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Abstract— One method to model power electronic devices for
harmonic emission studies is using frequency-domain models
based on the frequency coupling matrices. This paper presents
a new test procedure for the experimental evaluation of the

frequency coupling matrix elements of power electronic devices.
An automated test system is designed, realized, and characterized
from a metrological perspective. Experimental tests show the
tremendous increase in speed of the new test procedure in com-
parison to the classical test procedures present in the literature,
with the same levels of accuracy of obtained results.

Index Terms— Admittance, frequency coupling matrix, har-
monics, phase-dependent characteristics, power electronics,
power quality, power system measurement.

I. INTRODUCTION

T
HERE is an increasing need to model the harmonic emis-

sion of modern power electronic devices in distribution

networks. This need is a result of more and more household

appliances, as well as industrial loads, utilizing power elec-

tronic interfaces [i.e., heat and ventilation air conditioning

systems, electric vehicles, compact florescent lamp (CFLs),

LEDs, variable speed drives, and so on]. In order to predict

the cumulative impact in terms of voltage harmonic distortion,

fast and accurate models are necessary [1].

Different methods for harmonic analysis in the frequency

domain and time domain are currently present in the rele-

vant literature; hybrid frequency and time-domain methods

have also been developed [2]–[14]. Medina et al. [2] present

a review with a concise description and analysis of the

fundamentals, characteristics, analytical details, merits, and

drawbacks associated with existing methods in frequency and

time domains for harmonic analysis in practical power net-

works. Concerning frequency domain methods [2] introduce
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six categories: 1) direct method; 2) iterative harmonic analysis;

3) harmonic power flow method; 4) dynamic harmonic domain

method; 5) frequency coupled matrix method; and 6) multi-

phase harmonic analysis.

Frequency coupled (or transfer) matrix methods are able to

model the sensitivity of the current harmonic emission of the

majority of power electronic devices to the phase angle of the

background (BG) voltage harmonics. This sensitivity can be

modeled by Norton equivalent models based on cross-coupling

admittance matrices using linearization of the power electronic

devices around a suitable base working point. The necessity

of a phase-dependent relationship between the transfers of

voltage and current was demonstrated for the first time in [3].

In [4], a linearized cross-coupled admittance was obtained for

a high voltage direct current converter; the admittance lattice

structure was sparse, and included the phase dependence by

tensor representation.

Frequency transfer matrices (FTMs) can be obtained

analytically [4]–[6] (very difficult and device sensitive) or by

means of time-domain simulations or experimental

tests [7]–[12] (very practical and, in principle, applicable to

all loads). In [7], a sequential harmonic injection technique

was introduced to experimentally obtain the FTM by applying

small input (voltage) distortions to the load and measuring the

change in the output (current). The phase and magnitude of

the distortion were varied to investigate the phase-dependent

relationships and to confirm the device’s linearity around the

operating point.

The accuracy of such approaches mainly depends on two

aspects: 1) the fulfillment of the linearization hypothesis

around a stable base point (linearity hypothesis) and 2) the

accuracy of the experimental test procedure used to evaluate

the FTM (generation and measurement uncertainty), which has

been under evaluated in the literature.

In [15], the second aspect was investigated with the aim

of highlighting the main accuracy issues that have to be

considered during such kind of experimental activities. This

paper builds on the initial work presented in [15], which

is here significantly extended here by providing: 1) a new

test procedure; 2) a full metrological characterization of the

experimental setup; and 3) a more comprehensive set of

experimental results.

It is shown that compared to the classical test procedures

present in the literature, the new test procedure provides a

significant reduction in experimental time without reducing

the accuracy of the obtained results.
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II. FREQUENCY TRANSFER MATRIX

A. Review of FTM Approach

Under small-signal operation, a device can be linearized

around an operating point. This linear gradient can be repre-

sented by a Norton admittance term that can be considered

either constant or, if more accuracy is required, variable with

the operating conditions.

A generic hth terminal harmonic current, Ih , is calculated

by the following equation and is the sum of the base case

current, Ibh , and the current deviation, �Ih , caused by the

voltage distortion, �V = [�V1,�V2, . . . ,�VK , ]T , across

the FTM Y , whose terms Yh|k , relate the kth harmonic voltage

to the hth harmonic current
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For developing the cross-coupling matrices, the positive and

negative frequencies can be considered fully combined into

the same matrix such that only positive harmonics need to be

considered. The inclusion of positive and negative frequencies

results in phase dependent transfers between the BG volt-

age harmonic and harmonic currents at all frequencies [4].

This phase dependent transfers can be elegantly modeled by

introducing a tensor matrix, whose elements are real-valued

matrices when rectangular coordinates are used instead of

the complex-valued direct and negative frequency admittance

matrices [5]. This improves the computational performance of

the model. Tensors parameterization can be conducted in a

very robust way using Fourier descriptors as proposed in [7]

and discussed in [11] and [12].

B. Classical Measurement Method

Direct measurement of the elements of the FTM can be

performed by sequentially applying a voltage distortion of a

given magnitude and frequency and varying the phase angle

from 0 to 2π in a discrete number of Nθ values. The following

conditions have to be assumed: 1) the load is in steady-state

condition and its frequency characteristics are time invariant;

2) the input is independent of the device operation (low supply

impedance); and 3) the base case operating condition remains

constant.

For each harmonic voltage magnitude and order k, the ele-

ments of (1), Yh|k , with h = 1, . . . , H , are calculated using

Yh|k (θi ) =
Ih(θi) − Ibh

�Vk(θi )
=

�Ih|k(θi )

�Vk(θi )
with i = 1, . . . , Nθ .

(2)

Successively, tensor parameterization procedures, such as

those presented in [7] and discussed in [11] and [12], can be

applied to evaluate the elements of Y . Taking more samples,

i.e., higher values of Nθ , will not only increase the accuracy

of the estimation but will also increase the duration of the

experimental test activity to be conducted.

Fig. 1. CFL lamp. (a) Locus of �V3 with varying phase angles in the range
0–2π ; (b) loci of Ih|3 together with the corresponding base currents, Ibh , and
the contributions, �Ih|3 (red), caused by the distortion �V3. for h = 3, 5,
and 7.

Fig. 1 shows an example of the results for a sequence of

tests in the presence of a harmonic voltage �V3 = 2.3 V

[see Fig. 1(a)] applied to a CFL lamp. In Fig. 1(b), the

loci of the harmonic domain components I3, I5, and I7 are

plotted together with the corresponding base currents, Ibh ,

and the contributions, �Ih|3, caused by the distortion �V3

for 24 different values of its phase angle.

III. NEW TEST PROCEDURE

In order to perform a comprehensive harmonic analysis with

a single supply signal, the generation of a signal composed of

a fundamental tone and a harmonic component, with linearly

modulated phase, is proposed. The signal can be analytically

expressed as

V̄T = A1 sin(ωt) + Ah sin(h · ωt + ϕh(t)) (3)

and

ϕh(t) =
2π

T
· t (4)

where T is the period of the modulation. In this way, the initial

phase angle of the harmonic components increases linearly

with time and reaches the value of 2π after a period equal

to T . Then, due to periodicity of the sine function, the phase

angle returns to zero and starts to increase linearly again. This

is shown in Fig. 2 which displays the phase angle modulated

with a periodicity of 2 s: the modulating signal is essentially

a sawtooth wave. Even if the phase angle has a different value

for each time instant, the measurement of the phase difference

between the fundamental and the harmonic components can be

performed only when the fundamental component phase angle

reaches zero. Therefore, for a 50-Hz system, measurement

results can be taken each for 20 ms. This limits the phase

resolution to

�ϕh = 2π
0.02

T
. (5)

The phase resolution can be improved by increasing T , but this

will reflect on the memory requirement of generation system.

A periodicity of 2 s is adopted in the following analysis in

order to obtain the measurement of Nθ = 100 different phase

angles.
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Fig. 2. Linear phase variation versus time.

Fig. 3. Test bench simplified block diagram.

IV. ANALYSIS AND CHARACTERIZATION OF

EXPERIMENTAL SETUP

A. Accuracy Analysis

In Fig. 3, a simplified block diagram of a hardware setup,

which is able to test a specific electric load under steady-

state (sinusoidal and nonsinusoidal) and dynamic (amplitude

and phase modulation) conditions, is displayed. For the steady-

state analysis considered in this paper, the amplitude, V T
k , and

phase, θT
k , for each harmonic component required to obtain the

desired waveform, V̄T , should be defined. Adopting phasor

notation, this can be represented as

V̄T =

K
∑

k=1

V T
k · e jθT

k · e j kωt (6)

where K is the highest harmonic order considered.

Typically, these test parameters are used to calculate the

instantaneous values, equally spaced, within one period of a

waveform with the same shape of desired test signal but with

an amplitude scaled by a certain gain, G. These instantaneous

values are sequentially and repetitively generated by a digital-

to-analog (D/A) converter (signal generator) to obtain a real

voltage signal, V̄G , that is successively amplified by a power

amplifier, so obtaining V̄A.

In an ideal system

V̄ ideal
G =

K
∑

k=1

V T
k

G
· e jθT

k · e j kωt (7)

and

V̄ ideal
A = G · V̄ ideal

G = V̄T . (8)

However, each stage is able to introduce a systematic alter-

ation, may be either linear or nonlinear, which will result

in a deviation between the desired and the obtained signals.

Linear effects simply introduce some modifications in the

amplitude and phase angle of the harmonic components. Non-

linear effects are also able to introduce additional harmonic

components. The real signal can be represented as

V̄G =

K
∑

k=1

V G
k · e jθG

k · e j kωt . (9)

Thus, a deviation from the desired waveform (an error) intro-

duced due to the signal generation system is defined as

ēG = V̄G −
V̄T

G
=

K
∑

k=1

(

V G
k · e jθG

k −
V T

k

G
· e jθT

k

)

· e j kωt . (10)

Similarly, the output of amplifier can be represented as

V̄A =

K
∑

k=1

V A
k · e jθ A

k · e j kωt . (11)

Accordingly, a deviation (an error) introduced by the amplifi-

cation system is defined as

ēA = V̄A − V̄T =

K
∑

k=1

(

V A
k · e jθ A

k − V T
k · e jθT

k

)

· e j kωt .

(12)

In addition to systematic effects, each component of the

generation stage is also able to introduce random fluctuations

of waveform amplitude/parameters that could be considered

and modeled as additional noise. Assuming an average value

equal to zero, repeating the test conditions, and averaging help

to reduce the effect of these errors on the results.

The overall deviation introduced by the generation chain

results in a change of the considered test point, and this

needs to be kept small so as to not affect the relevance

of the test results. The amount of modifications, linear and

nonlinear, systematic, and random, depends on the accuracy

of the considered systems. However, the accuracy information

commonly supplied by the manufacturers, or the calibration

certificate, cannot be directly used to evaluate the specific

contribution; so, a proper characterization procedure is often

required for this aim.

One source of error which should be carefully considered

is the power amplifier. As the amplification transfer function

is not a pure gain G, it can introduce a different amplification

and phase shift to each harmonic present in the signal, that is,

G → Ḡ(ω) = G(ω)e jϕG(ω). (13)

To clearly describe this effect, let us consider a simple signal

composed by only two components:

V̄T = V1 sin(ωt) + Vh sin(h · ωt + θh) (14)

where V1 is the amplitude of the fundamental component and

Vh and θh are the amplitude and phase of the hth harmonic

component, respectively.
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Fig. 4. Phase accuracy evaluated without phase angle correction: average
value (red symbol) and standard deviation (blue whiskers).

After amplification, this becomes

V̄A = V1G(ω) sin(ωt + ϕG(ω))

+ VhG(hω) sin(h · ωt + θh + ϕG(hω)). (15)

A flat response in amplitude for the accounted frequency

should limit the relative amplitude changes. Negating the effect

of the phase delay is more difficult to realize. In fact, for

determining the harmonic phase angle, it is necessary to refer

to the time instant when the fundamental component has zero

phase. The effect of this additional phase for the fundamental

component produces a time shift in the analysis equal to

�t = ϕG(ω)
/

ω. (16)

This time shift is present in the phase of each harmonic. This

effect is proportional to the harmonic order and the harmonic

phase angle at this time instant appears to be

ϕh(�t) = h · ϕG(ω) + ϕh + ϕG(hω) (17)

In this condition, the phase deviation in generation appears to

be linearly increasing with harmonic order

eh = ϕh − ϕh(�t) = −h · ϕG(ω) − ϕG(hω). (18)

An example of this effect, considered in [15] as system phase

angle accuracy, is reported in Fig. 4. In the reported error bar,

the center is the mean value and whiskers show the standard

deviation of analyzed values. In this paper, all the graphs will

be used with the same meaning. In the following paper, this

effect is compensated before the assessment of experimental

system performance.

A further linear modification is introduced by the supply

current driven by the load under test, due to the output

impedance of amplifier. This effect depends on the current

magnitude. Knowledge about the actual voltage and current

supplying the load (i.e., the actual test condition and load

behavior) is obtained by the measurement system. Of course,

measurement accuracy of adopted instrument is pre-eminent to

obtain proper test results. Of course, accuracy of measurement

instrument is vital for obtaining accurate test results. Similar

to the generation system, common accuracy information about

measurement instruments and signal transducers (if utilized)

cannot be directly applied for assessing the expected accuracy

Fig. 5. Generated voltage, V̄G , accuracy for a pure sinusoidal waveform:
average value (red symbol) and standard deviation (blue whiskers).

of measuring specific harmonics amplitude and phase angle,

and a proper characterization process should be developed.

B. Metrological Characterization

For the implementation of the measurement system for the

test bench shown in Fig. 3, a voltage data acquisition board (NI

9225, 300 Vrms, 24 bit, simultaneous sampling, 50 kHz, built-

in antialias filters) and a current data acquisition board (NI

9227, 5 Arms, 24 bit, simultaneous sampling, 50 kHz, built-

in antialias filters) with high accuracy were utilized with-

out any transducers. The sampling frequencies of the two

boards (50 kHz) were synchronized. Both were referred to the

same external master timebase clock obtained by exporting

the clock used by the generation system (12.8 MHz). In this

way, voltage and current sampling are synchronized with each

other and the generation system, allowing for synchronized

analysis.

The generation board used was the NI 5422 (16 bit,

input range ±12 Vpk , maximum sample rate 200 MHz,

variable gain). The power amplifier was the ac power source

AMX3120 (Pmax = 12 kVA, typical output total harmonic

distortion (THD) lower than 0.10 %).

In order to characterize the metrological performance of

the generation system, specific tests were designed. This is

required as the spectral performance given by the manufacturer

may not include all required frequencies (i.e., only at 50 kHz

for low-voltage generator) and other parameters may not

include sufficient detail (i.e., THD for power amplifier). This
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Fig. 6. Amplified voltage, V̄A, accuracy for a pure sinusoidal waveform:
average value (red symbol) and standard deviation (blue whiskers).

preliminary testing stage was performed with an open-circuit

load due to the small amplitudes of currents involved in the

considered tests, and the impact of the internal impedance of

the power amplifier was estimated to be negligible.

For the first test, the waveform parameters were set to

generate a pure sinusoidal component at 50 Hz, so, in theory,

without harmonic components. The generated voltage (V̄G)

and amplified signal (V̄A) were synchronously measured by

the data acquisition system. The generation was repeated

1200 times and a synchronized spectral analysis was per-

formed with the acquired samples to evaluate the harmonic

contents both in terms of amplitude and phase angle. The har-

monic phase angles were defined referring to the time instant

of zero crossing of the fundamental component. Figs 5 and

6 show the harmonic components measured in the generated

and amplified voltages, respectively.

It is worthwhile noting that for V̄G (Fig. 5), the har-

monic components over the third are mainly due to random

effects (due to quantization in generation and other random

noise sources) and so their phase angles have a limited

relevance. Moreover, the nonlinear behavior of the amplifier

introduces additional harmonics into V̄A. These components

are the voltages applied to the equipment and represent a BG

harmonic voltage that has to be taken into account in the test

condition analysis. As stated in Section II-B, it is assumed that

these are independent of the load.

Fig. 7 presents the value of output impedance measured

with specific characterization experimental test. The test is

performed in two stages. In the first stage, a signal composed

Fig. 7. Modulus and phase of internal amplifier impedance.

by fundamental component at 50 Hz and only the kth har-

monic component was generated and amplified without any

load (open circuit). Both the generated and amplified signals

are synchronously acquired. Then, the amplified signal was

applied to a passive load (a resistor). During this stage, the cur-

rent, ĪG , was acquired. Then, the kth harmonic component

measured in voltage acquired without load was considered,

V̄ A
k (without current, internal impedance produce no effect),

the kth harmonic component measured in voltage acquired

with load is, V̄ G
k . So, the impedance at the kth harmonic

frequency was calculated as

Z̄Gen
k =

(

V̄ A
k − V̄ G

k

)

/

Ī G
k . (19)

To properly account for the phase relation in (19), all the

phase angles are referred to the phase of the generated signal.

The generation and the acquisition tests were repeated for

increasing harmonic orders up to 10 kHz. Fig. 8 reports the

value of output amplification transfer function. In Fig. 8,

the point at which the amplification decreases by 3 dB is

also highlighted. So, the system has a frequency bandwidth

that reaches 15 850 kHz. At this frequency, the corresponding

phase delay is 98°. To achieve a higher precision, it is

possible to refer to a different attenuation level (1 or 0.5 dB)

decreasing the considered bandwidth. The global accuracies

of the generation system, after correction of all the detected

systematic deviations, are reported in Fig. 9 (for amplitude)

and Fig. 10 (for phase angle).
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Fig. 8. Modulus and phase of amplifier transfer function with −3 dB point.

Fig. 9. Amplitude global accuracy of generation system after correction of all
the detected systematic deviations: average value (red symbol) and standard
deviation (blue whiskers).

V. EXPERIMENTAL RESULTS

Measurements have been performed on a low-power, com-

mercially available 20-W CFL lamp. Fifteen different levels

of each BG harmonic voltage magnitude, �Vk , have been

considered ranging from 0% to 140% of the EN50160 limits,

VkLIM, fixed, for each individual odd harmonic (from the 3rd

to the 21st) [13].

The test corresponding to 0% amplitude was conducted to

get the results for the base condition that was assumed to be

the pure sinusoidal regime with 100% fundamental voltage.

Both the classical and the new test procedures have

been implemented. Concerning the classical test procedure,

the phase angle has been varied in the range from 0 to 2π

in 24 equal spaced steps, N�θ . For the new test procedure,

the period of the phase modulated signal [see (4)] has been

Fig. 10. Phase angle global accuracy of generation system after correction of
all the detected systematic deviations: average value (red symbol) and standard
deviation (blue whiskers).

Fig. 11. Comparison of the norm of relative deviation, εh|k, between
(a) classical test procedure and (b) new test procedure, for �Vk = 20%
of VkLIM with k = 3, 5, and 7, and h = 3, 5, and 7.

chosen to be 2 s, which corresponds to N�θ = 100 equivalent

phase angle steps, having analyzed 200-ms length segments

of the whole signal.

In synthesis, 3600 tests have been performed for the clas-

sical test procedure (15 voltage levels × 24 phase angles ×

10 individual BG voltage harmonics) and 150 tests (15 BG

voltage levels × 10 individual BG voltage harmonics) for the

new proposed test procedure.

For the sake of brevity, only the results related to the effects

of the first three odd harmonics of the BG voltage on the first

three odd harmonics of the currents are reported.

The index used to quantify the performances of the two

test procedures is the norm of the relative deviation calculated
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Fig. 12. Comparison of the norm of relative deviation, εh|k , between (a) the
classical test procedure and (b) the new test procedure, for �Vk = 100% of
VkLIM with k = 3, 5, and 7, and h = 3, 5, and 7.

using

εh|k =

N�θ
∑

j=1

∥

∥�I est
h|k( j) − �I meas

h|k ( j)
∥

∥

∥

∥�I meas
h|k ( j)

∥

∥

100. (20)

This index is intended to quantify the average accuracy of

the estimated harmonic current variations, compared to the

measured harmonic current variations, for a given value of

the BG harmonic voltage magnitude and harmonic order.

Fig. 11 shows the comparison of the norm of the relative

deviation εh|k between the classical test procedure (a) and the

new test procedure (b) for a BG harmonic voltage magnitude

�Vk = 20% of VkLIM, with k = 3, 5, 7 and h = 3, 5, 7.

Fig. 12 is similar to Fig. 11, but with �Vk = 100% of VkLIM.

It is possible to observe that the differences in the results of

the two test procedures are extremely small, demonstrating

that the accuracy of the new test procedure can be con-

sidered acceptable. Looking at Fig. 11(b), it is possible to

observe that the deviations on the main diagonal are lower

than 2%.

Fig. 13 shows the polar plots of (a) Y3|3 and of (b) �I3|3 for

BG harmonic magnitudes of 20% of the limits. Red plots refer

to measured data; black solid lines refer to estimation by tensor

parameterization; the two represented radii point to 0° phase

angle of the applied BG voltage. It is possible to observe that

the self-admittance, Y3|3, draws a double circle on the complex

plane, as expected from the theory for systems behaving

linearly around the base point when a small magnitude of

Fig. 13. Polar plot of (a) Y3|3 and (b) �I3|3 , for �V3 = 20% of
V3Lim , and (c) Y3|7, and (d) �I3|7, for �V7 = 20% of V7Lim . Red
plots refer to measured data. Black solid lines refer to estimation by tensor
parameterization.

BG voltage is applied. This is also confirmed by the elliptic

shape of the third harmonic current variation and by the almost

perfect matching between measured and estimated quantities.

On the other hand, looking at Fig. 13(c) and (d) where the Y3|7

and �I3|7 are plotted, respectively, it is possible to observe that

the effects of the seventh harmonic BG voltage on the third

harmonic current show the evidence of a nonlinear transfer

between the voltage and current: the locus of the measured

admittance is no more a double circle while the estimated locus

is still a double circle due to the linearity hypothesis. This is

also confirmed by the relative deviation ε3|7 in Fig. 11(b),

i.e., 5%.

Fig. 14 is same as Fig. 13, but for BG harmonic magnitudes

of 100% of the limits. It shows the polar plots of (a) Y3|3

and (b) �I3|3, respectively, and similar considerations to those

done for Fig. 13(c) apply, but in this case, the cause of

the nonfulfillment of the linearity hypotheses is related to

the higher BG voltage magnitude. The corresponding relative

deviation, ε3|3, in Fig. 12(b) is 9%. Finally, Fig. 14 shows the

polar plots of (c) Y7|3 and of (d) �I7|3, respectively, which

correspond to the highest relative deviation, ε7|3, in Fig. 12(b),

i.e., 11%. In this case, the admittance locus shape is a closed-

loop but very far from being a double circle, and the locus of

the current deviations is no more an ellipse.

Finally, it is worth highlighting that the classical test proce-

dures took 7.5 h, while the new procedure took only 1 h to be

fully executed, resulting in a speed improvement of 7.5 times.
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Fig. 14. Polar plot of (a) Y3|3 and (b) �I3|3 , for �V3 = 100% of V3Lim ,
and (c) Y7|3 and (d) �I7|3 , for �V3 = 100% of V3Lim . Red plots refer to
measured data. Black solid lines refer to estimation by tensor parameterization.

VI. CONCLUSION

This paper has presented a new test procedure for the exper-

imental evaluation of the frequency coupling matrix elements

of power electronic devices. An automated test system has

been designed, realized, and characterized from a metrological

perspective. Experimental tests have shown the great speed

improvement of the new test procedure in comparison to the

classical test procedures presented in the literature with the

same levels of accuracy of obtained results.

The main outcomes of this paper are as follows.

1) The procedure for the identification and the correction

of the systematic errors of the test system was able to

minimize the measurement uncertainty to at least one

order of magnitude lower than the minimum deviation

between model estimations and measurements.

2) The new test procedure for the identification of

FTM based on phase-modulated nonsinusoidal signals,

obtained the same accuracy as classical test procedures,

while reducing the test duration of a factor 7.5.

The proposed test procedure offers particular benefits for

applications requiring a larger number of experimental lab

measurements, e.g., tests on families of equipment of different

brands working in fixed operating conditions (e.g., lamps) or

characterization of devices whose behavior is a function of

operating power (electrical vehicles battery chargers or photo-

voltaic inverters).

ACKNOWLEDGMENT

This paper was prepared at the SUN-EMC Laboratory of

the University of Campania “Luigi Vanvitelli.”

REFERENCES

[1] J. Arrillaga, B. C. Smith, N. R. Watson, and A. R. Wood, Power System

Harmonic Analysis. New York, NY, USA: Wiley, 1997.
[2] A. Medina et al., “Harmonic analysis in frequency and time domain,”

IEEE Trans. Power Del., vol. 28, no. 3, pp. 1813–1821, Jul. 2013.
[3] E. V. Larsen, D. H. Baker, and J. C. McIver, “Low-order harmonic

interactions on AC/DC systems,” IEEE Trans. Power Del., vol. 4, no. 1,
pp. 493–501, Jan. 1989.

[4] B. C. Smith, N. R. Watson, A. R. Wood, and J. Arrillaga, “Harmonic
tensor linearisation of HVDC converters,” IEEE Trans. Power Del.,
vol. 13, no. 4, pp. 1244–1250, Oct. 1998.

[5] Y. Sun, G. Zhang, W. Xu, and J. G. Mayordomo, “A harmonically
coupled admittance matrix model for AC/DC converters,” IEEE Trans.

Power Syst., vol. 22, no. 4, pp. 1574–1582, Nov. 2007.
[6] P. W. Lehn and K. L. Lian, “Frequency coupling matrix of a voltage-

source converter derived from piecewise linear differential equations,”
IEEE Trans. Power Del., vol. 22, no. 3, pp. 1603–1612, Jul. 2007.

[7] L. Frater, “Light flicker and harmonic modelling of electrical lighting,”
Ph.D. dissertation, Elect. Comput. Eng., Univ. Canterbury, Christchurch,
New Zealand, 2015.

[8] M. F. Romero, L. E. Gallego, S. Müller, and J. Meyer, “Characteri-
zation of non-linear household loads for frequency domain modeling,”
Ingeniería Invest., vol. 35, pp. 65–72, Dec. 2015.

[9] R. Senra, W. C. Boaventura, and E. M. A. M. Mendes, “Assessment of
the harmonic currents generated by single-phase nonlinear loads,” Electr.

Power Syst. Res., vol. 147, pp. 272–279, Jun. 2017.
[10] M. Fauri, “Harmonic modelling of non-linear load by means of crossed

frequency admittance matrix,” IEEE Trans. Power Syst., vol. 12, no. 4,
pp. 1632–1638, Nov. 1997.

[11] R. Langella, J. E. Caicedo, A. A. Romero, H. C. Zini, J. Meyer, and
N. R. Watson, “On the use of fourier descriptors for the assessment of
frequency coupling matrices of power electronic devices,” presentation
at the 18th Int. Conf. Harmon. Quality Power, Ljubljana, Slovenia,
May 2018.

[12] J. E. Caicedo, A. A. Romero, H. C. Zini, R. Langella, J. Meyer, and
N. R. Watson, “Impact of reference conditions on the frequency coupling
matrix of a plug-in electric vehicle charger,” presentation at the 18th Int.
Conf. Harmon. Quality Power, Ljubljana, Slovenia, May 2018.

[13] M. Faifer, R. Ottoboni, M. Prioli, and S. Toscani, “Simplified modeling
and identification of nonlinear systems under quasi-sinusoidal condi-
tions,” IEEE Trans. Instrum. Meas., vol. 65, no. 6, pp. 1508–1515,
Jun. 2016.

[14] M. Faifer, C. Laurano, R. Ottoboni, M. Prioli, S. Toscani, and M. Zanoni,
“Definition of simplified frequency-domain volterra models with quasi-
sinusoidal input,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 65,
no. 5, pp. 1652–1663, May 2018.

[15] D. Gallo, C. Landi, R. Langella, M. Luiso, A. Testa, and N. Watson,
“On the measurement of power electronic devices’ frequency coupling
admittance,” in Proc. Int. Workshop Appl. Meas. Power Syst. (AMPS),
Liverpool, U.K., Sep. 2017, pp. 1–6.

[16] Voltage Characteristics of Electricity Supplied by Public Distribution

Networks, Standard EN 50160, CENELEC, 2013.

Daniele Gallo (S’00–M’04) was born in 1974. He
received the Laurea degree in electronic engineering
and the Ph.D. degree in electrical energy conver-
sion from the University of Campania L. Vanvitelli,
Aversa, Italy, in 1999 and 2003, respectively.

He is currently an Associate Professor with the
University of Campania L. Vanvitelli. His current
research interests include the setup of digital mea-
surement instrumentation and the handling of auto-
matic measurement systems.



GALLO et al.: NEW TEST PROCEDURE TO MEASURE POWER ELECTRONIC DEVICES’ FREQUENCY COUPLING ADMITTANCE 2409

Roberto Langella (S’00–M’01–SM’10) was born
in Naples, Italy, in 1972. He received the Degree in
electrical engineering from the University of Naples,
Naples, Italy, in 1996, and the Ph.D. degree in
electrical energy conversion from the University of
Campania L. Vanvitelli, Aversa, Italy, in 2000.

He is currently an Associate Professor in electrical
power systems with the University of Campania L.
Vanvitelli.

Dr. Langella is a Senior Member of the IEEE
Power Engineering Society.

Mario Luiso (S’07–M’08) was born in Naples,
Italy, in 1981. He received the Laurea (summa

cum laude) degree in electronic engineering and the
Ph.D. degree in electrical energy conversion from the
University of Campania L. Vanvitelli, Aversa, Italy,
in 2005 and 2007, respectively.

He is currently an Assistant Professor with the
Department of Engineering, University of Campania
L. Vanvitelli. His current research interests include
the development of innovative methods, sensors, and
instrumentation for measurement of electrical, and,

generally, physical quantities.
Dr. Luiso is a member of the IEEE Instrumentation and Measurement

Society.

Alfredo Testa (M’83–SM’03–F’08) was born in
Naples, Italy, in 1950. He received the Degree in
electrical engineering from the University of Naples,
Naples, Italy, in 1975.

He is currently a Professor in electrical power sys-
tems with the University of Campania L. Vanvitelli,
Aversa, Italy. His current research interests include
electrical power systems reliability and harmonic
analysis.

Dr. Testa is a Fellow Member of the IEEE Power
Engineering Society and the Italian Institute of
Electrical Engineers.

Neville R. Watson (M’82–SM’99) received the B.E.
(Hons.) and Ph.D. degrees in electrical engineering
from the University of Canterbury, Christchurch,
New Zealand.

He is currently a Professor with the University
of Canterbury. His current research interests include
power quality, harmonics, and electromagnetic tran-
sient analysis as well as computer modeling of
electrical power systems.


