
asserted while already being fully tested together with its sub-
hierarchical modules increase the cost. Not setting minimal
path length configuration of a ScanMuxes that is fully tested
together with its sub-hierarchical modules increases the cost.

Experimental evaluations indicate that such extensions are

not quite beneficial, but the designers may explicitly add
relevant states to this state or provide any additional heuristic.

B. Search Algorithm

The search algorithm builds a test sequence as a sequence
of transition and observation steps. During a transition, a
sequence of bits is fed into the scan chain, bringing the RSN
in a given configuration; such operation corresponds to one or
more input symbols in the FSA. During an observation, the
length of the scan chain is measured; the operation does not
affect the FSA.

In more practical terms, the goal of the test generation is
to find a short and effective sequence that brings the good
circuit and the faulty ones in states where the scan chain is
of different lengths; then, to observe the length and detect
the faults. Indeed, not all transitions and not all observations
require the same number of clock cycles to be performed.
The search algorithm aims at minimizing the total length of
the test sequence with respect to the number of actual clock
cycles required to execute all transitions and observations.

Let x be an input symbol for the FSA. The reset operation
is denoted with reset, and it requires a single clock cycle
to be performed; the measurement of the length of the scan
chain is denoted with observe, it requires several clock cycles
and does not affect the state of the FSA. Both appending a
symbol to an input sequence and concatenating two sequences
are expressed as additions, as no ambiguities are possible. The
symbol ∅ denotes an empty input and has no effect on a
sequence, e.g., t = t+∅. A sequence t of inputs starting with
a reset, i.e., t = (reset, i0, i1, ..., ii), unequivocally defines
the state of the FSA.

Two states that have indistinguishable output symbols are
equivalent and are denoted with s′ ∼= s′′. Conversely, non
equivalent states have distinguishable output symbols and are
denoted with s′ � s′′. By definition, the sink state is equivalent
to any other states ∀s : s ∼= Ω.

Let s̄t be the state of the FSA representing the fault-free
circuit after the application of the input sequence t, while sit
be the state of the FSA representing the circuit when fault i
is present after the application of the same input sequence.
If their output symbols are distinguishable, that is, s̄t � sit,
then an additional observe input symbol would allow to mark
the fault i as detected, and the fault is said to be active. The
number of active faults may increase as well as decrease at
each step of the input sequence.

Let D(t) be the set of all faults detected by the sequence t.
Indeed, D(t) = ∅ if t contains no observe symbols; and all
input symbols after the last observe do not alter the results.
Let D∗(t) be the set of all faults potentially detected by the
sequence t, that is, all faults either already detected or active
after the application of the sequence t, that is, the set of all
faults that would be detected by appending an observe to the
input sequence: D∗(t) = D(t + observe).

The search algorithm incrementally builds a test se-
quence through a greedy search. Explicit observations, that is
observe symbols, are not included in the test sequence unless

required. The function GREEDY returns the most useful input
symbol to be added (Algorithm 1), neglecting observations:
given an input sequence t, it identifies the symbol s that
maximizes |D∗(t + s)|. If adding a single symbol cannot
activate any new fault, the function returns an empty symbol.

Algorithm 1 Identify most useful input symbol, neglecting
observations.

function GREEDY(t)
best← ∅ . Empty symbol
for x ∈ {valid input symbols in s̄t} do

if |D∗(t + x)| > |D∗(t + best)| then
best← x

return best . Most useful symbol

The search algorithm incrementally builds the test sequence
t calling the function GREEDY iteratively (Algorithm 2). In
every step, the most useful symbol is appended to the test
sequence, trying to increase the number of active faults. Only
when a new symbol s would cause the loss of a previously
activated fault, an observe symbol is inserted before s.

When it is not possible to activate new faults by adding
a single symbol, an observe symbol is appended and the
FSA is rolled back to a previous state where useful input
symbols may still be found and the search restarted. Such
a state is chosen among the previously traversed ones, and
it is the closest one in term of configuration clock cycles.
The procedure terminates when all detectable faults have been
detected.

Algorithm 2 Test Sequence Generation
procedure TPG

t← (reset) . Initial test sequence
H← {t} . History
while D∗(t) 6= {all detectable faults} do

s← Greedy(t)
if s 6= ∅ then . The greedy succeeded

if D∗(t) * D∗(t + s) then
t← t + observe . Required

t← t + s . Add symbol
H← H ∪ {t} . Save sequence

else . The greedy failed
t← t + observe
r← shortest({a ∈ H : Greedy(t + a) 6= ∅})
t← t + r . Start over

t← t + observe . Final observation

To demonstrate the difference in the Test Sequence Gener-
ation procedure between this approach and [14], we can use
the network shown in Fig. 2. Table II and Table III show the
phases of test sequence generation using procedure described
in [14] and the present one, respectively. The first column
(input) shows input symbols that were chosen and applied.
The second column refers to the fault-free network and its
states. Columns 3-10 show the state of the faulty circuits, each
one for one particular fault. As it can be seen from Table II,

in the previous approach each configuration phase is followed
by an observation phase (marked in bold). In this way a set
of active faults is added to the set of detected faults, which is
increasing after each session. However, in Table III one can see
that each configuration phase is not necessarily followed by
an observation phase. Although the number of configuration
steps is higher, the number of observation steps, which can
be extermely costly, is lower. In total, the number of clock
cycles needed to apply the test sequence given in Table II is
283 clock cycles, while on the other hand, applying the test
sequence from Table III requires 220 clock cycles, only.

In comparison with [14], the length of the configuration
vector may not be equal to the value of the output symbol
of the fault-free circuit’s current state, s̄t. The length of
the configuration vector is equal to max(s̄t, s

i
t), (∀i)(i ∈

{0, 1, . . . , n− 1} ∧ (fault i not detected)), where n represents
the total number of faults. The length of the configuration
vector is included in the configuration cost. Positions of certain
configuration bits in the chain that is defined by the state sit or
sjt, i 6= j, may not correspond to any position of configuration
bits in the chain determined by the state s̄t. In this case, 0
bits are placed on these positions (Fig. 5). Additionally, on the
same position (in chains defined by different states), one may
find configuration bits belonging to different modules. This
is all taken into account when assembling and then applying
configuration vector corresponding to the chosen input symbol.

CBx CBy���

��
�

��
�

Conf.
vector

CBx CBy 0

CBx CBy 00

CBx CBy 0 00

Fig. 5. Configuration vector

IV. EXPERIMENTAL RESULTS

The effectiveness of the proposed algorithm has been
evaluated on a sub-set of the ITC16 suite of benchmark
reconfigurable scan networks. Some networks included in the
benchmarks have not been considered since they include some
constructs that are not currently supported by our environment.
The algorithm proposed in this paper has been compared
against three alternative approaches. The first approach, to
which we refer to as FSA, has been proposed in [14]. The
second approach is derived from [11] and is referred to
as depth-first in this paper. The approach is based on the

TABLE II
TEST PROCEDURE GENERATED BY APPROACH [15]

input good SIB1

s@D
SIB1

s@A
SIB2

s@D
SIB2

s@A
SM
br.0

SM
br.1

SIB3

s@D
SIB3

s@A

reset DD0D
(2)

DD0D
(2)

AD0D
(9)

DD0D
(2)

DA0D
(2)

DD0D
(2)

DD1D
(2)

DD0D
(2)

DD0A
(8)

observation

AxxA AD0A
(15)

DD0A
(8)

AD0D
(9)

AD0A
(15)

AA0A
(28)

AD0A
(15)

AD1A
(15)

AD0D
(9)

DD0A
(8)

observation

AAxD AA0D
(22)

DD0A
(8)

AD0D
(9)

AD0D
(9)

AA0A
(28)

AA0D
(22)

AA1D
(23)

AD0D
(9)

DD0A
(8)

observation

AA1D AA1D
(23)

DD0A
(8)

AD0D
(9)

AD0D
(9)

AA0A
(28)

AA0D
(22)

AA1D
(23)

AD0D
(9)

DD0A
(8)

observation

TABLE III
TEST PROCEDURE GENERATED BY PRESENT APPROACH

input good SIB1

s@D
SIB1

s@A
SIB2

s@D
SIB2

s@A
SM
br.0

SM
br.1

SIB3

s@D
SIB3

s@A

reset DD0D
(2)

DD0D
(2)

AD0D
(9)

DD0D
(2)

DA0D
(2)

DD0D
(2)

DD1D
(2)

DD0D
(2)

DD0A
(8)

AxxA AD0A
(15)

DD0A
(8)

AD0D
(9)

AD0A
(15)

AA0A
(28)

AD0A
(15)

AD1A
(15)

AD0D
(9)

AD0A
(15)

AAxA AA0A
(28)

DD0A
(8)

AA0D
(22)

AD0A
(15)

DA0D
(2)

AA0A
(28)

AA1A
(29)

AA0D
(22)

AA0A
(28)

AA1A AA1A
(29)

DD0D
(2)

AA1D
(23)

DD0D
(2)

DA0D
(2)

AA0A
(28)

DA1D
(2)

AA1D
(23)

AA1A
(29)

observation

DD0D DD0D
(2)

DD0D
(2)

AA1D
(23)

DD0D
(2)

DA0D
(2)

AA0A
(28)

DA1D
(2)

AA1D
(23)

DD0A
(8)

observation

exploration of the network topology graph performing a depth-
first traversal of this graph. The third approach has been
proposed in [13] and is referred to as evolutionary in this
paper. The approach makes use of an evolutionary framework
to generate a test sequence possibly able to minimize the test
time.

Table IV reports some basic information about the networks
used to perform evaluation. In column 2 and 3, the table reports
for each network the number of SIBs and SMs, respectively.
The number of configuration bits of SIBs and SMs is given
in the fourth column. The column Max depth indicates the
maximum hierarchical depth of each network (for SIB-based
networks this value equals to the maximum number of nested
SIBs, according to [18]). The column Max path reports the
length of the longest path in the network, and the rightmost
column the number of bits in all the TDRs.

Experiments were run using a tool written in Java. The
tool supports network structure extraction from files in dif-
ferent formats including ICL. Moreover, the tool is able to
distinguish all faults that are undetectable, due to the inability
to produce any difference in the path length. For example,
faults affecting SIB modules that do not have any register
or any other module on their branch are considered to be
undetectable. Additionally, faults affecting ScanMux modules
that have registers of equal lengths on their branches are also
considered as undetectable, again taking into account the faut

TABLE IV
ITC’16 BENCHMARK NETWORKS LIST

Network SIB SM Tot.
bits

Max
depth

Max
path

Scan
cells

Mingle 10 3 13 4 171 270
TreeBalanced 43 3 48 7 5,219 5,581
TreeFlat Ex 57 3 62 5 5,100 5,195
TreeUnbalanced 28 – 28 11 42,630 42,630
a586710 – 32 32 4 42,381 42,410
p22810 270 – 270 2 30,356 30,356
p34392 – 96 96 4 27,899 27,990
p93791 – 596 596 4 100,709 101,291
q12710 27 – 27 2 26,185 26,185
t512505 159 – 159 2 77,005 77,005
N132D4 39 40 79 5 2,555 2,991
N17D3 7 8 15 4 372 462
N32D6 13 10 23 4 84,039 95,158
N73D14 29 17 46 12 190,526 218,869
NE1200P430 381 430 811 127 88,471 108,148
NE600P150 207 194 401 78 23,423 28,250

model that was used in this approach. However, there is only
a small number of undetectable faults in the set of benchmark
networks that were used to evaluate the algorithm,for which
we provide details in Table Table V.

TABLE V
UNDETECTABLE FAULTS

Network Number Comment
q12710 4 2 SIBs with the register length equal to 0
N132D4 4 2 ScanMuxes eq. branch registers (11, 18)
NE600P150 4 2 ScanMuxes eq. branch registers (45, 11)
NE1200P430 4 2 ScanMuxes eq. branch registers (115, 29)

A laptop equipped with an Intel i5-480M processor was
used to run experiments. Table VI summarizes the experi-
mental results. The table shows the number of configuration
vectors cv (column 2) and test vectors tv (column 3) generated
by the tool. Futhermore, the number of clock cycles required to
configure the network is given in column 4, while the number
of clock cycles needed to apply test vectors is given in column
5.

TABLE VI
IEEE 1687 TEST ALGORITHM EXPERIMENTAL RESULTS

Network cv tv
Conf.

time [cc]
Test

time [cc]
Mingle 6 7 628 811
TreeBal. 7 1 8,569 12,646
TreeFlat Ex 6 3 7,750 16,267
TreeUnbal. 11 1 105,197 77,121
a586710 4 5 46,575 170,257
p22810 2 1 2,698 90,537
p34392 6 3 29,357 111,911
p93791 6 3 103,525 403,532
q12710 2 1 8,311 78,562
t512505 2 1 8,891 230,438
N132D4 7 2 9,387 7,682
N17D3 5 2 1,159 1,151
N32D6 5 2 230,390 282,236
N73D14 13 2 1,073,954 537,833
NE1200P430 128 2 1,638,849 200,258
NE600P150 79 2 347,629 55,098

TABLE VII
EXPERIMENTAL COMPARISON OF THE PROPOSED ALGORITHM (FSA2) AGAINST THE PREVIOUS VERSION [14], A DEPTH-FIRST ALGORITHM [11], AND

AN EVOLUTIONARY APPROACH [13]. COLUMNS ENDING WITH “VS.” SHOW THE COMPARISON AGAINST THE CURRENT RESULT; PERCENTAGES
QUANTIFY HOW MUCH THE RESULTS DELIVERED BY THE PREVIOUS APPROACHES ARE WORSE.

Network Total test time [clock cycles] Runtime (wall clock)
FSA2 [14] [14] vs. [11] [11] vs. [13] [13] vs. FSA2 [14] [11] [13]

Mingle 1,439 2,014 39.96% 2,282 58.58% 2,078 44.41% 49s 26s 1s 8h
TreeBalanced 21,215 63,843 200.93% 69,369 226.98% 69,369 226.98% 1m 48s 1s 19h
TreeFlat Ex 24,017 41,883 74.39% 71,341 197.04% 55,776 132.24% 1m 71s 1s 8h
TreeUnbalanced 182,318 719,375 294.57% 1,071,799 487.87% 1,042,450 471.78% 1m 34s 1s 5h
a586710 216,832 296,796 36.88% 299,624 38.18% 298,241 37.54% 30s 39s 1s 8h
p22810 93,235 152,399 63.46% 152,937 64.03% 152,937 64.03% 44s 39s 1s 9h
p34392 141,268 195,554 38.43% 196,702 39.24% 196,505 39.10% 36s 1m 1s 7h
p93791 507,057 706,242 39.28% 708,878 39.80% 708,878 39.80% 10m 2m 1s 27h
q12710 86,873 131,022 50.82% 131,022 50.82% 131,022 50.82% 39s 46s 1s 5h
t512505 239,329 385,440 61.05% 386,024 61.29% 386,024 61.29% 45s 50s 1s 8h
N132D4 17,069 31,995 87.45% 38,731 126.91% 37,257 118.27% 4m 2s 1s 3h
N17D3 2,310 3,765 62.99% 4,143 79.35% 3,851 66.71% 1s 1s 1s 5h
N32D6 512,626 816,634 59.30% 942,470 83.85% 893,017 74.20% 1s 6s 1s 5h
N73D14 1,611,787 4,377,449 171.59% 5,978,047 270.90% 5,967,137 270.22% 16s 97s 3s 3h
NE1200P430 1,839,107 14,794,857 704.46% 21,515,705 1,069.90% 21,515,705 1,069.90% 19m 1h 3s 50h
NE600P150 402,727 2,694,672 569.11% 3,726,726 825.37% 3,726,726 825.37% 3m 4m 3s 12h

The cost of every configuration phase expressed in clock
cycles has been increased by five (JTAG overhead) [13]. In
addition, the same overhead has been taken into account for
calculating the cost of a test phase. This cost consists of the
length of the longest path and the length of the currently active
path increased by two (test pattern termination symbols).

All modeled, detectable faults were detected in each of the
experiments, thus reaching full coverage.

An experimental comparison of the proposed approach
against the FSA, depth-first and evolutionary approaches is
shown in Table VII. Data concerning the FSA approach are
taken from [14]. Reported data related to the evolutionary
approach are taken from [13]. For the depth-first approach,
data have been newly generated on the ITC16 benchmarks
by running the tool implementing the same algorithm as in
[11]. For each algorithm, Table VII reports the duration in
clock cycles of the generated test sequence (referred to as
Test Application Time) and the CPU time required to apply
the algorithm (referred to as Generation Time).

Remarkably, results in Table VII show a clear improvement
regarding the total test time, since the results delivered by the
previous approaches were worse up to 705% for depth-first, up
to 1,070% for depth-first and evolutionary method. Moreover,
the test sequence generated by the proposed approach is
shorter than the sequences obtained by the other algorithms
in all networks.

Concerning the runtime, as Java’s non-determinism prevents
an accurate timing, only the total time is reported for all
programs (wall-clock). The proposed algorithm completes in
the order of seconds, while 19 minutes was required only for
one network (NE1200P430). The depth-first algorithm is very
fast to execute, even for large networks. The evolutionary
approach, on the other hand, requires hours. Moreover, the
results reported in [13] for the evolutionary approach were
gathered on a multi-core server, exploiting parallelism, while
a simple laptop has been used to run the proposed approach.

V. CONCLUSIONS

The paper describes an efficient technique for generating
sequences for testing IEEE 1687 RSNs. The approach can be
defined as semi-formal because the FSA that models the circuit
is exact, but incomplete, and the search procedure is based
on a greedy algorithm. Experimental results on the ITC’16
benchmark suite clearly demonstrate the effectiveness of the
approach: the proposed technique is able to achieve better
results with less computation effort than previous methods.
The technique may be easily extended to handle different fault
models and more complex scenarios, and experts’ knowledge
could be exploited by tweaking the FSA states and input alpha-
bet. Currently, additional experiments are in progress to better
understand the current limitations and possible improvements
of the proposed method.

ACKNOWLEDGMENT

This is an extension of the paper published in ITC Asia
2018, which is selected as one of the top three papers from
ITC Asia 2018 to appear in ITC special session on ITC Asia.

This work has been partially supported by the Euro-
pean Commission through the Horizon 2020 RESCUE-ETN
project under the Marie Skodowska-Curie grant agreement
No.722325.

REFERENCES

[1] S. Narayanan and M. A. Breuer, “Reconfigurable scan chains: A novel
approach to reduce test application time,” in Proceedings of the 1993
IEEE/ACM international conference on Computer-aided design. IEEE
Computer Society Press, 1993, pp. 710–715.

[2] “IEEE standard for access and control of instrumentation embedded
within a semiconductor device,” IEEE Std 1687-2014, pp. 1–283, Dec
2014.

[3] “IEEE standard for test access port and boundary-scan architecture,”
IEEE Std 1149.1-2013 (Revision of IEEE Std 1149.1-2001), pp. 1–444,
May 2013.

[4] F. G. Zadegan, U. Ingelsson, G. Carlsson, and E. Larsson, “Design
automation for IEEE p1687,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2011. IEEE, 2011, pp. 1–6.

[5] A. T. Dahbura, M. U. Uyar, and C. W. Yau, “An optimal test sequence
for the jtag/ieee p1149. 1 test access port controller,” in Test Conference,
1989. Proceedings. Meeting the Tests of Time., International. IEEE,
1989, pp. 55–62.

[6] K.-J. Lee and M. A. Breuer, “A universal test sequence for cmos scan
registers,” in Custom Integrated Circuits Conference, 1990., Proceedings
of the IEEE 1990. IEEE, 1990, pp. 28–5.

[7] S. Maka and E. J. McCluskey, “Atpg for scan chain latches and flip-
flops,” in VLSI Test Symposium, 1997., 15th IEEE. IEEE, 1997, pp.
364–369.

[8] F. Yang, S. Chakravarty, N. Devta-Prasanna, S. M. Reddy, and I. Pomer-
anz, “On the detectability of scan chain internal faults an industrial case
study,” in VLSI Test Symposium, 2008. VTS 2008. 26th IEEE. IEEE,
2008, pp. 79–84.

[9] R. Baranowski, M. A. Kochte, and H.-J. Wunderlich, “Reconfigurable
scan networks: Modeling, verification, and optimal pattern generation,”
ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), vol. 20, no. 2, p. 30, 2015.

[10] D. Ull, M. Kochte, and H. J. Wunderlich, “Structure-oriented test of
reconfigurable scan networks,” in 2017 IEEE 26th Asian Test Symposium
(ATS), Nov 2017, pp. 127–132.

[11] R. Cantoro, M. Montazeri, M. Sonza Reorda, F. G. Zadegan, and E. Lars-
son, “On the testability of IEEE 1687 networks,” in Test Symposium
(ATS), 2015 IEEE 24th Asian. IEEE, 2015, pp. 211–216.

[12] R. Cantoro, M. Palena, P. Pasini, and M. Sonza Reorda, “Test time
minimization in reconfigurable scan networks,” in Asian Test Symposium
(ATS), 2016 IEEE 25th. IEEE, 2016, pp. 119–124.

[13] R. Cantoro, L. San Paolo, M. Sonza Reorda, and G. Squillero, “New
techniques for reducing the duration of reconfigurable scan network
test,” in Design and Diagnostics of Electronic Circuits & Systems
(DDECS), 2018 IEEE 21th International Symposium on. IEEE, 2018
(to appear).

[14] R. Cantoro, A. Damljanovic, M. Sonza Reorda, and G. Squillero, “A
semi-formal technique to generate effective test sequences for recon-
figurable scan networks,” in Test Conference in Asia (ITC-Asia), 2017
International. IEEE, 2018 (to appear).

[15] A. Tšertov, A. Jutman, S. Devadze, M. S. Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Test Conference (ITC), 2016 IEEE
International. IEEE, 2016, pp. 1–10.

[16] R. Cantoro, F. G. Zadegan, M. Palena, P. Pasini, E. Larsson, and
M. S. Reorda, “Test of reconfigurable modules in scan networks,” IEEE
Transactions on Computers, 2018.

[17] M. A. Kochte, R. Baranowski, M. Sauer, B. Becker, and H.-J. Wun-
derlich, “Formal verification of secure reconfigurable scan network
infrastructure,” in Test Symposium (ETS), 2016 21th IEEE European.
IEEE, 2016, pp. 1–6.

[18] A. Tšertov, A. Jutman, S. Devadze, M. Sonza Reorda, E. Larsson, F. G.
Zadegan, R. Cantoro, M. Montazeri, and R. Krenz-Baath, “A suite of
IEEE 1687 benchmark networks,” in Test Conference (ITC), 2016 IEEE
International. IEEE, 2016, pp. 1–10.

