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Abstract: In statistical literature there exist many tests to reveal the independence of two qualitative
variables in two-way contingency tables (CTs), in particular in 2x2 CTs. In this paper four independ-
ence tests were compared. These are: the chi-square test, being the most popular type of power di-
vergence statistics; the modular test and the d-square test, which is a modification of the Pearson’s
test; the logarithmic minimum test which is a new proposal. Critical values for the tests listed above
were determined with the Monte Carlo method. In order to compare the tests, the measure of un-
truthfulness of H, was proposed and the power of the tests was calculated.
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1. Introduction

The analysis of contingency tables (CTs) is one of the most common tasks per-
formed by statisticians. CTs display the frequency distribution of two (two-way
CTs) or more (multi-way CTs) categorical variables. Information presented as CTs
features in a wide variety of areas such as the social sciences (Wickens, 1969), ge-
netics (El Galta et al., 2008; Dickhaus et al., 2012), demography (Cung, 2013) and
psychology (lossifova et al., 2013).

Independence tests are probably one of the most commonly used statisti-
cal tools. Test data are arranged in the form of CTs, in particular 2x2 CTs. Well-
-known and commonly used are the (Pearson’s) ¥ test and the log likelihood ratio
G?test. Garside and Mack (1976) compared the sizes of the %* testand some of its
corrected versions numerically. Authors noted that though the corrected versions
are conservative in nature, the y? test has the size closest to the nominal level a.
For small CTs (not applicable 2x2) with small sample sizes, Lawal, Uptong, 1984)
suggested a modification to the ¥* test to make the size closer to the nominal le-
vel a. Numerous publications on CTs and the y? test of independence were pro-
posed, one can see e.g. (Meng, Chapman, 1966; Diaconis, Efron, 1985; Albert,
1990; Andrés et al., 1995), where the y? test statistics was interpreted from vario-
us angles. Information about chi-square approximations of x> and G? can be fo-
und in (Cochran, 1952; 1954; Koehler, Larntz, 1980; Cressie, Read, 1989). The >
and G? tests provide consistent and asymptotically unbiased tests of independence
(Haberman, 1981). These test statistics belong to the power divergence statistics
(PDS) (Cressie, Read, 1984)

The Fisher exact test (Fisher, 1922) is also popular, independently developed
by Irwin (1935) and also known as the Fisher-Irwin (FI) test. The FI test is most
commonly applied to 2x2 CTs because it can be computationally time consuming
for tables bigger than 2x2. Campbell (2007) recommended the use of the ¥ test for
large sample sizes and the FI test for small sample sizes. This test is also criticized
for being too conservative and hence having lower power. Lydersen et al. (2009)
recommended that the FI test should practically never be used.

CTs having very small or no cell counts are said to be sparse. Sparse CTs
often containing cells with zero cell counts are of two types: sampling zero (n;; =0,
p;; > 0) and structural zero (n;, = 0, p,; = 0) . This article assumes, that cells count
in CTs are positive, which means ;= 0, (i, j = 1,2).

Some researchers have investigated the test methods when there exists a na-
tural ordering among the X; values and Y; values (Tab. 1). For details please con-
sult e.g. (Agresti, 2002). In this paper, features X and Y are nominal in nature.

In hypothesis testing, the theory of bootstrap is well developed and provides
areasonably good answer in many parametric problems where a consensus is hard
to reach (Hall, Wilson, 1991; Chang, Pal, 2008; Chang et al., 2011).
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Statistical science has been enriched with many papers offering statistics rela-
ted to testing independence. Haber (1987) compared the two-sided FI test with six
nonrandomized unconditional exact tests with respect to their power. Zelterman
(1987) proposed the D? test, which is another adjustment to the y? test. Berry and
Mielke (1988) used Monte Carlo methods to assess the relative fit of two asymptotic
¥’ tests, two asymptotic G? tests, and a recently developed nonasymptotic y? test
to the models specified by the null hypotheses of independence and homogeneity.
Results of the study indicate that the nonasymptotic y* test is superior in overall
performance to the other four tests.

Lawal and Uptong (1990) compared the PDS with the modified ¥’ test sta-
tistics (Lawal, Uptong, 1984) by means of the statistical power. Cohen and Nee
(1990) used the Monte Carlo methods and calculated the statistical power using the
Rao F-test in CTs. Davis (1993) described a generalized chi-square approximation
to the distribution of the y? test statistics for testing independence in CTs. The new
method consistently yields estimated p-value, which agrees closely with the exact
result. In (Jeong et al., 2005), for the analysis of CTs having ordered row catego-
ries and ordered column categories, a bootstrap method was applied for the mo-
del-based G? test for independence. Taneichi and Sekiya (2007) considered a class
of test statistics C, based on ¢-divergence for the test of independence in CTs. The
class of test statistics C, includes the test statistics R* based on the PDS as a special
case. The research shows that the transformed y? test performs very well. Ceyhan
(2010) compared the directional (i.e. one-sided) versions of the cell-specific nearest
neighbor contingency tables (NNCT) tests with new directional NNCT tests for
the two-class case using Monte Carlo simulations and statistical power. Yenigiin
etal. (2011) carried out a simulation study to see the empirical power performance
of the maximal correlation test and compared it with y? and G? tests of independen-
ce. When the underlying continuous variables are uncorrelated but dependent, au-
thors pointed out some cases for which the maximal correlation test appears to be
more powerful. Nandram et al. (2013) considered a G? test for quasi-independence
in large CTs which are likely to have both structural and sampling zeros. A new
procedure requires at least one sampling zero, and is an alternative to the common-
ly used ad hoc procedures of converting the zero cells to positive ones by adding
a small constant (Clogg, Eliason, 1987; Beh, Farver, 2009). One drawback of the
new procedure is that it is a conditional (on the set of positive cells) test but it is
not conditional on the margins as in the FI test. It is also true that T? is an exact
test and it does not rely on asymptotic theory. Yu (2014) allows the margins to be
random and compares the power of the G? test, the Bayes factor test, and the FI
test. Egozcue et al. (2015) examine the independence in CTs using simplicial geo-
metry. Shan and Wilding (2015) extends the unconditional approach based on es-
timation and maximization to designs with the total sum fixed. The procedures
based on the y? test statistics, Yates’s corrected and G? test statistics are evaluated
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with regard to actual type I error rates and powers. Lipsitz et al. (2015) propose
Wald and score test statistics for independence based on weighted least squares es-
timating equations. In contrast to the Rao-Scott test statistics, the proposed Wald
and score test statistics always exist. Comparing the Rao-Scott test statistics, the
score and Wald statistics with respect to power, one can see that the Wald test sta-
tistics had the highest power. Lin et al. (2015) explore the accuracy of the y* and
G? tests through an extensive simulation study and then propose their bootstrap
versions that appear to work better than the asymptotic tests. The bootstrap tests
are useful even for small-cell frequencies as they maintain the nominal level quite
accurately. Also, the proposed bootstrap tests are more convenient than the FI test
which is often criticized for being too conservative. Vélez et al. (2016) propose
and illustrate a new graphical method to perform diagnostic analyses in two-way
CTs. In this method, one observation is added or removed from each cell at a time,
whilst the other cells are held constant, and the change in a test statistics of interest
is graphically represented. Garcia and Gonzalez-Lopez (2016) present a new non-
-parametric independence test for sparse data, which is a generalization of the LIS
test (Garcia, Gonzalez-Lopez, 2014) for the hypothesis of independence between
two continuous random variables. The new test does not require the assumption
of continuity for the random variables. This test is applied to two datasets and also
compared with the y? test. Lin et al. (2015) show, that a simple bootstrap version
of the existing asymptotic tests can correct the size problems even for small sample
sizes without going through the restrictive adjustment already reported in literatu-
re. In biomedical studies, ordered categorical variables are frequently encountered.
Hui-Qiong et al. (2016) introduce a simple ordering test approach for the two-way
rxc CTs with incomplete counts. The results show that the G* test statistics based
on the bootstrap resampling methods performs satisfactorily from small to large
sample sizes. The modular test has been compared with the family of PDS on 2x2
CTs (Sulewski, 2016a) and on CTs bigger than 2x2 (Sulewski, 2016b).

In this paper the new logarithmic minimum statistics (LMS) is proposed,
which was compared with three other statistics. The first one is the well-known
and commonly used y? test statistics (Pearson, 1904) representing the PDS. The
second one is the D? test statistics (Zelterman, 1987), which is an adjustment to the
x> test statistics. The third one is the modular statistics (Sulewski, 2016a), which
is another modification of the y? test statistics. To use the smaller samples size,
critical values were determined by means of the Monte Carlo simulation method.
Lin et al. (2015) also determined the critical values of the y? test using the Monte
Carlo method. For the above test statistics, the power-of-the-test (PoT) function was
determined. To calculate the power of the test, 2x2 CTs were generated by means
of the bar method and the measure of untruthfulness of H,, (MoU) for five proba-
bility scenarios were proposed.
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2. Recalling 2x2 contingency table basics

Let X and Y be two features of the same object having levels X|, X, and Y, Y,.
Testing for independence of these two features with appropriately arranged CT
and 9y statistics applied is probably one of the most common tasks for statisti-
cians. There are n items classified with respect to X and Y. This produces a table
of a pattern shown below as Table 1 (EC Variant), where 7;; are counts of objects
classified as belonging to the cell (X, Y) and n}.,, n,., 1%, n’, are row and column
marginal counts, respectively. Table 1 (EC Variant) is a basis for a test hypothesis
that is commonly called the main and denoted H,,.

Table 1. Variants of presentation of 2x2 CTs

TP Variant EC Variant
Y Y, Total )4 )4 Total
X, Pu Pz P X, ny, ny, m,
X, Pai P2 Do X, 3, 732 n
Total Pa P.> P =1 Total n, n, n,=n
TC Variant EP Variant
)4 )4 Total )4 )4 Total
X, nyy =npy, ny, =np,, n, X, ph=n/n pL=n,/n P
X, M1 = 1Py a2 = P2 . X, Py =my,/n Py =m0 2%
Total n., n., n,=n Total P 2 . =1

Source: own material

These are details of particular variants:

TP Variant (theoretical probabilities). Cells contain:
1) probabilities intrinsic to the phenomenon that is of our interest. Exact values

of these probabilities are unknown to the investigator, or
2) probabilities of which values are arbitrarily set by the Monte Carlo experi-

menter.

EC Variant (experimental counts). Cells contain counts observed on a sample
drawn from the general population being a subject of investigation.

TC Variant (theoretical counts). Cells contain the expected counts based on the
Monte Carlo experiment.

EP Variant (empirical probabilities). Cells contain estimates of the unknown
content of TP.
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3. Scenarios of generation of 2x2 contingency tables

One can treat CTs as a mathematical expression of a certain phenomenon we cope
with. This formulation suggests that there is some internal mechanism in this phe-
nomenon that determines probabilities of particular XY combinations and ascribes
these probabilities to cells of the table. Below is a “progenitor” of all the 2x2 CTs:

7 0.25 0.25
771025 025]
The variety of tables may be generated when portions of probability in quan-

tity of @ flow from “maternal” cells of 7, to other cells. In this paper five scenarios
were developed that seem fundamental (Tab. 2).

Table 2. Scenarios of generation of 2x2CTs (a=k-0.25- 1073, k=0, 1, ..., 1000)
Scenario | Scenario 11
) ) ) )
X, 0.25 0.25-a/2 X, 0.25—a 0.25
X 0.25+a 0.25-a/2 X 0.25 0.25+a
Scenario III Scenario IV
v Y ¥ v
X, 0.25 0.25+a/2 X, 0.25-a 0.25
X, 0.25—a 0.25+a/2 X, 0.25+a 0.25
Scenario V
v Y
X, 0.25—a 0.25+a
X, 0.25+a 025-a

Source: own material

In all above scenarios the flow portion 0 < a < 0.25. Scenarios may be local-
ly mutated by reversing rows or columns to better fit to the data analyzed. Surely,
these are not unique. One may anticipate a variety of modifications as it is com-
mon in statistics. The others differ in degree of untruthfulness of H, which will
be one of the subjects of the next section.

Each scenario has a multinomial distribution of its own. Particular formulas
are easy to obtain by substituting probabilities in formula of the multinomial dis-
tribution with probabilities taken from relevant cells of CTs. For instance, the sce-
nario V has the following distribution, obtained after simple transformations:

! (1—da)" "= (14 da)y=" . (1)

E)(n113n123n219n22):4n 1 1 1 1
-nll.nlz.nm.nzz.
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4. The measure of untruthfulness of H,

As it has already been stated in Section 2 particular classes of feature X are as-
cribed to rows and these of feature Yare ascribed to columns. Features X, Y are in-
dependent and H, is true, if

P =DPi. Py (2)

When equality (2) is not fulfilled, H, is not true and an appropriate measure
of untruthfulness of H, (MoU) is needed. In this paper the following MoU is put
forward:

. 3)

2 2
MoU=33|p; =P P.)
i=1 j=1
It doubtlessly springs from essence of H,, and seems to be of a very simple form.
Replacing theoretical probabilities by empirical ones (Tab. 1 EP Variant)
we get the sample MoU as

“4)

Table 3 shows values of MoU at the points k=0, 1, ..., 1000 (see Tab. 2), where
the power of the test was determined. These values show that the MoU — for all
probabilities scenarios — is changing with the constant step.

Table 3. Values of MoU under scenarios |-V

k 1 k| k| om k v k v

0 0 0 0 0 0 0 0 0 0

51 00125| 316 0025 | 140 00375 | 100 005 | 100 0.1
106 0025 | 448 005 | 265 0075 | 200 01 | 200 02
163 00375 548 0075 | 378 01125 | 300 015 | 300 0.3
226 005 | 633 o0l 483 015 | 400 02 | 400 04
293 00625| 707  0.125 | 581 0875 | 500 025 | 500 0.5
368 0075 | 775 015 | 673 0225 | 600 03 | 600 0.6
452 00875| 837 0175 | 761 02625| 700 035 | 700 0.7
553 0l 895 0.2 844 03 800 04 | 800 08
684 01125 949 0225 | 924 03375| 900 045 | 900 0.9

Source: own material
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5. Selected tests of independence

The opportunity to make something better than it currently is occurs everywhere
if someone chooses to act. As a result statistical science has been enriched with
many statistics intended to test independence.

In this paper the well-established and commonly used y* test was selected.
In relation to 2x2 CTs y* test statistics is defined as

0=y :i 2 (n —.e)z (5)

i=1 j=1 zj

where e, = n;, - n] /nare expected counts. Statistics (5) asymptotically (i.e. sample
size n — o) follows the chi-square distribution with 1 degree of freedom, provid-
ed that H, is true. If not, and while # is large, test statistics follow the non-central
chi-square distribution. For details please consult e.g. (Agresti, 2002).

Cressie and Read (1984) proposed the power divergence statistics (PDS). PDS
for 2x2 CTs is given by

X \A
2 2 2 . ni'
PZU(M)ZZ@ ( ‘lJ —lp —o<A <o, ©

¢

which is always positive and is defined as limits of P? at —1 and 0. This is a very
rich class of test statistics and it contains many other test statistics. There are:

1) the y? statistics (A = 1) (formula (5)),

2) the G? statistics (the limit as A goes to 0),

3) the Freeman-Tukey statistics (A =—0.5),

4) the modified G? statistics (the limit as A goes to —1),

5) the Neyman modified ¥’ statistics (A = -2),

6) the Cressie-Read statistics (A = 2/3).

Garcia-Perez and Nunez-Anton (2009) studied the whole family of the PDS. They
found that y? test statistics is the best up to a table density as low as 2. They showed
that the G? statistics performs poorly and hence did not recommend it. In (Sulewski,
2016a), it was shown that the PDS- on probability scenarios I1, IV, V (Tab. 2) — are
of exactly/more or less the same power. Therefore, for further analysis in this paper,
the well-known and commonly used y? test statistics (1) was selected.

Another adjustment to the y’statistics is given by Zelterman (1987). The ad-
justment is the D? statistics, which in 2x2 CTs is given by

o.-p-gylizalon @
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D? test statistics is not a member of the PDS. Note that the contribution of
n;; = 0 to D* is the same as that of the y* statistics.

In (Sulewski, 2013) the modular statistics was proposed, which is a modifica-
tion of the y? statistics for CTs and in 2x2 CTs is given by

O, =lr=22 """ (8)

The modular statistics was compared in terms of power with the PDS for the
2x2 CTs (Sulewski, 2016a). For scenarios I1, IV (Tab. 2) it was shown that the mod-
ular statistics is more powerful than PDS.

In this paper the new logarithmic minimum statistics (LMS) was proposed,
that in 2x2 CTs is defined as follows

—LMS=-33'n {mm(nlj,e)} ©)

io o | max(n,e

6. Determining of the power-of-the-test function

This section is devoted to PoT functions. An independent variable (an argument)
is an appropriately defined measure of untruthfulness of H, (MoU). A dependent
variable (a value of the function) is a probability to reject H, when it should be re-
jected as being untruth.

6.1. Generation of 2x2 contingency tables

In the simulation study, the generation of contingency tables is very important.
The Markov Chain Monte Carlo (Diaconis, Efron, 1998; Cryan, Dyer, 2003; Chen
et al., 2005; Cryan et al., 2006; Fishman, 2012), the Sequential Importance Sam-
pling (Chen et al., 2005; Chen et al., 2006; Blitzstein, Diaconis, 2011; Yoshida et al.,
2011), the probabilistic divide-and-conquer technique (Desalvo, Zhao, 2016), the
Generalized Gamma Distribution (Sulewski, 2009), and the bar method (Sulewski
et al., 2015) are all very popular approaches in literature about the generation
of two-way contingency tables.

In this paper to generate 2x2 CTs the bar method was used. The algorithm
of this method is as follows:
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Phase 1

Step 1: Choose scenario [-V.

Step 2: Set MoU and value of &, a (Tab. 3).

Step 3: Calculate probabilities p;; (i, j = 1, 2) (Tab. 2).

Step 4: Set label cells of 2x2 tables p, (if = 1, 2, 3) according to the rules

Pr=Pi>P2=P1 T P Ps=P2 T Par- (10)
Step 5: Set sample size n.
Phase 2

Repeat the following steps from 1 to 3n times:

Step 1: Set initial values of cells count i.e. n, =0 (7,7 = 1, 2).

Step 2: Generate random number 7w uniformly distributed within (0, 1).
Step 3: Increase cells count of 2x2 tables according to the rule:

Ww<p =n,=n,+1, pp<rw<p,=>n,=n,+1,
P, <tWS p,=n, =ny, +1, rw>p, =ny, =ny, +1,

where p, (i = 1, 2, 3) are given by (10).

6.2. Power of the test assessment

Let MoU be an appropriately defined measure of XY dependency (3). A standard
course of action is that two competitive hypotheses are formed, namely:

1. The main hypothesis, H,, that says: X and Y are independent.

2. An alternative hypothesis, H, that says: X and Y are dependent.

The PoT function takes the measure of dependency MoU as its argument and
returns the probability of rejecting H, as dependency increases. Since there is no
way to determine the function in an analytical way, we employ the Monte Carlo
method which we can rely on in such situations.

Phase 1
Step 1: Set sample size n.
Step 2: Set significance level o = 0.1.
Step 3: Repeat m = 10° times the following points (such a large number of repeti-

tions guaranties avery accurate result):
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Step 4:
Step 5:

Step 6:

i=1,..

Step 1:
Step 2:
Step 3:
Step 4:

Step 5:
Step 6:

Step 7:

— Generate of the 2x2 CT in accordance with the scenario as it was descri-
bed above for a = 0 (Tab. 2).

— Calculate values of test statistics O, (=1, ...,4;[=1, ..., m).

Present values of test statistics in increasing order.

Calculate critical values of tests cvl, =1, ..., 5) on the base of estimates

of quantiles. Unknown values of quantiles are replaced by appropriate or-

der statistics, namely

N, =00y (=1,....4). (11)

Repeat o = 100 steps 3—5 and calculate finally critical values of tests cv,
- 4).

v, 1y ol, (i=1,...4). (12)
@ =1

Phase 2

Choose scenario [-V

Set a (Tab. 2).

Set value of MoU (2) for which the test has to be carried-out (Tab. 3).

Create a CQ, (i = 1, ..., 4) that are counters of rejections of H, for O, sta-

tistics.

Set initial values CQ, =0 (=1, ..., 4).

Repeat m = 10° times the following points:

— Generate of the 2x2 CT in accordance with the scenario described abo-
ve, taking into account a (Tab. 2).

— Calculate values of test statistics O, (i =1, ..., 4).

—CQO,=CQ;+1,when Q;>cv,(i=1, ..., 4).

Calculate power of tests

PoT(MoU)=0 ,/m (i=1....4)

6.3. The results

Different scenarios determine different intervals of achievable MoU values. Moreover, the
sample size in particular scenarios differs. The reason is that the minimal sample size n
for each particular scenario has to be chosen to guarantee that all the cell counts expected
ina 2x2 contingency table will be nonzero. The maximal sample size # was, in turn, chosen
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to obtain tests of high power. Tables 4—8 show how MoU impacts PoT at significance level
o= 0.05 and for a given sample size n, Figures 1-5 — at significance level o = 0.01. These
tables and figures indicate that the MoU — for analyzed scenarios — changes in different in-
tervals, and it takes the greatest value for the scenario V. Of course, PoT function is a strict-
ly increasing function and its values are increasing together with the sample size 7.

At the outset, test power functions of O; (i = 1, 2, 3) tests were visually com-
pared. The most powerful test was selected out of them. It was definitely O, then
taken as a representative of the trio in question to compete against Q,. Since the test
power function has a meaning of a portion of untruthful hypotheses H, rejected,
a widely known Z test for testing equality of two portions was employed. Obtained
values significantly higher relative to O, were marked in bold (see Tables 4-—8).

Table 4. Sizes and power of four tests for scenario | and a = 0.05

n=250 n=500 n="1750 n=1000
010,000,000 [0:,|0,|0:[0,|0:|0,]0;5|0,

0 0.05]0.05{0.05{0.05{0.05|0.05{0.05]0.05]0.05] 0.05|0.05] 0.05 | 0.05 | 0.05 | 0.05 | 0.05
0.0125 ]0.06{0.06{0.06|0.06]0.06]0.06]0.06|0.06]0.06 |0.06 | 0.06|0.06 [ 0.07 | 0.07 | 0.07 | 0.07
0.025 0.07{0.07{0.07{0.07{0.09{0.09{0.09]0.09] 0.10| 0.10 | 0.10 | 0.10 | 0.12 | 0.12 | 0.12 | 0.12
0.0375 10.09{0.09{0.09{0.09]0.14| 0.14] 0.14 | 0.14] 0.17 | 0.17 | 0.18 | 0.18 { 0.22 { 0.22 { 0.22 | 0.22
0.05 0.1310.1210.13]0.13]0.200.20 | 0.20 { 0.20 | 0.28 | 0.28 | 0.28 | 0.28 | 0.36 | 0.36 | 0.37] 0.36
0.0625 |0.17]0.17|0.18] 0.17|0.30]0.30| 0.31 | 0.31 | 0.41 | 0.41 | 0.42 | 0.42]0.52|0.52|0.53 | 0.53
0.075 0.2310.2210.24]10.23|0.40]|0.40 | 0.41 | 0.41 | 0.55[0.55]0.57]0.57]0.67|0.67 | 0.69 | 0.69
0.0875 10.30]0.30]0.32]0.310.52]0.52|0.54 |0.54]0.69 | 0.69 ] 0.72 | 0.71 | 0.82 0.82] 0.83 | 0.83
0.1 0.3810.38(0.42]0.41]0.65|0.65|0.69]0.68|0.820.82 |0.84|0.84 | 0.91 [ 0.91 0.93]0.93
0.1125 ]0.48|0.48|0.54|0.53]0.78]0.77]0.82 | 0.81] 0.91 | 0.91 [ 0.93|0.93{0.97]0.97|0.98 | 0.98

MoU

Source: own material

Table 5. Sizes and power of four tests for scenario Il and a = 0.05

n=40 n=260 n=280 n=100
010,000, {0,000, |0,|0:[0,|0:|0,]0;5|0,
0 0.05] 0.05| 0.05| 0.05{ 0.05| 0.05| 0.05]| 0.05]| 0.05| 0.05] 0.05| 0.05| 0.05| 0.05| 0.05| 0.05
0.025 0.06| 0.06| 0.07| 0.07{ 0.06{ 0.06| 0.06| 0.07| 0.06| 0.06] 0.06] 0.07| 0.06| 0.06| 0.06{ 0.07
0.05 0.06| 0.06| 0.08| 0.09{ 0.07{ 0.07| 0.08]| 0.09| 0.07| 0.07| 0.08] 0.09| 0.08| 0.08| 0.09{ 0.10
0.075 0.08] 0.08| 0.11| 0.13{ 0.09{ 0.09| 0.11] 0.14| 0.11| 0.11| 0.14| 0.15| 0.12| 0.12| 0.15| 0.17

MoU

0.1 0.09] 0.09] 0.14] 0.17] 0.12] 0.13] 0.17| 0.21] 0.15] 0.16| 0.21] 0.24| 0.19] 0.19] 0.25] 0.28
0.125 0.10{ 0.11] 0.18] 0.24| 0.17| 0.18| 0.25] 0.30| 0.22| 0.24| 0.32| 0.36| 0.28| 0.29| 0.37| 0.42
0.15 0.12] 0.13] 0.22{ 0.30| 0.22| 0.24| 0.35| 0.42| 0.32| 0.35]| 0.46| 0.52| 0.41| 0.43| 0.54| 0.59
0.175 0.14] 0.16] 0.28] 0.39| 0.30| 0.32| 0.48| 0.57| 0.45| 0.49| 0.63] 0.69| 0.57| 0.59| 0.72| 0.77
0.2 0.15] 0.17] 0.34] 0.49] 0.39] 0.41] 0.62| 0.72] 0.59| 0.63] 0.80| 0.84| 0.74| 0.76] 0.88] 0.91

0.225 0.16] 0.19] 0.38] 0.58| 0.47| 0.50| 0.76] 0.86| 0.74| 0.77| 0.92| 0.95| 0,88| 0,90| 0,97| 0,98

Source: own material
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Table 6. Sizes and power of four tests for scenario lll and a = 0.05

n=25 n=40 n=>55 n=170
0100|0010, |05|0s 0|0, |0:[0,|0:|0:]0;:|0,

MoU

0 0.05] 0.05] 0.05] 0.06] 0.05] 0.05] 0.05] 0.05] 0.05] 0.05] 0.05] 0.05] 0.05| 0.05] 0.05] 0.05

0.0375 | 0.05] 0.05] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06] 0.06| 0.06] 0.06

0.075 | 0.06] 0.06] 0.07] 0.07] 0.07] 0.08] 0.08] 0.08] 0.08] 0.08] 0.09] 0.09] 0.10] 0.10] 0.10] 0.10

0.1125 | 0.08] 0.08] 0.08] 0.09] 0.11] 0.11} 0.12] 0.12] 0.13] 0.13] 0.14] 0.15] 0.16] 0.16] 0.18| 0.18

0.15 0.10] 0.10] 0.11] 0.12] 0.17| 0.17| 0.19] 0.19] 0.20] 0.20| 0.22] 0.24] 0.26] 0.26] 0.29] 0.30

0.1875 | 0.12] 0.12] 0.14] 0.16] 0.23] 0.23] 0.27| 0.28] 0.29] 0.29] 0.33] 0.36] 0.39] 0.39| 0.43| 0.45

0.225 0.15] 0.15] 0.19] 0.21] 0.31] 0.32] 0.38] 0.40| 0.42| 0.42] 0.48| 0.51] 0.54| 0.54] 0.60| 0.63

0.2625 | 0.17] 0.17] 0.23] 0.27] 0.41] 0.42] 0.51] 0.54] 0.56| 0.57| 0.65| 0.69| 0.71] 0.71| 0.78] 0.80

03 0.20] 0.20] 0.28] 0.34] 0.50] 0.52] 0.64] 0.69] 0.71] 0.72] 0.81] 0.84] 0.85 0.85] 0.91] 0.93

0.3375 10.22] 0.23] 0.34] 0.41] 0.60] 0.62] 0.78] 0.84] 0.84| 0.85] 0.93] 0.95] 0.95] 0.95] 0.98] 0.99

Source: own material

Table 7. Sizes and power of four tests for scenario IV and a = 0.05

MoU n=25 n=35 n=45 n=>55
0

0100|0010, |05|04[0:|0,|0:[0,|0|0,(0:|0,
0 0.0510.05{0.05]0.06|0.05|0.05{0.05{0.05|0.05]|0.05[0.05|0.05[0.05]0.05|0.05 | 0.05

0.05 ]0.06{0.060.06|0.06]0.06|0.06]0.060.06|0.07|0.06 | 0.07 0.06 | 0.07 | 0.07 | 0.07 | 0.07

0.1 0.0810.07{0.08]0.08{0.09{0.09{0.09|0.09] 0.11| 0.10 | 0.11 | 0.11 | 0.11 | 0.11 | 0.12 | 0.12

0.15 0.11]0.11(0.11}0.12{0.15] 0.15| 0.16| 0.15| 0.17] 0.17| 0.18 | 0.18 | 0.20 | 0.20 | 0.21 | 0.21

0.2 0.16]0.16] 0.17] 0.17]0.22]0.22]0.24 | 0.23 0.28 | 0.28 | 0.29 [ 0.29 | 0.32 | 0.32 | 0.34 | 0.34

0.25 10.23]0.22{0.24{0.24|0.33]0.33|0.36 | 0.35| 0.41 | 0.41 | 0.44 | 0.44 | 0.48 | 0.48 | 0.51 | 0.51

0.3 0.310.30]0.34]0.34 | 0.45]| 0.45|0.50 { 0.49 | 0.57 | 0.57 | 0.61 | 0.61 | 0.65 | 0.65 | 0.69 | 0.69

0.35 ]0.40|0.38(0.45]0.46]0.59|0.59]0.660.65]| 0.72| 0.73 | 0.77| 0.77 | 0.81 | 0.80 | 0.84 | 0.85

0.4 0.51(0.480.57(0.59(0.73(0.73]0.80 | 0.80 | 0.86|0.86]0.90| 0.91]0.92|0.92]0.95| 0.95

0.45 ]0.61]0.57(0.70|0.73]0.85]0.85]0.92/0.92]|0.95|0.95[0.97 | 0.98 | 0.98 | 0.98 | 0.99 | 0.99

Source: own material

Table 8. Sizes and power of four tests for scenario V and a = 0.05

o n=25 n=35 n=45 n=>55
0 000|001 |0, 0|04|0[0,|0:,|0:|0,[0,]05]|0,
0 0.060.05]0.05]0.05]0.05]0.05]0.05[0.06|0.05]0.05|0.05|0.05[0.05]0.05]0.05| 0.05

0.1 0.0710.07]0.07]0.07{0.080.080.08 0.08]0.080.08 | 0.080.08 | 0.10 | 0.10 | 0.10 | 0.10

0.2 0.15]0.15{0.14]0.14] 0.16] 0.16] 0.16 | 0.16] 0.18 | 0.18 | 0.18 | 0.18 | 0.22 ] 0.22 | 0.22 | 0.22

0.3 0.25]0.26]0.25]10.25]|0.31] 0.31] 0.31 | 0.31 | 0.37|0.37]0.37]0.36 0.42]0.42 | 0.43 | 0.42

0.4 0421042/0.41]0.41]0.51]0.50{0.51]0.51]0.59]0.59[0.60{0.58]0.67 |0.66 | 0.67 | 0.67

0.5 0.60[0.60]0.60[0.59]{0.71]0.71{ 0.71] 0.71]0.80 | 0.80 | 0.80 | 0.79 | 0.86 | 0.86 | 0.87 | 0.86

0.6 0.77]10.7810.77] 0.77 | 0.87 ] 0.87 | 0.88 [ 0.87 | 0.93 ] 0.93]0.93]0.93]0.96{0.96|0.97 | 0.96

0.7 0.90{0.90]0.90[0.90{0.97]0.96]{0.9710.96]10.99]0.99|0.990.99 | 1.00 | 1.00 | 1.00 | 1.00

0.8 0.9810.98]0.98]0.98{0.99]0.99{1.00]0.99]1.00]1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

0.9 1.00 [ 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00] 1.00| 1.00] 1.00 | 1.00 | 1.00 | 1.00

Source: own material
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Figure 1. The power-of-test function forn=250-i(i=1, ..., 4). Scenario |
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For weak dependence in scenarios I-1V and in scenario V, the power functions
of these tests are very similar. Under scenario I, for strong dependence and for the
smaller samples, the highest power function corresponds to O, and Q, statistics. Relat-
ed to Scenarios 11 and I1I the highest power function corresponds to O, statistics, this
is particularly visible for the smaller samples. Under scenario IV, Q5 and Q, statistics
have the highest power and Q, statistics is more powerful for sample size n = 25.

7. Examples

In a general population, a testing for independence of two features was carried out.
The obtained results are presented in Table 9. Table 10 gives the average of 100
simulated critical values using m = 10° of Q* (i =1,...,4) forn=40and a € {0.05,

0.1}. This table summarizes other findings too.

Table 9. Empirical data in 2x2 CTs

Y
X Y, Y, Total
X, 1 10 11
X, 10 19 29
Total 11 29 40

Source: own material
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Table 10. Critical values of four tests

Value Critical value
Test LY of statistics a=0.05 a=0.01
0, 2.579 3.861 2.640
0, -37.421 -0.129 —-1.355
0, 0.2025 1.274 1.264 1.067
0, 1.661 1.321 1.101

Source: own material

The preferred tests are Q,, O, according to which null hypothesis is rejected,
whereas the Q,, O, tests retain the null.

8. Conclusion

Under the considered scenarios MoU changes in different intervals. It is because
different scenarios determine different intervals of achievable MoU values. More-
over, sample sizes in particular scenarios are different. The reason is that the mini-
mal sample sizes for each particular scenario have to be chosen to guarantee counts
expected for each i, j = 1, 2 to be nonzero. The maximal sample size was, in turn,
chosen to obtain high power of tests.

Under scenarios -1V, especially for smaller samples and for strong depend-
ence, the new test (LMS) is of higher power than other tests analyzed in this pa-
per. Under scenario V, where MoU takes the greatest values, the power functions
of these tests are very similar. An identical situation can be observed in scenarios
I-1V for weak dependence.

Therefore it can be concluded, that the LMS is not less effective than the O,
(1=1, 2, 3) tests, and it may be an alternative to them. Under some scenarios, LMS
is of higher power, that is understood in the sense of the proposed measure MoU.
With the increase of the variability range of MoU, the power function of LMS
is more similar to other tests.
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Nowy test niezaleznosci dla tablic dwudzielczych 2x2

Streszczenie: \V literaturze statystycznej istnieje wiele miar do ujawniania niezaleznosci dwdch
zmiennych jakosciowych w tabelach kontyngendji, w szczegoélnosci w tabelach dwudzielczych 2x2.
W niniejszym artykule poréwnano cztery testy niezaleznosci. Sa to: test chi-kwadrat, jako najbardziej
znany przedstawiciel statystyk power divergence, test modutowy oraz test d-kwadrat, jako modyfika-
Cje testu Pearsona, test logarytmiczno-minimalny, bedacy nowa propozycja. Wartosci krytyczne dla
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wyzej wymienionych testow zostaty wyznaczone metodami Monte Carlo. W celu poréwnania testow
zaproponowano miare nieprawdziwosci H, i wyznaczono ich moc.

Stowa kluczowe: test niezaleznosci, tablica dwudzielcza 2x2, statystyka logarytmiczno-minimalna,
statystyka modutowa, statystyki power divergence, metoda Monte Carlo

JEL: C12, C14, C15, C46, C63
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